[r]
(1)Nhiệt liệt chào mừng thầy cô giáo
(2)B
A
1) ABC = A'B'C nµo?’
ABC = A'B'C'
ˆ = ˆ
A A' bˆ =B'ˆ Cˆ =C'ˆ
AB = A’B’ ; AC = A’C’ ; BC = B’C’
; ; =>
2) Hai tam giác hình sau có không ? Vì sao?
A
B 60 C
0
700
D E
H
500 700
Nên ABC = DEH (định nghĩa)
ABC và DEH có:
AB = DE; AC = DH; BC = EH
(3)Hai tam giác MNP M'N'P' hình vẽ sau có khơng ?
MNP M'N'P' Có MN = M'N'
MP = M'P' NP = N'P'
thì MNP ? M'N'P' M
P N
M'
P' N'
Khơng cần xét góc có kết luận hai
(4)THCS HÙNG SƠN
Trườngưhợpưbằngưnhauưthứưnhấtưcủaưtamưgiácư cạnhư–ưcạnhư–ưcạnhư(ưcư.ưCư.ưc)
TiÕt 22
A’
B’ C’
A
(5)1 Vẽ tam giác biết ba cạnh:
Bài toán:
Vẽ tam giác ABC biết AB = 2cm, BC = 4cm, AC = 3cm.
Gi¶i:
- Vẽ cạnh cho, chẳng hạn vẽ cạnh BC = 4cm.
- Trªn nửa mặt phẳng bờ BC, vẽ cung tròn (B ; cm) (C ; cm) - Hai cung tròn cắt A.
-Vẽ đoạn thẳng AB, AC,
ta đ ợc tam giác ABC.
A
C
B 4cm
3cm
2cm
(6)H·y vÏ A B C’ ’ ’
sao cho: A B = 2cm; ’ ’
B C = 4cm ; ’
A C = 3cm ?’
A’
C’ B’ 4cm
3cm
2cm
?1
(7)Lúc đầu ta biết thông tin gỡ cạnh hai tam giác? Từ em cú kết luận gỡ hai tam giác trên?
Sau đo góc hai tam giác, em có kết nh nào? HÃy dùng th ớc đo c¸c gãc cđa hai tam gi¸c c¸c em võa vÏ?
AB = A'B' ; AC = A'C' ; BC = B'C'
Sau ®o:
4cm C
Nhvy,lỳcuhaitamgiỏcchcho3cp cnhbngnhauvsaukhiocthhai tamgiỏcnyóbngnhau.
Lúc đầu ta có: ?
940
= 320
= 320
= 540
= 94Aˆ
540
' ˆ
B
540
ABC = A'B'C'
= 94Aˆ '
= 54Bˆ
Cˆ Cˆ'
A
2cm 3cm
B
320
940
320
2 cm 3cm
4cm
A'
C' B'
(8)NÕu ABC vµ A B C cã:’ ’ ’
AB = A B’ ’
BC = B C’ ’
AC = A C’ ’
Thi` ABC = A B C (c.c.c)’ ’ ’
TÝnh chÊt
Nếu ba cạnh tam giác ba cạnh tam giác thi` hai tam giác nhau
, A
B C
A’
(9)TÝnh sè ®o cđa gãc B hình 67 ?
1200
C D
B Hình 67
A
(10)?2 TÝnh sè ®o cđa gãc B hình 67 ?
1200
C D
B Hình 67
A
CBD = 120
Giải
ACD BCD có:
cạnh chung
AC = (gØa thiÕt)
Do ACD = (c c c)
Suy (hai góc t ơng ứng) Mà
Nên .
CAD = 120
GT
KL
ACD vµ BCD CD chung; AC = BC AD = BD;
B = ?
CD
BC
AD = BD (gØa thiÕt) BCD
(11)Hai tam giác MNP M'N'P' hình vẽ sau có khơng ?
MNP M'N'P' Có MN = M'N'
MP = M'P' NP = N'P'
thì MNP = M'N'P‘(c.c.c) M
P N
M'
P' N'
Không cần xét góc kết luận
hai tam giác
(12)(13)M P N Q K I H E D C B A
B i 17(SGK 114): Trên hỡnh có nhng tam
giác nhau? Vỡ sao?
Hình 1 Hình 2 Hình 3
AC = AD AB chung BC = BD
ABC ABD
D =D (c.c.c)
Vì Vì
( )
HEI IKH c c c
IK HI chung
IE HK
D = D
= =
HE
Vì
( ) MN = QP
MQ chung NQ = PM
MNQ QPM c c c
D =D
Vì KHE EIK c c c( )
KH EI
KE chung
(14)M
A
B O
Bµi tËp 1: ĐÓ chøng minh: Gãc AMO b»ng gãc BMO Bạn Lan trỡnh bày nh sau:
Em hóy xếp lại câu để có lời giải
¸p ¸n:
Đ
D D
d / AMO vµ BMO cã :
/ b
= =
MO C¹nh chung OA OB ( GT)
MA MB (GT)
D =D
a / VËy : AMO BMO (c.c.c)
AMO BMO (c.c.c) b/ MO Canh chung
AMO
AMO BMO
o
D = D =
=
Þ =
D D
a / VËy :
OA OB ( GT) MA MB ( GT)
c / BMO ( Hai gãc t ng øng)
d / vµ cã :
AMO o
Þ =
(15)ã Bài tập 2: A
B C
M
N P
37o
62o
Hãy nối ô cột bên trái với ô cột bên phải để đ ợc khẳng định đúng
A Sè ®o gãc B b»ng B Số đo góc M bằng
C ộ dài cạnh CA bằng D ộ dài cạnh PN bằng
1 81o
2 ộ dài cạnh MP
3 99o
4 62o
(16)Hngdnhcnh:
-Học tính chất ,thực hành cách vẽ chứng minh hai tam giác nhau.
-Lµm bµi tËp: 15, 16, 18, 19 (SGK: 114- 115)