minh suu tam
CHƯƠNG 1: CÔNG THỨC LƯNG GIÁC I. Đònh nghóa Trên mặt phẳng Oxy cho đường tròn lượng giác tâm O bán kính R=1 và điểm M trên đường tròn lượng giác mà sđ AM = β với 02≤ β≤ π Đặt k2 ,k Zα=β+ π ∈ Ta đònh nghóa: sin OKα= cos OHα= sin tg cos α α= α với cos 0α≠ cos cot g sin α α= α với sin 0α≠ II. Bảng giá trò lượng giác của một số cung (hay góc) đặc biệt Góc α Giá trò () o 00 () o 30 6 π () o 45 4 π () o 60 3 π () o 90 2 π sinα 0 1 2 2 2 3 2 1 cos α 1 3 2 2 2 1 2 0 tgα 0 3 3 1 3 || cot gα || 3 1 3 3 0 III. Hệ thức cơ bản 22 sin cos 1α+ α= 2 2 1 1tg cos +α= α với () kkZ 2 π α≠ + π ∈ 2 2 1 tcotg sin += α với ( ) kkZα≠ π ∈ IV. Cung liên kết (Cách nhớ: cos đối, sin bù, tang sai π ; phụ chéo) a. Đối nhau: α và −α ( ) sin sin−α = − α ( ) cos cos−α = α ( ) ( ) tg tg−α = − α ( ) ( ) cot g cot g−α = − α MATHVN.COM www.MATHVN.com b. Buø nhau: α vaø π−α ( ) () () () sin sin cos cos tg tg cot g cot g π−α = α π−α =− α π−α =− α π−α =− α c. Sai nhau π : vaø α π+α ( ) () () () sin sin cos cos tg t g cot g cot g π+α =− α π+α =− α π+α = α π+α = α d. Phuï nhau: α vaø 2 π −α sin cos 2 cos sin 2 tg cot g 2 cot g tg 2 π ⎛⎞ −α = α ⎜⎟ ⎝⎠ π ⎛⎞ −α = α ⎜⎟ ⎝⎠ π ⎛⎞ −α = α ⎜⎟ ⎝⎠ π ⎛⎞ −α = α ⎜⎟ ⎝⎠ e.Sai nhau 2 π : vaø α 2 π +α sin cos 2 cos sin 2 tg cotg 2 cot g tg 2 π ⎛⎞ +α = α ⎜⎟ ⎝⎠ π ⎛⎞ +α =− α ⎜⎟ ⎝⎠ π ⎛⎞ +α =− α ⎜⎟ ⎝⎠ π ⎛⎞ +α =− α ⎜⎟ ⎝⎠ MATHVN.COM www.MATHVN.com f. ()() ()() () () +π=− ∈ +π=− ∈ +π= ∈ +π= k k sin x k 1 sinx,k Z cos x k 1 cosx,k Z tg x k tgx,k Z cotg x k cot gx V. Công thức cộng ( ) () () sin a b sinacosb sin bcosa cos a b cosacosb sinasinb tga tgb tg a b 1tgatgb ±= ± ±= ± ±= ∓ ∓ VI. Công thức nhân đôi = =−=− = = − − = 22 2 2 2 2 sin2a 2sinacosa cos2a cos a sin a 1 2sin a 2cos a 1 2tga tg2a 1tga cotg a 1 cotg2a 2cotga − VII. Công thức nhân ba: 3 3 sin3a 3sina 4sin a cos3a 4cos a 3cosa =− =− VIII. Công thức hạ bậc: () () 2 2 2 1 sin a 1 cos2a 2 1 cos a 1 cos2a 2 1 cos2a tg a 1 cos2a =− =+ − = + IX. Công thức chia đôi Đặt a ttg 2 = (với ) ak2≠π+ π MATHVN.COM www.MATHVN.com 2 2 2 2 2t sina 1t 1t cosa 1t 2t tga 1t = + − = + = − X. Công thức biến đổi tổng thành tích () () ab ab cosa cosb 2cos cos 22 ab ab cosa cosb 2sin sin 22 ab ab sina sin b 2cos sin 22 ab ab sina sin b 2cos sin 22 sin a b tga tgb cosacosb sin b a cot ga cot gb sina.sin b +− += +− −=− +− += +− −= ± ±= ± ±= XI. Công thức biển đổi tích thành tổng () () () () ()() 1 cosa.cosb cos a b cos a b 2 1 sina.sinb cos a b cos a b 2 1 sina.cos b sin a b sin a b 2 = ⎡++ − ⎣⎦ − ⎤ = ⎡+−− ⎣⎦ ⎤ = ⎡++ −⎤ ⎣⎦ Bài 1: Chứng minh 44 66 sin a cos a 1 2 sin a cos a 1 3 +− = +− Ta có: ( ) 2 44 22 22 2 sin a cos a 1 sin a cos a 2sin acos a 1 2sin acos a+−= + − −=− 2 Và: ( )( ) () 66 224224 4422 22 22 22 sin a cos a 1 sin a cos a sin a sin acos a cos a 1 sin a cos a sin acos a 1 1 2sinacosa sinacosa 1 3sin acos a +−= + − + =+ − − =− − − =− − MATHVN.COM www.MATHVN.com Do đó: 44 22 66 22 sin a cos a 1 2sin acos a 2 sin a cos a 1 3sin acos a 3 +−− = = +−− Bài 2: Rút gọn biểu thức () 2 2 1cosx 1cosx A1 sinx sin x ⎡ ⎤ − + ==+ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ Tính giá trò A nếu 1 cosx 2 =− và x 2 π < <π Ta có: 22 2 1cosxsinx12cosxcosx A sin x sin x ⎛⎞ ++−+ = ⎜⎟ ⎝⎠ ( ) 2 21 cosx 1cosx A. sin x sin x − + ⇔= ( ) 2 2 33 21 cosx 2sin x 2 A sin x sin x sin x − ⇔= = = (với sinx 0 ≠ ) Ta có: 22 13 sin x 1 cos x 1 44 =− =− = Do: x 2 π <<π nên sin x 0 > Vậy 3 sin x 2 = Do đó 244 A sin x 3 3 === 3 Bài 3: Chứng minh các biểu thức sau đây không phụ thuộc x: a. A =− 4422 2 2cos x sin x sin x cos x 3sin x+ + b. 2cotgx1 tgx1 cotgx1 + −− B =+ a. Ta có: 4422 A 2cos x sin x sin x cos x 3sin x=−+ + 2 ( ) ( ) ( ) () 2 42 22 2 42424 A 2cos x 1 cos x 1 cos x cos x 3 1 cos x A 2cos x 1 2cos x cos x cos x cos x 3 3cos x ⇔= −− +− + − ⇔= −− + + − +− 2 A2⇔= (không phụ thuộc x) b. Với điều kiện sinx.cosx 0,tgx 1≠ ≠ Ta có: 2cotgx B tgx1 cotgx1 1 + =+ −− MATHVN.COM www.MATHVN.com 1 1 22 tgx B 1 tgx1 tgx11tgx 1 tgx + + ⇔= + = + −− − 1tgx − ( ) 21tgx 1tgx B1 tgx 1 tgx 1 −− − ⇔= = =− −− (không phụ thuộc vào x) Bài 4: Chứng minh () 2 22 22 222 1cosa 1cosa cosbsinc 1 cotg bcotg c cotga 1 2sina sin a sin bsin c ⎡⎤ − +− − +−= ⎢⎥ ⎢⎥ ⎣⎦ − Ta có: * 22 22 22 cos b sin c cot g b.cot g c sin b.sin c − − 2 22 22 cotg b 1 cot g bcot g c sin c sin b =−− ( ) ( ) 22 222 cot g b 1 cot g c 1 cot g b cot g bcot g c 1 =+−+− =− (1) * () 2 2 1cosa 1cosa 1 2sina sin a ⎡ ⎤ − + − ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ () 2 2 1cosa 1cosa 1 2sina 1 cos a ⎡ ⎤ − + =− ⎢ ⎥ − ⎢ ⎥ ⎣ ⎦ 1cosa 1cosa 1 2sina 1 cosa +− ⎡ ⎤ =− ⎢ ⎥ + ⎣ ⎦ 1cosa2cosa .c 2sina 1 cosa + == + otga (2) Lấy (1) + (2) ta được điều phải chứng minh xong. Bài 5: Cho tùy ý với ba góc đều là nhọn. ABC Δ Tìm giá trò nhỏ nhất của P tgA.tgB.tgC= Ta có: AB C+=π− Nên: ( ) tg A B tgC +=− tgA tgB tgC 1 tgA.tgB + ⇔= − − + tgA tgB tgC tgA.tgB.tgC⇔+=−+ Vậy: P tgA.tgB.tgC tgA tgB tgC==+ MATHVN.COM www.MATHVN.com Áp dụng bất đẳng thức Cauchy cho ba số dương tg ta được A,tgB,tgC 3 tgA tgB tgC 3 tgA.tgB.tgC ++≥ 3 P3P⇔≥ 32 P3 P33 ⇔≥ ⇔≥ Dấu “=” xảy ra == ⎧ π ⎪ ⇔⇔= ⎨ π << ⎪ ⎩ tgA tgB tgC ABC 3 0A,B,C 2 == Do đó: MinP 3 3 A B C 3 π =⇔=== Bài 6 : Tìm giá trò lớn nhất và nhỏ nhất của a/ 84 y2sinxcos2x=+ b/ 4 ysinxcos=−x a/ Ta có : 4 4 1cos2x y2 cos2x 2 − ⎛⎞ =+ ⎜⎟ ⎝⎠ Đặt với thì tcos2x= 1t1−≤ ≤ () 4 4 1 y1t 8 =−+ t => () 3 3 1 y' 1 t 4t 2 =− − + Ta có : Ù () y' 0 = 3 3 1t 8t−= ⇔ 1t 2t−= ⇔ 1 t 3 = Ta có y(1) = 1; y(-1) = 3; 11 y 32 ⎛⎞ = ⎜⎟ ⎝⎠ 7 Do đó : và ∈ = x y3 Max ∈ = x 1 y Min 27 b/ Do điều kiện : sin và co nên miền xác đònh x 0≥ s x 0≥ π ⎡⎤ =π+π ⎢⎥ ⎣⎦ Dk2, k2 2 với ∈ k Đặt tcos= x x với thì 0t1≤≤ 42 2 tcosx1sin ==− Nên 4 sin x 1 t=− Vậy 8 4 y1t=−−t trên [ ] D' 0,1= Thì () − =− < − 3 7 4 8 t y' 1 0 2. 1 t [ ) ∀∈t0;1 Nên y giảm trên [ 0, 1 ]. Vậy : ( ) ∈ = = xD max y y 0 1, ( ) ∈ = =− xD min y y 1 1 MATHVN.COM www.MATHVN.com Bài 7: Cho hàm số 44 ysinxcosx2msinxcos=+− x Tìm giá trò m để y xác đònh với mọi x Xét 44 f (x) sin x cos x 2m sin x cos x=+− () () 2 22 2 fx sinx cosx msin2x 2sinxcosx=+ − − 2 () 2 1 f x 1 sin 2x msin 2x 2 =− − Đặt : với tsin2x= [ ] t1,∈− 1 y xác đònh x∀ ⇔ () fx 0x R≥∀∈ ⇔ 2 1 1t [ ] mt 2 −−≥0 t1,1−∀∈ ⇔ () 2 gt t 2mt 2 0=+ −≤ [ ] t1,1− t ∀∈ Do ∀ nên g(t) có 2 nghiệm phân biệt t 2 'm 20 Δ= + > m 1 , t 2 Lúc đó t t 1 t 2 g(t) + 0 - 0 Do đó : yêu cầu bài toán ⇔ 12 t11≤ −< ≤ ⇔ ⇔ () () 1g 1 0 1g 1 0 −≤ ⎧ ⎪ ⎨ ≤ ⎪ ⎩ 2m 1 0 2m 1 0 −−≤ ⎧ ⎨ −≤ ⎩ ⇔ 1 m 2 1 m 2 − ⎧ ≥ ⎪ ⎪ ⎨ ⎪ ≤ ⎪ ⎩ ⇔ 11 m 22 −≤ ≤ Cách khác : gt () 2 t 2mt 2 0=+ −≤ [ ] t1,∀∈− 1 { } [,] max ( ) max ( ), ( ) t gt g g ∈− ⇔≤ ⇔−≤ 11 0110 { } max ), )mm⇔−−−+≤21210 ⇔ 1 m 2 1 m 2 − ⎧ ≥ ⎪ ⎪ ⎨ ⎪ ≤ ⎪ ⎩ m⇔− ≤ ≤ 11 22 Bài 8 : Chứng minh 4444 357 A sin sin sin sin 16 16 16 16 2 π πππ =+++ 3 = Ta có : 7 sin sin cos 16 2 16 16 πππ π ⎛⎞ =−= ⎜⎟ ⎝⎠ πππ ⎛⎞ =−= ⎜⎟ ⎝⎠ 55 sin cos cos 16 2 16 16 π3 MATHVN.COM www.MATHVN.com Mặt khác : ( ) 2 44 22 2 sin cos sin cos 2sin cosα+ α= α+ α − α α 2 22 12sin cos = −αα 2 1 1sin2 2 = −α Do đó : 4444 73 A sin sin sin sin 16 16 16 16 π πππ =+++ 5 44 44 33 sin cos sin cos 16 16 16 16 ππ π ⎛⎞⎛ =+++ ⎜⎟⎜ ⎝⎠⎝ π ⎞ ⎟ ⎠ 22 11 1 sin 1 sin 28 2 8 3π π ⎛⎞⎛ =− +− ⎜⎟⎜ ⎝⎠⎝ ⎞ ⎟ ⎠ 22 13 2sinsin 28 8 π π ⎛⎞ =− + ⎜⎟ ⎝⎠ 22 1 2sincos 28 8 π π ⎛⎞ =− + ⎜⎟ ⎝⎠ π π = ⎝⎠ 3 do sin cos 88 ⎛⎞ ⎜⎟ 13 2 22 = −= Bài 9 : Chứng minh : oooo 16 sin 10 . sin 30 . sin 50 .sin 70 1 = Ta có : o o Acos10 1 A cos10 cos 10 == o (16sin10 o cos10 o )sin30 o .sin50 o .sin70 o ⇔ () oo o 11 o A 8sin20 cos40 .cos20 2 cos10 ⎛⎞ = ⎜⎟ ⎝⎠ ⇔ () 0o o 1 o A 4 sin 20 cos 20 . cos 40 cos10 = ⇔ () oo o 1 A 2sin40 cos40 cos10 = ⇔ o o oo 1cos10 A sin 80 1 cos10 cos10 === Bài 10 : Cho ABCΔ . Chứng minh : A BBCCA tg tg tg tg tg tg 1 22 22 22 + += Ta có : A BC 22 +π =− 2 Vậy : A BC tg cot g 22 + = ⇔ A B tg tg 1 22 A BC 1tg .tg tg 22 2 + = − ⇔ A BC A tg tg tg 1 tg tg 222 2 ⎡⎤ +=− ⎢⎥ ⎣⎦ B 2 MATHVN.COM www.MATHVN.com ⇔ A CBCAB tg tg tg tg tg tg 1 22 22 22 ++ = Bài 11 : Chứng minh : () πππ π ++ +=84tg 2tg tg cotg * 81632 32 Ta có : (*) ⇔ 8cotg tg 2tg 4tg 32 32 16 8 ππ π =−−− π Mà : 22 cos a sin a cos a sin a cot ga tga sin a cos a sin a cos a − −=−= cos 2a 2cotg2a 1 sin 2a 2 == Do đó : (*) ⇔ cot g tg 2tg 4tg 8 32 32 16 8 ππ π π ⎡⎤ −−− ⎢⎥ ⎣⎦ = ⇔ 2cotg 2tg 4tg 8 16 16 8 ππ π ⎡⎤ −− ⎢⎥ ⎣⎦ = ⇔ 4cotg 4tg 8 88 ππ −= ⇔ 8cotg 8 4 π = (hiển nhiên đúng) Bài :12 : Chứng minh : a/ 22 2 22 cos x cos x cos x 33 ππ ⎛⎞⎛⎞ 3 2 + ++ −= ⎜⎟⎜⎟ ⎝⎠⎝⎠ b/ 111 1 cot gx cot g16x sin 2x sin 4x sin 8x sin 16x +++ =− a/ Ta có : 22 2 22 cos x cos x cos x 33 ππ ⎛⎞⎛ +++− ⎜⎟⎜ ⎝⎠⎝ ⎞ ⎟ ⎠ () 11 414 1cos2x 1cos2x 1cos 2x 22 323 ⎡ π⎤ ⎡ π ⎤ ⎛⎞ ⎛ =+ ++ + ++ − ⎜⎟ ⎜ ⎞ ⎟ ⎢ ⎥⎢ ⎝⎠ ⎝ ⎥ ⎠ ⎣ ⎦⎣ ⎦ 31 4 4 cos 2x cos 2x cos 2x 22 3 3 ⎡π ⎛⎞⎛ =+ + + + − ⎜⎟⎜ ⎢⎥ ⎝⎠⎝ ⎣⎦ π⎤ ⎞ ⎟ ⎠ 31 4 cos 2x 2 cos 2x cos 22 3 π ⎡⎤ =+ + ⎢⎥ ⎣⎦ 31 1 cos2x 2cos2x 22 2 ⎡⎤ ⎛⎞ =+ + − ⎜⎟ ⎢⎥ ⎝⎠ ⎣⎦ 3 2 = b/ Ta có : cos a cos b sin b cos a sin a cos b cot ga cot gb sin a sin b sin a sin b − −=−= MATHVN.COM www.MATHVN.com . cos cos−α = α ( ) ( ) tg tg−α = − α ( ) ( ) cot g cot g−α = − α MATHVN. COM www .MATHVN. com b. Buø nhau: α vaø π−α ( ) () () () sin sin cos cos tg tg cot. α ⎜⎟ ⎝⎠ π ⎛⎞ +α =− α ⎜⎟ ⎝⎠ π ⎛⎞ +α =− α ⎜⎟ ⎝⎠ π ⎛⎞ +α =− α ⎜⎟ ⎝⎠ MATHVN. COM www .MATHVN. com f. ()() ()() () () +π=− ∈ +π=− ∈ +π= ∈ +π= k k sin x k 1 sinx,k