Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 156 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
156
Dung lượng
7,82 MB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ - VŨ NGỌC DOÃN NGHIÊN CỨU TỔNG HỢP MỘT SỐ DẪN XUẤT NAPHTHOQUINON BẰNG PHẢN ỨNG DOIMINO VÀ ĐÁNH GIÁ HOẠT TÍNH SINH HỌC CỦA CHÚNG LUẬN ÁN TIẾN SĨ HÓA HỌC Hà Nội - 2017 BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ - VŨ NGỌC DOÃN NGHIÊN CỨU TỔNG HỢP MỘT SỐ DẪN XUẤT NAPHTHOQUINON BẰNG PHẢN ỨNG DOIMINO VÀ ĐÁNH GIÁ HOẠT TÍNH SINH HỌC CỦA CHÚNG Chun ngành: Hóa Hữu Mã số: 62 44 01 14 LUẬN ÁN TIẾN SĨ HÓA HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC GS TS Nguyễn Văn Tuyến TS Đặng Thị Tuyết Anh Hà Nội – 2017 LỜI CAM ĐOAN Tôi xin cam đoan cơng trình nghiên cứu riêng tơi cộng Các số liệu kết nêu Luận án trung thực chưa cơng bố cơng trình nghiên cứu trước Tồn thơng tin trích dẫn Luận án rõ nguồn gốc xuất xứ Hà Nội, ngày tháng năm 2017 Tác giả luận án NCS Vũ Ngọc Dỗn LỜI CẢM ƠN Với lịng biết ơn sâu sắc, em xin gửi lời cảm ơn tới tập thể thầy cô hướng dẫn khoa học GS.TS Nguyễn Văn Tuyến TS Đặng Thị Tuyết Anh Viện Hóa học, Viện Hàn lâm Khoa học Công nghệ Việt Nam giao đề tài trực tiếp định hướng, bảo giúp đỡ em tồn q trình thực Luận án Em xin chân thành cảm ơn Thầy, Cô, cán Viện Hóa học, Viện Hàn lâm Khoa học Công nghệ Việt Nam giảng dạy, hướng dẫn em hoàn thành học phần chuyên đề Chương trình đào tạo Tơi gửi lời cảm ơn chân thành đến TS Lê Nhật Thùy Giang, TS Phạm Thế Chính, KS Hồng Thị Phương, CN Nguyễn Bích Thuận cán bộ, nhân viên Phịng Hóa dược, Viện Hóa học tạo điều kiện giúp đỡ suốt thời gian thực Luận án Tôi xin gửi lời cảm ơn đến huy, lãnh đạo Bộ mơn Phịng hóa, Khoa Hóa – Lý kỹ thuật, Học viện Kỹ thuật Quân sự; Đoàn 871 Tổng cục trị, Bộ Quốc phịng; Viện Hóa học, Học viện Khoa học Công nghệ, Viện Hàn lâm Khoa học Công nghệ Việt Nam tạo điều kiện giúp đỡ thời gian, công việc, thủ tục để tơi hồn thành Luận án Cuối cùng, tơi xin gửi lời cảm ơn đến gia đình, bạn bè đồng nghiệp động viên, giúp đỡ mặt suốt trình thực Luận án Trân trọng cảm ơn! Hà Nội, ngày tháng năm 2017 Tác giả luận án NCS Vũ Ngọc Doãn DANH MỤC CÁC CHỮ CÁI VIẾT TẮT Các phương pháp sắc ký TLC Thin Layer Chromatography: Sắc ký lớp mỏng CC Column Chromatography: Sắc ký cột Các phương pháp phổ HRMS High resolution Mass Spectroscopy: Phổ khối lượng phân giải cao ESI-MS Electrospray Ionization Mass Spectroscopy: Phổ khối ion hóa phun điện IR Infrared Spectroscopy: Phổ hồng ngoại ATR Attenuated total reflection Proton Nuclear Magnetic Resonance Spectroscopy: Phổ cộng H-NMR hưởng từ hạt nhân proton 13 C-NMR Carbon-13 Nuclear Magnetic Resonance Spectroscopy: Phổ cộng hưởng từ hạt nhân carbon 13 s: singlet d: doublet m: multiplet dd: double doublet t: triplet q: quartet dt: doublet triplet Các chữ viết tắt khác IC50 The half maximal inhibitory concentration: Nồng độ tác dụng ức chế 50% tăng sinh dòng tế bào thử nghiệm KB Human epidermic carcinoma: Dịng tế bào ung thư Biểu mơ HepG2 Human Hepatocellular carcinoma: Dòng tế bào ung thư gan Lu Lung cancer: Dòng tế bào ung thư phổ MCF-7 Dòng tế bào ung thư vú MW Vi sóng ∆ Hồi lưu rt Nhiệt độ phòng DMPU 1,3-Đimetyltetrahydro-2(1H)-pyrimidinon THF Tetra hydro furan CAN Ceri(IV) amoni nitrat DIAD Điisopropyl azodicacboxylat TMS-N3 Trimetylsilyl azid TBAF Tetra-n-butylammoni florua LDA Liti điisopropyl amin MeCN Axeton nitril Et3N Trietylamin EtOH Etanol DBU 1,8-Điazabicyclo-[5.4.0]undec-7-en AcOH Axit axetic mCPBA Axit m-clopeoxitbenzoic L-Pro L-Propine DMF Đimetyl focmamit TDAE Tetrakis (đimetyl amino) etylen t-BuOH tert-Butanol i-PrOH Iso Propanol BnNH2 Benzylamin PPh3 Triphenyl phosphin MeOH Metanol EtOAc Etyl axetat (DHQ)2PH Hydroquinin 1,4-phthalazinediyl diete AL Et3SiH Trietyl silan BF3.OEt2 Bo triflo etyl ete Et2O Đietyl ete p-TsOH Axit p-Toluen sunfonic ADN Axit đeoxiribonucleic ARN Axít ribonucleic DANH MỤC CÁC BẢNG BIỂU Bảng Tên bảng Trang Bảng 2.1 Chi tiết thực nghiệm tổng hợp hợp chất 169 35 Bảng 2.2 Chi tiết thực nghiệm tổng hợp hợp chất 181 45 Bảng 2.3 Chi tiết thực nghiệm tổng hợp hợp chất 188 54 Bảng 2.4 Chi tiết thực nghiệm tổng hợp hợp chất 199 65 Bảng 3.1 Ảnh hưởng dung môi thời gian phản ứng đến hiệu suất tổng hợp hợp chất 169a 82 Bảng 3.2 Các hợp chất triflometylat tetrahydrobenzo[g]chromen 169a-l 83 Bảng 3.3 Ảnh hưởng dung môi thời gian phản ứng đến hiệu suất tổng hợp hợp chất 181a 92 Bảng 3.4 Các hợp chất 2,3-dihydronaphtho[2,3-b]furan-4,9-dion 181a-l 93 Bảng 3.5 Ảnh hưởng dung môi thời gian phản ứng đến hiệu suất tổng hợp hợp chất 188a 99 Bảng 3.6 Các hợp chất benzo[h]cinnolin-5,6-dion 188a-o 100 Bảng 3.7 Ảnh hưởng dung môi thời gian phản ứng đến hiệu suất tổng hợp hợp chất 199a 108 Bảng 3.8 Các hợp chất benzo[f]indol-4,9-dion 199a-n 109 Bảng 3.9 Kết thử hoạt tính gây độc tế bào hợp chất benzo[h]cinnolin-5,6dion tổng hợp 188a-o 116 DANH MỤC CÁC HÌNH Hình Tên hình Trang Hình 1.1 Cấu trúc axit quinic số khung quinon Hình 1.2 Một số dị vòng quan trọng naphthoquinon Hình 1.3 Tương tác naphthoquinon với hệ chuyển điện tử Hình 1.4 Tương tác naphthoquinon nhờ chế alkyl hóa khử sinh học Hình 1.5 Một số phương pháp tổng hợp dị vịng naphthoquinon Hình 1.6 Một số hợp chất pyranonaphthoquinon 10 Hình 1.7 Cấu trúc isoeleutherin dẫn xuất 11 Hình 1.8 Một số hợp chất ventiloquinon 11 Hình 1.9 Các hợp chất nanaomycin tự nhiên 14 Hình 1.10 Cấu trúc frenolicin deoxyfrenolicin 14 Hình 1.11 Cấu trúc pentalongin psychorubrin 15 Hình 1.12 Cấu trúc α-lapachon β-lapachon 18 Hình 1.13 Cấu trúc số hợp chất naphtho[2,3-b]furan tự nhiên 22 Hình 1.14 Cấu trúc kinamycin A utahmycin B 26 Hình 1.15 Một số phương pháp tổng hợp dị vịng benzo[f]indol-4,9-dion 27 Hình 3.1 Dạng tồn cân chuyển hóa chất 11 phản ứng 78 Hình 3.2 Phổ 1H-NMR chất 135 79 Hình 3.3 Phổ IR hợp chất 169b 85 Hình 3.4 Phổ 1H-NMR hợp chất 169b 86 Hình 3.5 Phổ giãn 1H-NMR hợp chất 169b 86 Hình 3.6 Phổ 13C-NMR hợp chất 169b 87 Hình 3.7 Phổ giãn 13C-NMR hợp chất 169b 88 Hình 3.8 Phổ ESI-MS [M-H]- hợp chất 169b 88 Hình 3.9 Phổ ESI-MS [M+H]+ hợp chất 169b 89 Hình 3.10 Cấu trúc tinh thể hợp chất 169b 89 Hình 3.11 Phổ IR hợp chất 181b 94 Hình 3.12 Phổ 1H-NMR hợp chất 181b 94 Hình 3.13 Phổ giãn 1H-NMR hợp chất 181b 95 Hình 3.14 Phổ 13C-NMR hợp chất 181b 96 Hình 3.15 Phổ giãn 13C-NMR hợp chất 181b 96 Hình 3.16 Cấu trúc tinh thể hợp chất 181b 97 Hình 3.17 Phổ IR hợp chất 188f 101 Hình 3.18 Phổ 1H-NMR hợp chất 188f 103 Hình 3.19 Phổ giãn 1H-NMR hợp chất 188f 103 Hình 3.20 Phổ 13C-NMR hợp chất 188f 104 Hình 3.21 Phổ giãn 13C-NMR hợp chất 188f 104 Hình 3.22 Cấu trúc tinh thể hợp chất 188f 105 Hình 3.23 Phổ IR hợp chất 199k 110 Hình 3.24 Phổ 1H-NMR hợp chất 199k 111 Hình 3.25 Phổ giãn 1H-NMR hợp chất 199k 111 Hình 3.26 Phổ 13C-NMR hợp chất 199k 112 Hình 3.27 Phổ giãn 13C-NMR hợp chất 199k 113 Hình 3.28 Phổ HRMS-ESI hợp chất 199k 113 Hình 3.29 Cấu trúc tinh thể hợp chất 199k 114 Hình 3.30 Cấu trúc phân tử hoạt tính gây độc tế bào hợp chất 188 118 127 properties European journal of medicinal chemistry, 2016, 110, 280-290 [28] Ryu, C.-K.; Choi, I H.; Lee, J Y.; SEONG, H J., Synthesis of benzo [b] naphtho [2, 3-d] thiophene-6, 11-diones via palladium (II) acetate-mediated cyclization of 3-arylthio-1,4-naphthoquinone Heterocycles, 2005, 65, 1205-1214 [29] Tapia, R A.; Alegria, L.; Pessoa, C D.; Salas, C.; Cortés, M J.; Valderrama, J A.; Sarciron, M.-E.; Pautet, F.; Walchshofer, N.; Fillion, H., Synthesis and antiprotozoal activity of naphthofuranquinones and naphthothiophenequinones containing a fused thiazole ring Bioorganic & medicinal chemistry, 2003, 11, 2175-2182 [30] Valderrama, J A.; Astudillo, C.; Tapia, R A.; Prina, E.; Estrabaud, E.; Mahieux, R.; Fournet, A., Studies on Quinones Part 37 Synthesis and Biological Activity of o-Aminoester Functionalised Benzo-and Naphtho[2, 3-b]thiophenequinones Chemical and pharmaceutical bulletin, 2002, 50, 1215-1218 [31] Valderrama, J A.; Espinoza, O.; Rodriguez, J.; Theoduloz, C., Synthesis and Antitumor Evaluation of Thiophene Analogs of Kigelinone Letters in Organic Chemistry, 2009, 6, 278-281 [32] Hamdan, A J.; Al-Jaroudi, S., Reactions of 2-amino-1,4-naphthoquinone with aldehydes Arabian Journal for Science and Engineering, 2003, 28, 51-60 [33] Luu, Q H.; Mito, S., Preparation of indolequinones and their applications in organic synthesis Tetrahedron, 2015, 71, 895-916 [34] Lee, J H.; Cheong, J.; Park, Y M.; Choi, Y H., Down-regulation of cyclooxygenase-2 and telomerase activity by β-lapachone in human prostate carcinoma cells Pharmacological research, 2005, 51, 553-560 [35] Skibo, E B.; Xing, C.; Dorr, R T., Aziridinyl quinone antitumor agents based on indoles and cyclopent[b]indoles: structure-activity relationships for cytotoxicity and antitumor activity Journal of medicinal chemistry, 2001, 44, 3545-3562 [36] Gafner, S.; Wolfender, J.-L.; Nianga, M.; Stoeckli-Evans, H.; Hostettmann, K., Antifungal and antibacterial naphthoquinones from Newbouldia laevis roots Phytochemistry, 1996, 42, 1315-1320 128 [37] Tabata, M.; Tsukada, M.; Fukui, H., Antimicrobial activity of quinone derivatives from Echium lycopsis callus cultures Planta medica, 1982, 44, 234-236 [38] dos Santos, A F.; Ferraz, P A.; de Abreu, F C.; Chiari, É.; Goulart, M O.; SantAna, A E G., Molluscicidal and trypanocidal activities of lapachol derivatives Planta medica, 2001, 67, 92-93 [39] Bolton, J L.; Trush, M A.; Penning, T M.; Dryhurst, G.; Monks, T J., Role of quinones in toxicology Chemical research in toxicology, 2000, 13, 135-160 [40] de Castro, S L.; Emery, F S.; da Silva Júnior, E N., Synthesis of quinoidal molecules: strategies towards bioactive compounds with an emphasis on lapachones European journal of medicinal chemistry, 2013, 69, 678-700 [41] Ianoul, A.; Fleury, F.; Duval, O.; Waigh, R.; Jardillier, J.-C.; Alix, A J.; Nabiev, I., DNA binding by fagaronine and ethoxidine, inhibitors of human DNA topoisomerases I and II, probed by SERS and flow linear dichroism spectroscopy The Journal of Physical Chemistry B, 1999, 103, 2008-2013 [42] Michel, S.; Gaslonde, T.; Tillequin, F., Benzo[b]acronycine derivatives: a novel class of antitumor agents European journal of medicinal chemistry, 2004, 39, 649-655 [43] Opitz, A.; Roemer, E.; Haas, W.; Görls, H.; Werner, W.; Gräfe, U., Regioselective Synthesis of Benzo[g]isoquinoline-5,10-dione Derivatives as DNA Intercalators Tetrahedron, 2000, 56, 5147-5155 [44] Shchekotikhin, A E.; Glazunova, V A.; Dezhenkova, L G.; Shevtsova, E K.; Traven, V F.; Balzarini, J.; Huang, H.-S.; Shtil, A A.; Preobrazhenskaya, M N., The first series of 4, 11-bis [(2-aminoethyl) amino]anthra[2,3-b]furan-5,10-diones: Synthesis and anti-proliferative characteristics European journal of medicinal chemistry, 2011, 46, 423-428 [45] Tang, H.; Wang, X.-D.; Wei, Y.-B.; Huang, S.-L.; Huang, Z.-S.; Tan, J.-H.; An, L.-K.; Wu, J.-Y.; Chan, A S.-C.; Gu, L.-Q., Oxoisoaporphine alkaloid derivatives: synthesis, DNA binding affinity and cytotoxicity European journal of medicinal chemistry, 2008, 43, 973-980 [46] Moore, H W.; Czerniak, R., Naturally occurring quinones as potential 129 bioreductive alkylating agents Medicinal research reviews, 1981, 1, 249-280 [47] Kramer, C S.; Nieger, M.; Bräse, S., Naphthoquinone Diels–Alder Reactions: Approaches to the ABC Ring System of Beticolin European Journal of Organic Chemistry, 2014, 2014, 2150-2159 [48] Claessens, S.; Verniest, G.; Jacobs, J.; Van Hende, E.; Habonimana, P.; Van, T N.; Van Puyvelde, L.; De Kimpe, N., A survey of synthetic routes towards the pyranonaphthoquinone antibiotic pentalongin and syntheses of the corresponding nitrogen derivatives Synlett, 2007, 2007, 0829-0850 [49] El-Hady, S.; Bukuru, J.; Kesteleyn, B.; Van Puyvelde, L.; Van, T N.; De Kimpe, N., New Pyranonaphthoquinone and Pyranonaphthohydroquinone from the Roots of Pentas l ongiflora Journal of natural products, 2002, 65, 1377-1379 [50] Jacobs, J.; Deblander, J.; Kesteleyn, B.; Tehrani, K A.; De Kimpe, N., Synthesis of N-substituted 1,2,3,4-tetrahydrobenz[g]isoquinoline-5,10- diones Tetrahedron, 2008, 64, 5345-5353 [51] Krapcho, A P.; Waterhouse, D J., General synthetic pathway to oxygenated 3-methylbenzgisoquinoline-5,10-diones Heterocycles, 1999, 51, 737-750 [52] Werner, W.; Gräfe, U.; Ihn, W.; Tresselt, D.; Winter, S.; Paulus, E., Synthesis of tolypocladin and isotolypocladin Tetrahedron, 1997, 53, 109-118 [53] Kaya, U.; Chauhan, P.; Hack, D.; Deckers, K.; Puttreddy, R.; Rissanen, K.; Enders, D., Enantioselective synthesis of 4H-pyranonaphthoquinones via sequential squaramide and silver catalysis Chemical Communications, 2016, 52, 1669-1672 [54] Molleti, N.; Singh, V K., Highly enantioselective synthesis of naphthoquinones and pyranonaphthoquinones catalyzed by bifunctional chiral bis-squaramides Organic & biomolecular chemistry, 2015, 13, 5243-5254 [55] Shimbashi, A.; Ishikawa, Y.; Nishiyama, S., Synthesis of (±)- pyranonaphthoquinone derivatives, a Cdc25A phosphatase inhibitor Tetrahedron letters, 2004, 45, 939-941 [56] Inman, M.; Moody, C J., Copper (II)‐Mediated Synthesis of Indolequinones 130 from Bromoquinones and Enamines European journal of organic chemistry, 2013, 2013, 2179-2187 [57] Yamashita, M.; Ueda, K.; Sakaguchi, K.; Iida, A., Synthesis of indolequinones via a Sonogashira coupling/cyclization cascade reaction Tetrahedron Letters, 2011, 52, 4665-4670 [58] Nguyen, T Q.; Le Nhat, T G.; Ngoc, D V.; Thi, T A D.; Nguyen, H T.; Thi, P H.; Nguyen, H H.; Cao, H T.; Tehrani, K A.; Van Nguyen, T., Synthesis of novel 2-aryl-3-benzoyl-1H-benzo[f]indole-4,9-diones using a domino reaction Tetrahedron Letters, 2016, 57, 4352-4355 [59] Thi, T A D.; Decuyper, L.; Phuong, H T.; Ngoc, D V.; Nguyen, H T.; Nguyen, T T.; Do Huy, T.; Nguyen, H H.; D’hooghe, M.; Van Nguyen, T., Synthesis and cytotoxic evaluation of novel dihydrobenzo[h]cinnoline-5,6diones Tetrahedron Letters, 2015, 56, 5855-5858 [60] Thi, T A D.; Depetter, Y.; Mollet, K.; Phuong, H T.; Ngoc, D V.; The, C P.; Nguyen, H T.; Thi, T H N.; Nguyen, H H.; D’hooghe, M., Expedient stereoselective synthesis of new dihydropyrano-and dihydrofuranonaphthoquinones Tetrahedron Letters, 2015, 56, 2422-2425 [61] Zhang, L.; Zhang, X.; Lu, Z.; Zhang, D.; Xu, X., Accessing benzo [f] indole4, 9-diones via a ring expansion strategy: silver-catalyzed tandem reaction of tosylmethyl isocyanide (TosMIC) with 2-methyleneindene-1, 3-diones Tetrahedron, 2016, 72, 7926-7930 [62] Wang, S L.; Ding, J.; Shi, F.; Liu, Y P.; Jiang, B.; Ma, N.; Tu, S J., Green Synthesis of 3‐Hydroxynaphthalene‐1, 4‐dione Derivatives via Microwave‐ Assisted Three‐Component Reactions in Neat Water Journal of Heterocyclic Chemistry, 2012, 49, 521-525 [63] Yazdani-Elah-Abadi, A.; Maghsoodlou, M.-T.; Mohebat, R.; Heydari, R., Theophylline as a new and green catalyst for the one-pot synthesis of spiro [benzo[a]pyrano[2, 3-c]phenazine] and benzo[a]pyrano[2, 3-c]phenazine derivatives under solvent-free conditions Chinese Chemical Letters, 2016 [64] Lakshmanan, S.; Ramalakshmi, N., One-Pot Four-Component Synthesis of Benzylpyrazolyl Naphthoquinone Derivatives and Molecular Docking 131 Studies Synthetic Communications, 2016 [65] Bianchi, C.; Ceriotti, G., Chemical and pharmacological investigations of constituents of Eleutherine bulbosa (Miller) Urb.(Iridaceae) Journal of pharmaceutical sciences, 1975, 64, 1305-1308 [66] Dreyer, D L.; Arai, I.; Bachman, C D.; Anderson Jr, W R.; Smith, R G.; Daves Jr, G D., Toxins causing noninflammatory paralytic neuronopathy Isolation and structure elucidation Journal of the American Chemical Society, 1975, 97, 4985-4990 ]67] Chen, Z.; Huang, H.; Wang, Y.; Li, Y.; Ding, J In Zhongcaoyao 1981, 12, 484, Chem Abstr, 1982; p 20699 [68] Ding, J.; Huang, H., Preparation of Hong Cong Su tablet Zhongcaoyao 1982, 13, 499-501 [69] Hanumaiah, T.; Marshall, D S.; Rao, B.; Rao, C.; Rao, G.; Rao, J.; Rao, K.; Thomson, R H., Benzisochromanquinones in Ventilago species Phytochemistry, 1985, 24, 2373-2378 [70] Jammula, S R.; Pepalla, S B.; Telikepalli, H.; Rao, K J.; Thomson, R H., Benzisochromanquinones fromVentilago goughii Phytochemistry, 1991, 30, 3741-3744 [71] Eisenhuth, W.; Schmid, H., Synthese der razemischen Eleutherin-Chinone Cellular and Molecular Life Sciences, 1957, 13, 311-312 [72] Uno, H., Allylation of 2-alkanoyl 1, 4-quinones with allylsilanes and allylstannanes Efficient synthesis of pyranonaphthoquinone antibiotics The Journal of Organic Chemistry, 1986, 51, 350-358 [73] Naruta, Y., Regio-and stereoselective synthesis of coenzymes Qn (n= 2-10), vitamin K, and related polyprenylquinones The Journal of Organic Chemistry, 1980, 45, 4097-4104 [74] Heapy, A M.; Patterson, A V.; Smaill, J B.; Jamieson, S M.; Guise, C P.; Sperry, J.; Hume, P A.; Rathwell, K.; Brimble, M A., Synthesis and cytotoxicity of pyranonaphthoquinone natural product analogues under bioreductive conditions Bioorganic & medicinal chemistry, 2013, 21, 7971-7980 132 [75] Omura, S.; Tânka, H.; Koyama, Y.; Oiwa, R.; Katagiri, M.; Awaya, J.; Nagai, T.; hata, T., Nanaomycins A and B new antibiotics produced by a strain of streptomyces The Journal of antibiotics, 1974, 27, 363-365 [76] Tanaka, H.; Koyama, Y.; Awaya, J.; Marumo, H.; Oiwa, R.; Katagiri, M.; Nagai, T.; Omura, S., Nanaomycins, new antibiotics produced by a strain of Streptomyces I Taxonomy, isolation, characterization and biological properties The Journal of antibiotics, 1975, 28, 860-867 [77] Kasai, M.; Shirahata, K.; Ishii, S.; Mineura, K.; Marumo, H.; Tanaka, H.; Omura, S., Structure of nanaomycin E, a new nanaomycin The Journal of antibiotics, 1979, 32, 442-445 [78] Iwai, Y.; Kimura, K.; Takahashi, Y.; Hinotozawa, K.; Shimizu, H.; Tanaka, H.; Omura, S., OM-173, new nanaomycin-type antibiotics produced by a strain of streptomyces Taxonomy, production, isolation and biological properties The Journal of antibiotics, 1983, 36, 1268-1274 [79] Tanaka, H.; Koyama, Y.; Nagai, T.; Marumo, H.; Omura, S., Nanaomycins, new antibiotics produced by a strain of Streptomyces II Structure and biosynthesis The Journal of antibiotics, 1975, 28, 868-875 [80] Nakashima, T.; Boonsnongcheep, P.; Kimura, T.; Iwatsuki, M.; Sato, N.; Nonaka, K.; Prathanturarug, S.; Takahashi, Y.; Ōmura, S., New compounds, nanaomycin F and G, discovered by physicochemical screening from a culture broth of Streptomyces rosa subsp notoensis OS-3966 Journal of bioscience and bioengineering, 2015, 120, 596-600 [81] Ellestad, G A.; Kunstmann, M P.; Whaley, H A.; Patterson, E L., Structure of frenolicin Journal of the American Chemical Society, 1968, 90, 1325-1332 [82] Ellestad, G A.; Whaley, H A.; Patterson, E L., The structure of frenolicin Journal of the American Chemical Society, 1966, 88, 4109-4110 [83] Iwai, Y.; Kora, A.; Takahashi, Y.; Hayashi, T.; Awaya, J.; Masuma, R.; Oiwa, R.; Omura, S., Production of deoxyfrenolicin and a new antibiotic, frenolicin B by Streptomyces roseofulvus strain AM-3867 The Journal of antibiotics, 1978, 31, 959-965 [84] Hayashi, T.; Smith, F T.; Lee, K H., Antitumor agents 89 Psychorubrin, a 133 new cytotoxic naphthoquinone from Psychotria rubra and its structureactivity relationships Journal of medicinal chemistry, 1987, 30, 2005-2008 [85] Hari, L.; De Buyck, L.; De Pootert, H., Naphthoquinoid pigments from Pentas longiflora Phytochemistry, 1991, 30, 1726-1727 [86] Van Puyvelde, L.; Ntawukiliyayo, J.; Portaels, F.; Hakizamungu, E., In vitro inhibition of mycobacteria by Rwandese medicinal plants Phytotherapy Research, 1994, 8, 65-69 [87] Wanyoike, G.; Chhabra, S.; Lang’at-Thoruwa, C.; Omar, S., Brine shrimp toxicity and antiplasmodial activity of five Kenyan medicinal plants Journal of ethnopharmacology, 2004, 90, 129-133 [88] Li, T.-t.; Ellison, R H., Stereoselective total synthesis of racemic kalafungin and nanaomycin A Journal of the American Chemical Society, 1978, 100, 6263-6265 [89] Hassan, N P.; Naysmith, B J.; Sperry, J.; Brimble, M A., Formal synthesis of nanaomycin D via a Hauser–Kraus annulation using a chiral enonelactone Tetrahedron, 2015, 71, 7137-7143 [90] Thi, T A D.; Thi, T H V.; Phuong, H T.; Nguyen, T H.; The, C P.; Duc, C V.; Depetter, Y.; Van Nguyen, T.; D’hooghe, M., Synthesis and anticancer properties of new (dihydro) pyranonaphthoquinones and their epoxy analogs Bioorganic & medicinal chemistry letters, 2015, 25, 3355-3358 [91] Pink, J J.; Wuerzberger-Davis, S.; Tagliarino, C.; Planchon, S M.; Yang, X.; Froelich, C J.; Boothman, D A., Activation of a cysteine protease in MCF-7 and T47D breast cancer cells during β-lapachone-mediated apoptosis Experimental cell research, 2000, 255, 144-155 [92] Li, C J.; Wang, C.; Pardee, A B., Induction of apoptosis by β-lapachone in human prostate cancer cells Cancer research 1995, 55, 3712-3715 [93] Weller, M.; Winter, S.; Schmidt, C.; Esser, P.; Fontana, A.; Dichgans, J.; Groscurth, P., Topoisomerase‐I inhibitors for human malignant glioma: Differential modulation of p 53, p 21, bax and bcl‐2 expression and of CD 95‐mediated apoptosis by camptothecin and β‐lapachone International 134 journal of cancer, 1997, 73, 707-714 [94] Lai, C.; Liu, T.; Ho, L.; Don, M.; Chau, Y., beta-Lapachone induced cell death in human hepatoma (HepA2) cells Histology and histopathology, 1998, 13, 89-97 [95] Woo, H J.; Park, K.-Y.; Rhu, C.-H.; Lee, W H.; Choi, B T.; Kim, G Y.; Park, Y.-M.; Choi, Y H., β-lapachone, a quinone isolated from Tabebuia avellanedae, induces apoptosis in HepG2 hepatoma cell line through induction of Bax and activation of caspase Journal of medicinal food, 2006, 9, 161-168 [96] Li, C J.; Li, Y.-Z.; Pinto, A V.; Pardee, A B., Potent inhibition of tumor survival in vivo by β-lapachone plus taxol: Combining drugs imposes different artificial checkpoints Proceedings of the National Academy of Sciences, 1999, 96, 13369-13374 [97] Wuerzberger, S M.; Pink, J J.; Planchon, S M.; Byers, K L.; Bornmann, W G.; Boothman, D A., Induction of apoptosis in MCF-7: WS8 breast cancer cells by β-lapachone Cancer research, 1998, 58, 1876-1885 [98] Dubin, M.; Fernandez, V S.; Stoppani, A., Cytotoxicity of beta-lapachone, an naphthoquinone with possible therapeutic use Medicina, 2000, 61, 343-350 [99] Goijman, S G.; Stoppani, A., Effects of β-lapachone, a peroxide-generating quinone, on macromolecule synthesis and degradation in Trypanosoma cruzi Archives of biochemistry and biophysics, 1985, 240, 273-280 [100] Marr, J J.; Docampo, R., Chemotherapy for Chagas' disease: a perspective of current therapy and considerations for future research Review of Infectious Diseases, 1986, 8, 884-903 [101] Jiménez-Alonso, S.; Orellana, H C.; Estevez-Braun, A.; Ravelo, A G.; Perez-Sacau, E.; Machin, F., Design and synthesis of a novel series of pyranonaphthoquinones as topoisomerase II catalytic inhibitors Journal of medicinal chemistry, 2008, 51, 6761-6772 [102] Silva, F d C d.; Ferreira, S B.; Kaiser, C R.; Pinto, A C.; Ferreira, V F., Synthesis of α-and β-lapachone derivatives from hetero diels-alder trapping of alkyl and aryl o-quinone methides Journal of the Brazilian Chemical 135 Society, 2009, 20, 1478-1482 [103] Peng, D.-Q.; Liu, Y.; Lu, Z.-F.; Shen, Y.-M.; Xu, J.-H., Synthesis of Siloxyα-Lapachone Derivatives by Chemo-and Regioselective Diels-Alder Reactions of 3-Methylene-1,2,4-naphthotriones with Silyl Enol Ethers Synthesis, 2008, 2008, 1182-1192 [104] Khurana, J M.; Nand, B.; Saluja, P., DBU: a highly efficient catalyst for onepot synthesis of substituted 3,4-dihydropyrano[3,2-c]chromenes, dihydropyrano[4,3-b]pyranes, 2-amino-4H-benzo[h]chromenes and 2-amino4H benzo[g]chromenes in aqueous medium Tetrahedron, 2010, 66, 5637-5641 [105] Magedov, I V.; Kireev, A S.; Jenkins, A R.; Evdokimov, N M.; Lima, D T.; Tongwa, P.; Altig, J.; Steelant, W F.; Antipin, M Y.; Kornienko, A., Structural simplification of bioactive natural products with multicomponent synthesis 4H-Pyrano[2,3-b]naphthoquinones with anticancer activity Bioorganic & medicinal chemistry letters, 2012, 22, 5195-5198 [106] Rueping, M.; Sugiono, E.; Merino, E., Asymmetric Iminium Ion Catalysis: An Efficient Enantioselective Synthesis of Pyranonaphthoquinones and β‐ Lapachones Angewandte Chemie International Edition, 2008, 47, 3046-3049 [107] Gao, Y.; Ren, Q.; Ang, S.-M.; Wang, J., Enantioselective organocatalytic Michael-hemiketalization catalyzed by a trans-bifunctional indane thiourea catalyst Organic & biomolecular chemistry, 2011, 9, 3691-3697 [108] Yamashita, M.; Kaneko, M.; Tokuda, H.; Nishimura, K.; Kumeda, Y.; Iida, A., Synthesis and evaluation of bioactive naphthoquinones from the Brazilian medicinal plant, Tabebuia avellanedae Bioorganic & medicinal chemistry, 2009, 17, 6286-6291 [109] Jordao, A K.; Vargas, M D.; Pinto, A C.; da Silva, F d C.; Ferreira, V F., Lawsone in organic synthesis RSC Advances, 2015, 5, 67909-67943 [110] Hwu, J R.; King, K.-Y., Versatile reagent ceric ammonium nitrate in modern chemical synthesis Current science-bangalore, 2001, 81, 1043-1053 [111] Sridharan, V.; Menéndez, J C., Cerium (IV) ammonium nitrate as a catalyst in organic synthesis Chemical reviews, 2010, 110, 3805-3849 136 [112] Reddy, Y S.; John Pal, A.; Gupta, P.; Ansari, A A.; Vankar, Y D., Ceric ammonium nitrate-catalyzed azidation of 1,2-anhydro sugars: application in the synthesis of structurally diverse sugar-derived morpholine 1,2,3-triazoles and 1,4-oxazin-2-ones The Journal of organic chemistry, 2011, 76, 5972-5984 [113] Zarei, M.; Jarrahpour, A.; Ebrahimi, E.; Aye, M.; Badrabady, S A T., Oncolumn N-dearylation of 2-azetidinones by silica-supported ceric ammonium nitrate Tetrahedron, 2012, 68, 5505-5512 [114] Yılmaz, M.; Yakut, M.; Tarık Pekel, A., Synthesis of 2,3‐Dihydro‐4H‐furo[3, 2‐ c]chromen‐4‐ones and 2, 3‐Dihydronaphtho[2,3‐b]furan‐4,9‐diones by the Radical Cyclizations of Hydroxyenones with Electron-Rich Alkenes using Manganese (III) Acetate Synthetic Communications, 2008, 38, 914-927 [115] Rok Lee, Y.; So Kim, B.; Ug Jung, Y.; Soo Koh, W.; Soon Cha, J.; Woo Kim, N., Facile synthesis of avicequinone-B natural product Synthetic communications, 2002, 32, 3099-3105 [116] Ito, C.; Katsuno, S.; Kondo, Y.; TAN, H T.-W.; Furukawa, H., Chemical constituents of Avicennia alba Isolation and structural elucidation of new naphthoquinones and their analogues Chemical and pharmaceutical bulletin, 2000, 48, 339-343 [117] K Kobayashi, T Uneda, K Tanaka, M Mori, H Tanaka, O Morikawa and H Konishi., One-Step Synthesis of Naphthofurandione, Benzofurandione and Phenalenofuranone Derivatives by the CAN-Mediated Cycloaddition Bull Chem Soc Japan, 1998, 71, 1691-1697 [118] Teimouri, M B.; Bazhrang, R., An efficient three-component reaction involving [3+1+1] furannulation leading to furanonaphthoquinones in water Monatshefte für Chemie-Chemical Monthly, 2008, 139, 957-961 [119] Walton, B T.; Ho, C.-H.; Ma, C.; O'Neill, E.; Kao, G., Benzoquinolinediones: activity as insect teratogens Science, 1983, 222, 422-423 [120] Jiang, B.; Zhang, G.; Ma, N.; Shi, F.; Tu, S.-J.; Kaur, P.; Li, G., A new rapid multicomponent domino reaction for the formation of functionalized benzo [h]pyrazolo[3,4-b]quinolines Organic & biomolecular chemistry, 2011, 9, 3834-3838 137 [121] Rajesh, S M.; Bala, B D.; Perumal, S.; Menéndez, J C., L-Prolinecatalysed sequential four-component “on water” protocol for the synthesis of structurally complex heterocyclic ortho-quinones Green Chemistry, 2011, 13, 3248-3254 [122] Bauer, J D.; King, R W.; Brady, S F., Utahmycins a and B, azaquinones produced by an environmental DNA clone Journal of natural products, 2010, 73, 976-979 [123] Efdi, M.; Fujita, S.; Inuzuka, T.; Koketsu, M., Chemical studies on Goniothalamus tapis Miq Natural product research, 2010, 24, 657-662 [124] Lee, E.-J.; Lee, H.-J.; Park, H J.; Min, H.-Y.; Suh, M.-E.; Chung, H.-J.; Lee, S K., Induction of G 2/M cell cycle arrest and apoptosis by a benz[f]indole4,9-dione analog in cultured human lung (A549) cancer cells Bioorganic & medicinal chemistry letters, 2004, 14, 5175-5178 [125] Lee, H.-J.; Suh, M.-E.; Lee, C.-O., Synthesis and cytotoxicity evaluation of 2amino-and 2-hydroxy-3-ethoxycarbonyl-N-substituted-benzo[f]indole-4,9- dione derivatives Bioorganic & medicinal chemistry, 2003, 11, 1511-1519 [126] Moharam, B A.; Jantan, I.; Jalil, J.; Ahmad, F., Inhibitory Effect of Compounds from Goniothalamus tapis Miq and Goniothalamus uvaroides King on Platelet‐Activating Factor Receptor Binding Phytotherapy Research, 2012, 26, 687-691 [127] Park, H J.; Lee, H.-J.; Min, H.-Y.; Chung, H.-J.; Suh, M E.; Park-Choo, H.Y.; Kim, C.; Kim, H J.; Seo, E.-K.; Lee, S K., Inhibitory effects of a benz[f]indole-4,9-dione analog on cancer cell metastasis mediated by the down-regulation of matrix metalloproteinase expression in human HT1080 fibrosarcoma cells European journal of pharmacology, 2005, 527, 31-36 [128] Ryu, C.-K.; Lee, J Y.; Jeong, S H.; Nho, J.-H., Synthesis and antifungal activity of 1H-pyrrolo[3,2-g]quinoline-4,9-diones and 4,9-dioxo-4,9- dihydro-1H-benzo[f]indoles Bioorganic & medicinal chemistry letters, 2009, 19, 146-148 [129] 大村智; 中川彰; 山田陽城; 秦藤樹; 古崎昭雄; 渡辺得之助, Structures and 138 biological properties of kinamycin A, B, C, and D Chemical and Pharmaceutical Bulletin, 1973, 21, 931-940 [130] Tseng, C.-C.; Wu, Y.-L.; Chuang, C.-P., Cerium salts in the oxidative free radical reactions between 2-amino-1,4-naphthoquinones and β-dicarbonyl compounds Tetrahedron, 2002, 58, 7625-7633 [131] Kobayashi, K.; Takeuchi, H.; Seko, S.; Kanno, Y.; Kujime, S.; Suginome, H., Photoinduced Molecular Transformations Part 142 One‐step syntheses of 1H‐ benz[f]indole‐4,9‐diones and 1H‐indole‐4,7‐diones by a new regioselective photoaddition of 2‐amino‐1,4‐naphthoquinones and 2‐amino‐1,4‐benzoquinones with alkenes Helvetica chimica acta, 1993, 76, 2942-2950 [132] Kobayashi, K.; Takeuchi, H.; Seko, S.; Suginome, H., Photo‐induced molecular transformations Part 123 One‐step synthesis of 1H‐benz[f] indole‐4,9‐diones by a new regioselective photoaddition of 2‐amino‐1, 4‐naphthoquinone with various alkenes and its application to one‐step synthesis of kinamycin skeleton Helvetica chimica acta, 1991, 74, 1091-1094 [133] Nadji-Boukrouche, A R.; On, S.; Khoumeri, O.; Terme, T.; Vanelle, P., Original synthesis of benzo[f]indole-4,9-dione derivatives using TDAE strategy Tetrahedron Letters, 2015, 56, 2272-2275 [134] Jiang, M.-C.; Chuang, C.-P., Manganese (III) acetate initiated oxidative free radical reactions between 2-amino-1,4-naphthoquinones and β-dicarbonyl compounds The Journal of organic chemistry, 2000, 65, 5409-5412 [135] Luu, Q H.; Guerra, J D.; Castañeda, C M.; Martinez, M A.; Saunders, J.; Garcia, B A.; Gonzales, B V.; Aidunuthula, A R.; Mito, S., Ultrasound assisted one-pot synthesis of benzo-fused indole-4,9-dinones from 1,4naphthoquinone and α-aminoacetals Tetrahedron Letters, 2016, 57, 2253-2256 [136] Wu, Y.-L.; Chuang, C.-P.; Lin, P.-Y., Oxidative free radical reactions between 2-amino-1,4-naphthoquinones and carbonyl compounds Tetrahedron, 2001, 57, 5543-5549 [137] Hu, H.-Y.; Liu, Y.; Ye, M.; Xu, J.-H., Synthesis of Benzo[f]indole-4, 9-dione and Benzo[b]carbazole-6,11-dione Derivatives via One-Pot Sequential C,N- 139 Dialkylation of Enaminones of β-Diketones and Ketoesters by 2,3Dichloronaphthoquinone Synlett, 2006, 2006, 1913-1917 [138] Sun, J.-W.; Wang, X.-S.; Liu, Y., Copper (II)-Catalyzed Sequential C,NDifunctionalization of 1,4-Naphthoquinone for the Synthesis of Benzo[f]indole-4,9-diones under Base-Free Condition The Journal of organic chemistry, 2013, 78, 10560-10566 [139] Suryavanshi, P A.; Sridharan, V.; Menéndez, J C., Expedient, one-pot preparation of fused indoles via CAN-catalyzed three-component domino sequences and their transformation into polyheterocyclic compounds containing pyrrolo[1,2-a]azepine fragments Organic & biomolecular chemistry, 2010, 8, 3426-3436 [140] Guo, S.; Chen, B.; Guo, X.; Zhang, G.; Yu, Y., Mn (II)-catalyzed synthesis of benzo[f]indole-4,9-diones via vinyl azides and 2-hydroxynaphthoquinone Tetrahedron, 2015, 71, 9371-9375 [141] T Mosmann., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays Journal of immunological methods, 1983, 65, 55-63 [142] E A Couladouros, Z F Plyta, S A Haroutounian., Efficient synthesis of aminonaphthoquinones and azidobenzohydroquinones: mechanistic considerations of the reaction of hydrazoic acid with quinones An overview The Journal of organic chemistry, 1997, 62, 6-10 [143] M Karplus., Contact electron‐spin coupling of nuclear magnetic moments The Journal of chemical physics, 1959, 30, 11 [144] Y Duan, X Wang, X Xu, Z Kang, M Zhang, L Song, H Deng., Convenient one-pot three-component synthesis of trifluoromethylated tetrahydrobenzo[g]chromene derivatives Synthesis, 2013, 45, 2193–2200 [145] Mantenuto, S.; Mantellini, F.; Favi, G.; Attanasi, O A., Divergent Construction of Pyrazoles via Michael Addition of N-Arylhydrazones to 1,2Diaza-1,3-dienes., Organic Letters, 2015, 17, 2014-2017 [146] Yang, H O A Org Lett 2015, 17, 2014-2017.-B.; Zhao, Y.-Z.; Sang, R.; 140 Shi, M., (DHQ)2AQN-Catalyzed Asymmetric Substitution of Isatin-Derived Hydrazones with O-Boc-Protected Morita–Baylis–Hillman Adducts: A Strategy for Synthesizing Enantioenriched Azo Compounds Incorporating an Oxindole Scaffold., Journal of Organic Chemistry, 2014, 79, 3519-3528 [147] Wu, W.; Yuan, X.; Hu, J.; Wu, X.; Wei, Y.; Liu, Z.; Lu., Catalytic Asymmetric Construction of Chiral Hydropyridazines viaConjugate Addition of N-Monosubstituted Hydrazones to Enones., Journal of Organic Letters, 2013, 15, 4524-4527 [148] Kesteleyn, B.; Tuyen Nguyen Van, T.; De Kimpe, N Synthesis of 3-alkyland 3-aryl-2-aza-anthraquinones., Tetrahedron, 1999, 55, 2091–2102 [149] Van Nguyen, T.; Kesteleyn, B.; De Kimpe, N Synthesis of 1, disubstituted naphtho [2, 3-c] pyran-5, 10-diones., Tetrahedron, 2001, 57, 4213–4219 [150] Van Nguyen, T.; Verniest, G.; Claessens, S.; De Kimpe, N Total synthesis of four naturally occurring 2-azaanthraquinone antibiotics, 6-deoxy-8methylbostrycoidin, 6-deoxybostrycoidin, 7-O-demethyl-6-deoxybostrycoidin and scorpinone., Tetrahedron, 2005, 61, 2295–2300 ... ? ?Nghiên cứu tổng hợp số dẫn xuất naphthoquinon phản ứng domino đánh giá hoạt tính sinh học chúng” 2 Mục tiêu đề tài tập trung vào nghiên cứu tổng hợp số dị vịng có khung naphthoquinon: pyranonapthoquinon,... 56, 57], phản ứng domino đa thành phần [58-61] 1.2 Phản ứng domino ứng dụng tổng hợp hợp chất naphthoquinon 1.2.1 Phản ứng domino đa thành phần Khái niệm phản ứng domino đưa Tietze, phản ứng tạo... dụng tổng hợp hợp chất naphthoquinon 1.2.1 Phản ứng domino đa thành phần 1.2.2 Ứng dụng phản ứng domino đa thành phần tổng hợp số hợp chất naphthoquinon 1.3 Tách chiết, tổng