Tính khoảng cách từ I đến đường thẳng (d). 2) Viết phương trình tổng quát của mặt phẳng (P) tiếp xúc với mặt cầu (S) và vuông góc với (d).. Gọi J là trọng tâm tam giác SBC. Tính thể tích[r]
(1)ĐỀ 1
I - PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH(7,0 điểm) Câu 1(3,0 điểm). Cho hàm số: yx4 2x21
1) Khảo sát biến thiên vẽ đồ thị (C) hàm số cho 2) Dựa vào đồ thị (C), tìm m để phương trình
4x 4−1
2 x
+2m=0 có nghiệm thực phân biệt Câu 2(3,0 điểm)
1) Giải phương trình: log4 xlog (4 )2 x 5 2) Tính tích phân: I=∫(2x+1)exdx
3) Tìm giá trị nhỏ giá trị lớn hàm số: y=ex+√1− x2
đoạn [−1;1]
Câu (1,0 điểm). Cho hình chóp SABC có đáy ABC tam giác vng A, AB = a Cạnh bên SA vng góc với mặt phẳng (ABC); SC = 2a Góc tạo SC mặt đáy (ABC) 600 Tính thể tích khối chóp SABC theo a II - PHẦN RIÊNG (3,0 điểm)
1 Theo chương trình Chuẩn:
Câu 4a (2,0) Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S :x2 y2z2 2x4y 6z 11 0 có tâm I mặt phẳng P x: 2y2z 1
1) Xác định tọa độ hình chiếu tâm I lên mặt phẳng P
2) Chứng minh mặt phẳng P cắt mặt cầu S theo đường tròn Xác định tọa độ tâm bán kính đường trịn
Câu 5a (1,0 điểm) Giải phương trình: z2 2z50 tập số phức 2 Theo chương trình Nâng cao:
Câu 4b (2,0 điểm). Trong không gian Oxyz, cho mặt cầu (S) đường thẳng (d) có phương trình: (S):x2y2z28x 6y 4z 15 0 (d):
x y z
3
1) Xác định tọa độ tâm I tính bán kính mặt cầu (S) Tính khoảng cách từ I đến đường thẳng (d) 2) Viết phương trình tổng quát mặt phẳng (P) tiếp xúc với mặt cầu (S) vng góc với (d) Câu 5b (1,0 điểm) Giải phương trình:
2
z 2i z 4i 0
tập số phức
-Hết -ĐỀ
I - PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm)
Câu 1(3,0 điểm). Cho hàm số: y=−1 3x
3 +3
2x
−9
1) Khảo sát biến thiên vẽ đồ thị (C) hàm số cho
2) Dựa vào đồ thị (C), tìm m để phương trình sau có nghiệm phân biệt 13 x3−3 2x
2
+1=m
3) Viết phương trình tiếp tuyến đồ thị (C) điểm có hoành độ
Câu 2(3,0 điểm)
(2)2) Tính tích phân:
1
3
∫ x
I dx
x .
3) Tìm giá trị nhỏ giá trị lớn hàm số:
2 9
x
y
x [1 ; 4].
Câu 3 (1,0 điểm). Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh a, cạnh bên SA vng
góc với đáy, cạnh bên SB a 3.Tính thể tích khối chóp S.ABCD.
II - PHẦN RIÊNG (3,0 điểm)
1 Theo chương trình Chuẩn:
Câu 4a (2,0 điểm) Trong không gian Oxyz cho mặt phẳng (α): 4x − y+2z −9=0 hai điểm A(1;−2;5), B(4;0;3)
) Viết phương trình đường thẳng d qua hai điểm A, B
2 ) Viết phương trình mặt phẳng (β) chứa d vng góc (α)
Câu 5a (1,0 điểm) Tìm x ; y∈R cho: x+3+(y −4)i=(2x −1)i+4y −1 2 Theo chương trình Nâng cao:
Câu 4b (2,0 điểm).Trong khơng gian Oxyz, Cho điểm I(1;1;1) đường thẳng d:
2 4
x t
y t
z t
1) Xác định toạ độ hình chiếu vng góc H I đường thẳng d ) Viết pt mặt cầu (S) có tâm I cắt d hai điểm A, B cho AB=16 Câu 5b (1,0 điểm) Giải phương trình: x2 (3 ) i x ( ) 0i tập số phức
-Hết -Đề
I - PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm)
Câu 1(3,0 điểm). Cho hàm số: y=− x4
+6x2−5
1) Khảo sát biến thiên vẽ đồ thị (C) hàm số cho
2)Viết phương trình tiếp tuyến với (C) điểm có hồnh độ
Câu 2(3,0 điểm)
1) Giải phương trình: log23x2log3x 0 .
2) Tính tích phân:
x
I x e dx
0
1 ∫
3) Tìm giá trị nhỏ giá trị lớn hàm số:
1
f (x) x cos x
2
đoạn
0; 2
.
Câu 3 (1,0 điểm). Cho hình chóp S.ABC có đáy ABC tam giác cạnh a, SA = a 3, SA vng góc
với mặt phẳng (ABC) Gọi J trọng tâm tam giác SBC Tính thể tích khối chóp J.ABC
II - PHẦN RIÊNG (3,0 điểm)
(3)Câu 4a (2,0 điểm) Trong không gian Oxyz cho mặt cầu
z −4¿2=25 y+3¿2+¿
x −1¿2+¿
(S):¿
hai điểm
A(0;3;2), B(1;−1;−1)
1) Tìm tâm T bán kính r (S)
2) Viết phương trình mặt phẳng (α) qua A, B, T
Câu 5a (1,0 điểm) Gọi z1,z2 nghiệm phức phương trình z2
+6z+15=0 Tính mơ đun
1 2 1 2
w z z z z .
2 Theo chương trình Nâng cao:
Câu 4b (2,0 điểm).Trong không gian với hệ tọa độ oxyz, cho điểm A(-1;2;3) đường thẳng d có phương trình:
2
1
x y z
1) Tìm tọa độ hình chiếu vng góc A d
2) Viết phương trình mặt cầu tâm A, tiếp xúc với mặt phẳng d Câu 5b (1,0 điểm) Tìm số phức z biết
z z , đóz là số phức liên hợp số phức z
-Hết -Đề
I - PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH(7,0 điểm)
Câu 1(3,0 điểm). Cho hàm số Cho hàm số y=x+1
x −1 có đồ thị (C)
1)Khảo sát biến thiên vẽ đồ thị (C)
2)Viết phương trình tiếp tuyến với (C) biết hệ số góc -2 Câu 2(3,0 điểm)
1) Giải phương trình log (4 2x2 x 8 ) log2x 1.
2) Tính tích phân
x I 1x x e dx( )
0
∫
3) Tìm giá trị nhỏ giá trị lớn hàm số f(x)=x2.e− x đoạn [-1;3]
Câu 3 (1,0 điểm).Cho khối chóp S.ABC có đáy ABC tam giác vuông cân B có AC = 2a, SA
vng góc mặt đáy cạnh bên SB tạo với đáy góc 600 Tính thể tích khối chóp S.ABC.
II - PHẦN RIÊNG (3,0 điểm)
1 Theo chương trình Chuẩn:
Câu 4a (2,0 điểm) Trong không gian Oxyz choA( 1;3;0), (1; 2;3), B C(2; 3;1) 1)Viết phương trình mặt cầu (S) tâm O, tiếp xúc với mp(ABC)
2)Viết phương trình tham số đường thẳng d qua gốc tọa độ vng góc với mp(ABC) Tìm
tọa độ giao điểm d với mp(ABC)
Câu 5a (1,0 điểm) Tìm phần thực phần ảo số phức z , biết: 1−i¿ ❑3
z=2+i 1−i+¿
(4)
Câu 4b (2,0 điểm). Trong không gian Oxyz, cho mặt cầu (S) đường thẳng (d) có phương trình: (S):x2y2z2 8x 6y 4z 15 0 (d):
x y z
3
1) Xác định tọa độ tâm I tính bán kính mặt cầu (S) Tính khoảng cách từ I đến đường thẳng (d)
2) Viết phương trình tổng quát mặt phẳng (P) tiếp xúc với mặt cầu (S) vng góc với (d)
Câu 5b (1,0 điểm) Giải phương trình z2 4 2i z 4i 0 tập số phức
-Hết -Đề 5
I - PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH(7,0 điểm)
Câu 1(3,0 điểm). Cho hàm số y x42x2
1) Khảo sát biến thiên vẽ đồ thị (C) hàm số cho
2) Viết phương trình tiếp tuyến với đồ thị (C) giao điểm (C) trục tung
Câu 2(3,0 điểm)
1) Giải phương trình: log2 (x – 3) + log2 (x – 1) = 3.
2) Tính tích phân
2
0
2 sin
I x x x dx
∫
3) Tìm giá trị nhỏ giá trị lớn hàm số
2
1
y x
x
đoạn 2;5.
Câu 3 (1,0 điểm) Cho hình chóp S ABCD có đáy ABCD hình chữ nhật Cạnh bên SA vng góc với mặt phẳng đáy SA = AC , AB = a, BC = 2AB Tính thể tích S.ABCD
II - PHẦN RIÊNG (3,0 điểm)
1 Theo chương trình Chuẩn:
Câu 4a (2,0 điểm) Trong không gian Oxyz, cho hai điểm A(3 ; ; -2), B(1 ; -2 ; 4)
1)Viết phương trình đường thẳng AB phương trình mặt phẳng trung trực đoạn AB 2)Viết phương trình mặt cầu tâm A qua điểm B Tìm điểm đối xứng B qua A
Câu 5a (1,0 điểm) Tìm x , y∈R , biết: (x2 )i 3x yi . 2 Theo chương trình Nâng cao:
Câu 4b (2,0 điểm). Trong không gian với hệ trục Oxyz, cho A(1; 0; 0), B(0; ;0), C(0; 0; 4) mp(Q): 2x + 2y + z =
1) Viết phương trình mặt phẳng ( ) qua ba điểm A, B, C Tính khoảng hai đường thẳng
OA BC
2)Viết phương trình mặt cầu (S) ngoại tiếp tứ diện OABC Viết phương trình mặt tiếp diện (P) (S) biết (P) song song với (Q)
Câu 5b (1,0 điểm) Giải phương trình
2
1 i i z i 2i z tập số phức.
-Hết -Đề 6
(5)Câu 1(3,0 điểm). Cho hàm số :
2 x y
x
.
1) Khảo sát biến thiên vẽ đồ thị (C) hàm số cho
2) Viết phương trình tiếp tuyến (C), biết tiếp tuyến vng góc với đường thẳng
1 42 y x
Câu 2(3,0 điểm )1) Giải phương trình:
x x x
2
2
2
2
log 3log log 2
2) Tính tích phân:
2
0
1 3sinx osx
I c dx
∫
3) Tìm giá trị nhỏ giá trị lớn hàm số:
16 ( )
f x x x
đoạn [3; 5]
Câu 3 (1,0 điểm). Cho hình chóp S.ABC có SA vng góc với mặt phẳng (ABC), đáy ABC tam
giác vuông B, AB=a 3,AC=2a, góc mặt bên (SBC) mặt đáy (ABC) 600 Gọi M
trung điểm AC Tính thể tích khối chóp S.BCM
II - PHẦN RIÊNG (3,0 điểm)
1 Theo chương trình Chuẩn: Câu 4a (2,0 điểm)
Trong mp xyz , Cho mặt cầu (S) : (x1)2(y 2)2(z 2)2 4 Và (P) : x+2y+2z+18=0 .
1/ Tìm tâm I bán kính mặt cầu (S) Tính khoảng cách từ I đến (P)
2/ Viết pt đường thẳng Δ qua tâm I (S) vng góc với mp(P) Tìm tọa độ giao điểm
của Δ mp(P)
Câu 5a (1,0 điểm) Giải phương trình : (2−i)z+i=3+2i tập số phức 2 Theo chương trình Nâng cao:
Câu 4b (2,0 điểm).
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu
2 2
:
S x y z có tâm
I mặt phẳng P x: 2y2z 1
1/ Xác định tọa độ hình chiếu tâm I lên mặt phẳng P
2/ Viết phương trình mặt phẳng Q song song với mặt phẳng P tiếp xúc với mặt cầu S
Câu 5b (1,0 điểm) Giải phương trình: z2 4 2i z 4i 0 tập số phức
-Hết -Đề 7
I - PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH(7,0 điểm)
Câu 1(3,0 điểm). Cho hàm số y=x4−8x2
+12 có đồ thị (C)
1)Khảo sát biến thiên vẽ đồ thị (C)
2)Viết phương trình tiếp tuyến với (C) điểm có tung độ 12 Câu 2(3,0 điểm) 1) Giải phương trình
2
2
2 log xlog x2
(6)2) Tính tích phân
2
5
(1 )
I ∫x x dx
3) Tìm giá trị nhỏ giá trị lớn hàm số
4
2
2
x
y x
đoạn
1 ;
Câu 3 (1,0 điểm). Cho hình chóp S.ABC có đáy ABC tam giác vuông B, cạnh bên SA (ABC),
biết AB = a, BC = a√3 , SA = 3a Tính thể tích khối chóp S.ABC theo a
II - PHẦN RIÊNG (3,0 điểm)
1 Theo chương trình Chuẩn:
Câu 4a (2,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng (d):
1 2
x t
y t
z t
mp (P): x + 2y – 2z + =
1)Viết pt đường thẳng qua gốc tọa độ O vng góc với d song song với (P) 2)Viết phương trình mặt cầu có tâm thuộc d, tiếp xúc (P) có bán kính
Câu 5a (1,0 điểm) Giải phương trình x2 3x 9 0 tập số phức. 2 Theo chương trình Nâng cao:
Câu 4b (2,0 điểm). Trong không gian với hệ toạ độ Oxyz, cho điểm A(1;0;2), B(-1;1;5), C(0;-1;2), D(2;1;1)
1)Tính khoảng cách từ C đến đường thẳng AB
2)Viết phương trình mặt phẳng (P) chứa đường thẳng AB song song với đường thẳng CD.Tính khoảng cách hai đường thẳng AB CD
Câu 5b (1,0 điểm) Cho số phức : z (1 )i 2 (2 )(3 i i) Tìm z tính z .
-Hết -Đề 8
I - PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH(7,0 điểm)
Câu 1(3,0 điểm). Cho hàm số:
4
1
y x x
1) Khảo sát biến thiên vẽ đồ thị (C) hàm số cho
2) Lập phương trình tiếp tuyến (C) điểm có hồnh độ
Câu 2(3,0 điểm)
1) Giải phương trình:
x x
log (2 3) log (1 2)
2 .
2) Tính tích phân: I=
x x dx
2
(2 1).cos
∫
3) Tìm giá trị nhỏ giá trị lớn hàm số: f x( )x3 3x2 đoạn [-1;3]
Câu 3 (1,0 điểm). Cho hình chóp S.ABC có đáy ABC tam giác vng B, đường thẳng SA vng góc với mặt phẳng (ABC) Biết AB a BC a , SB3 10 Tính thể tích khối chóp theo a.
II - PHẦN RIÊNG (3,0 điểm)
(7)Câu 4a (2,0 điểm) Trong không gian Oxyz, cho điểm A(1 ; ; 1), mp(P): x + y – z – = đường thẳng (d):
2
1 1
x y z
1) Viết phương trình mặt phẳng (Q) qua A vng góc với đường thẳng (d) 2) Viết phương trình đường thẳng qua A, song song với mp(P) cắt (d)
Câu 5a (1,0 điểm) Giải phương trình: 2x2 x 0 tập số phức. 2 Theo chương trình Nâng cao:
Câu 4b (2,0 điểm). Trong không gian với hệ tọa độ Oxyz, cho điểm D(-3 ; ; 2) mặt phẳng (P) qua ba điểm A(1 ; ; 11), B(0 ; ; 10), C(1 ; ; 8)
1) Viết phương trình đường thẳng AB phương trình mặt phẳng (P)
2) Viết phương trình mặt cầu tâm D, bán kính R = Chứng minh mặt cầu cắt mặt phẳng (P), Tìm tâm bán kính đường trịn giao tuyến
Câu 5b (1,0 điểm) Giải phương trình : 2i.(z −1)−9
z −2 =z tập số phức
-Hết -Đề 9
I PHẦN CHUNG DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (3,0 điểm) Cho hàm số : y2x44x2 (C )
1) Khảo sát biến thiên vẽ đồ thị (C) hàm số
2) Viết pt tiếp tuyến đồ thị (C) điểm có hồnh độ x0 1
Câu II (3,0 điểm)
1) Giải phương trình: 13
log (2x 1) log ( x2) 3 2) Tính tích phân:
1
2 ln
e
x xdx
x
∫
3) Tìm giá trị lớn nhất, nhỏ hàm số : y3 x 5 x2 đoạn 5; 5
Câu III (1,0 điểm)
Cho tứ diện ABCD có tam giác ABC cạnh a, ADBC AD a, khoảng cách từ D tới
BC a. Tính thể tích tứ diện ABCD
II PHẦN RIÊNG (3,0 điểm)
Thí sinh làm hai phần (Phần A B) A Theo chương trình chuẩn.
Câu IV.a (2,0 điểm) Trong không gian Oxyz, cho đường thẳng
1
:
2 1
x y z
mặt phẳng
P x: 2y z 0
1) Tìm tọa độ giao điểm A của (P).
2) Tìm tọa độ điểm B thuộc đường thẳng cho khoảng cách từ B đến mặt phẳng (P)
6.
Câu V.a (1,0 điểm) Giải phương trình : (z1)2(z 2)2 1 tập hợp số phức
(8)Trong không gian Oxyz, cho đường thẳng
1
:
1 2
x y z
mặt phẳng
P : 2x 2y z 3 0
1) Tìm tọa độ giao điểm A của (P).
2) Viết phương trình hình chiếu vng góc mặt phẳng (P).
Câu V.b (1,0 điểm)
Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện:
3
z i z i
………Hết………
Đề 10
I PHẦN CHUNG DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (3,0 điểm) Cho hàm số : y2x4 4x2 (C )
1) Khảo sát biến thiên vẽ đồ thị (C) hàm số
2) Viết phương trình tiếp tuyến đồ thị (C) điểm có hồnh độ x0 1
Câu II (3,0 điểm)
1) Giải phương trình: 12
log (x 2) log (3 x1) 2 2) Tính tích phân:
2 ln
e
x xdx
x
∫
3) Tìm giá trị lớn nhất, nhỏ hàm số: y3x 5 x2
Câu III (1,0 điểm) Cho tứ diện ABCD có tam giác ABC cạnh a, ABCD CD a, khoảng cách từ D tới AB a. Tính thể tích tứ diện ABCD.
II PHẦN RIÊNG (3,0 điểm) A Theo chương trình chuẩn Câu IV.a (2,0 điểm)
Trong không gian với hệ tọa độ Oxyz cho điểm M(1; 1;1) , hai đường thẳng
1 ( ) :
1
x y z
,
2
2
( ) :
1
x t
y t
z
mặt phẳng (P) : y2z0
1) Tìm điểm N hình chiếu vng góc điểm M lên đường thẳng (2)
2) Viết phương trình đường thẳng cắt hai đường thẳng ( ) ,( )1 2 nằm mặt phẳng
(P)
Câu V.a (1,0 điểm)
Giải phương trình: (z2)2(z 1)2 1 tập hợp số phức
B Theo chương trình nâng cao Câu IV.b (2,0 điểm)
Trong khơng gian Oxyz, cho đường thẳng
3 1
:
2
x y z
mặt phẳng
(9)1) Tìm tọa độ giao điểm A của (P).
2) Viết phương trình hình chiếu vng góc mặt phẳng (P).
Câu V.b (1,0 điểm) Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện : z 2 3i z 2i