- important to avoid un-damped oscillation Large flux distortion (Axial offset, Axial Shape Index) leads to safety problem, such as CHF damage of fuel rod cladding, fuel melting during[r]
(1)3 Reactor transients
(2)Separation of variables
neutron lifetime
infinite reactor lifetime :
nl
P 1Pnl
number of neutrons at time k
number of neutrons at time eff
1
eff eff
k N N k
dN N dt
N : number of neutrons
vN
thermal reactor : v is small, ais large l~ 10-4~ 10-3s
fast reactor : v is very large, ais small l~ 10-7~ 10-6s
example:
k=1.001, l=10-4s 10 ( ) / t
N t N e e10 ~ 22, 000
impossible to control
fission bomb : l~ 0.3x10-8 k~1.4 doubling time ~ 5ns
Reactor kinetics
,
v f a
D r t
t
r t, t r
2
0
r B r
1
v f a
d
t t DB t dt
2
1
va B L Pnl
v v a a 2
v /
1
v 1
a f a
eff a eff d DB t dt k
DB k t t
(3)precursor equations
Transient diffusion equation
separating space dependency
v
n neutron generation time v f
=
k v
1 k
k
Point kinetics equation
Reactor kinetics with delayed neutrons
2
1
, ,
v a f i i i
D r t C r t S
t
, , for 1, ,
i
i f i i
C
r t C r t i t
1
1
v v i i i
k d
t C t S dt
i i
i
dn
n t C t S
dt i i i i dC
n t C t
dt reactivity Laplace transformation i i i i i i InHour equation
0
i
t t
i i
(4)1, 2, … <
0 when
0 when
asymptotic behaviour ( t >> 0)
0t
n t e
stable reactor period
0 T $ 0.5$ Asymptotic behaviour when >> 0
T
when<<
i i i 1
T
when<<
0 i i i Inhour equation
~
(5)short term long term
t
n t n e
prompt jump
prompt jump
when <
Prompt jump
4
t t
n t n e e
when>>
Prompt critical excursion
when >
t
n t n e
avoid reactivity insertion more than 1$
(6)prompt drop For large negative reactivity insertion
(trip: control rod drop)
1/ 2,1
1 55
80( )
ln 0.693
T
T s
when < 0
Reactor trip
Br-87
half life : 55.6 sec fission yield :
(7)conversion ratio
9
9
9 9 ,
U U
U
U U a U n U
dN
N N N
dt
9
9 9 9
Np Np
Np Np U U a Np
dN
N N N
dt
9
9 9 9
Pu Pu
Pu Pu Np Np a Pu
dN
N N N dt
conversion
5
5 5
U U
U U a U
dN
N N
dt
burnup
-1
day
a( )b n, b
half life
24 2 14
680 10 10 / / s 24 3600 /
a cm cm s d
= 5.9x10-3/d
8
8 8
U U
U U a U
dN
N N dt
8 2.3 10 U a 8 U U a U dN N
dt
simplified 3.1 10 U a 3.1 10 U a
9 , U U
U U n U
dN
N N
dt
cannot be ignored for balance 5.9 10 Np a
9 9 Np
Np Np U U
dN
N N
dt
9 8.8 10 Pu a 9
9 9
Pu Pu
Np Np a Pu
dN
N N dt
Burnup and conversion
(8)(9)Delayed conversion
232 233 233 233
22.3m 27.0d 159000
Th n Th Pa U a
238 239 239 239
23.5m 2.36d (24110 )
U n U Np Pu a
reactivity increase after few days (or few weeks)
Isotopic depletion
8
(10)Xe-135 and Sm-149
2600000b
40000b
Important in reactor control
simplified model
2600000b
8.3b 6b
0.01b
135 135 135
6.6h 9.2h
I Xe Cs
I
X
equilibrium xenon
reactivity change due to xenon
Xenon poisoning Delft HER reactor
=0.037
2.3
need excess reactivity to compensate xenon poisoning
(11)Equilibrium xenon and iodine
after reactor shutdown (flux=0)
I
dI
I dt
X I
dX
X I
dt
It
I t e I
when xenon increase
X I X f I f X aX
11 10 X I I aX cm s transient
0 0
Xt I I It
X I X I
X e X I e I
peak time dX dt ln / 11.2 I X I X
t h
xenon dead time Xenon dead time
10
0
I X f X aX
X
I0 I f / I
0
(12)(13)Xenon oscillation coupled with spatial flux distribution
xenon build up k∞ decrease control rod
xenon decays k∞ increase
time
~20 hours
flux decrease
flux increase
flux increase
ref J.S Song et al 1999
- check xenon stabilty
- important to avoid un-damped oscillation Large flux distortion (Axial offset, Axial Shape Index) leads to safety problem, such as CHF damage of fuel rod cladding, fuel melting during accident
Xenon oscillation
12
control rod insertion
(14)excess (over) reactivity is required for reactor operation to compensate - reactivity decrease by temperature (power) increase
- burnup (depletion) of fuel and fission product build up - xenon and samarium poisoning
- control reactor
(15)keff
xenon
fuel depletion - (solid) burnable poison (boron,
gadolinium)
- soluble boron (H3BO3) : speed 500l/min (full replacement ~ 15hr) - control rod : speed 30’’/min (full
insertion ~ 5min)
Soluble boron depletion
Soluble boron requirement
BOC EOC
Boron worth : ~ -7pcm/ppm Excess reactivity control
(16)Control rod overlapping
top top
differential worth accumulated worth
Control rod worth
2
d
(17)16
Summary
1
,
v t D r t f a
speed of neutron : ~2,200 m/s Reactor size : ~ 1m
Diffusion coefficient : ~ 0.1 cm
2
1 / v
D t
R
~ 0.5 sec
We may assume transient become equillibrium in few seconds Time constant of system
• Dealyed neutron kinetics
- solve time dependent diffusion equation with initial value - Point kinetics is useful for trip problem
- Diffusion equation is required for rod ejection problem • Xenon transient, Depletion time constants ~ hours