1. Trang chủ
  2. » Tất cả

09.ĐỀ HK2 LỚP 9 LOMONOXOP - GV TOÁN HÀ NỘI 2021

8 10 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 647,15 KB

Nội dung

ĐỀ KHẢO SÁT CUỐI KÌ II TỐN LỚP NĂM HỌC 2020 - 2021 Thời gian làm bài: 90 phút PHÒNG GIÁO DỤC ĐÀO TẠO QUẬN NAM TỪ LIÊM TRƯỜNG THCS&THPT LƠMƠNƠXƠP Bài I (2,0 điểm) Giải phương trình hệ phương trình sau: 1) (1,0 điểm) x  11x   ; 13  x  y  2) (1,0 điểm)  2 x  y  8 Bài II ( 2,5 điểm) 1) ( 2,0 điểm) Giải toán sau cách lập phương trình Một xưởng may dự định may xong 1400 áo thời gian quy định Nhờ cải tiến kĩ thuật, ngày xưởng may thêm áo so với số áo phải may ngày theo kế hoạch Vì vậy, xưởng hoàn thành kế hoạch sớm ngày so với quy định Hỏi theo kế hoạch, ngày xưởng phải may xong áo? 2) (0,5 điểm) Kim phút đồng hồ treo tường có độ dài 16cm Hỏi 20 phút đầu kim phút vạch cung trịn có độ dài cm? Câu III (2,5 điểm) 1) (1,0 điểm) Tìm tọa độ giao điểm Parabol  P  : y  x đường thẳng  d  : y  3x  2) (1,5 điểm) Cho phương trình x   m  3 x  2m   1 ( m tham số) a) Chứng minh rằng: Phương trình 1 ln có hai nghiệm phân biệt với giá trị m b) Gọi x1 ; x2 hai nghiệm phương trình 1 Tìm m để x1 ; x2 thỏa mãn x2  x1  Bài IV (3 điểm) Cho MNP  MN  MP  có ba góc nhọn nội tiếp đường tròn O Ba đường cao MD, NE , PF MNP cắt H  D  NP; E  MP; F  MN  Kẻ đường kính MK đường trịn  O  1) (1,0 điểm) Chứng minh: Tứ giác MEHF tứ giác nội tiếp; 2) (1,0 điểm) Chứng minh: MN MP  MK MD ; 3) (0,5 điểm) Lấy điểm A đối xứng với K qua N Chứng minh: A thuộc đường tròn ngoại tiếp MNH ; 4) (0,5 điểm) Lấy điểm B đối xứng với K qua P Chứng minh: H trung điểm AB -HẾT - NHĨM TỐN THCS HÀ NỘI https://www.facebook.com/groups/650500558651229/ HƯỚNG DẪN GIẢI CHI TIẾT Bài I (2,0 điểm) Giải phương trình hệ phương trình sau: 1) (1,0 điểm) x  11x   ; 13  x  y  2) (1,0 điểm)  2 x  y  8 Lời giải 1) x  11x   * Đặt x  t  t   , phương trình * trở thành: 9t  11t   t  1TM  t   Ta có a  b  c     t   TM  9t    Với t   x   x  1 Với t  2  x2   x   9   Vậy x    ; 1   13  2 x  y  13 7 y  21 x  y   2)   2 x  y  8 2 x  y  8 2 x  y  8  y  y  x     2 x  3.3  8 2 x   8  y   1  Vậy hệ phương trình có nghiệm  ;3  2  Bài II ( 2,5 điểm) 1) ( 2,0 điểm) Giải toán sau cách lập phương trình Một xưởng may dự định may xong 1400 áo thời gian quy định Nhờ cải tiến kĩ thuật, ngày xưởng may thêm áo so với số áo phải may ngày theo kế hoạch Vì vậy, xưởng hoàn thành kế hoạch sớm ngày so với quy định Hỏi theo kế hoạch, ngày xưởng phải may xong áo? NHĨM TỐN THCS HÀ NỘI https://www.facebook.com/groups/650500558651229/ 2) (0,5 điểm) Kim phút đồng hồ treo tường có độ dài 16cm Hỏi 20 phút đầu kim phút vạch cung trịn có độ dài cm? Lời giải 1) Gọi số áo xưởng phải may xong một ngày theo kế hoạch x ( áo, x   * ) Thực tế, số áo xưởng may ngày là: x  ( áo) Thời gian xưởng dự định may xong 1400 áo là: 1400 ( ngày) x Thời gian thực tế xưởng may xong 1400 áo là: 1400 ( ngày) x5 Vì thời gian xưởng hồn thành cơng việc sớm kế hoạch ngày so với quy định nên ta có phương trình 1400 1400  5 x x5  1400( x  5)  1400 x  x( x  5)  x  x  1400   ( x  35).( x  40)   x  35   x  35(Tm)    x  40   x  40(loai) Vậy số áo xưởng phải may xong một ngày theo kế hoạch 35 áo 2) Trong 20 phút đầu kim phút vạch cung trịn có số đo là: Độ dài cung trịn cần tìm là: l   Rn 180   16.120 180  360 20  1200 60 32   33, 5(cm) Câu III (2,5 điểm) 1) (1,0 điểm) Tìm tọa độ giao điểm Parabol  P  : y  x đường thẳng  d  : y  3x  2) (1,5 điểm) Cho phương trình x   m  3 x  2m   1 ( m tham số) a) Chứng minh rằng: Phương trình 1 ln có hai nghiệm phân biệt với giá trị m b) Gọi x1 ; x2 hai nghiệm phương trình 1 Tìm m để x1 ; x2 thỏa mãn x2  x1  Lời giải 1) Tìm tọa độ giao điểm Parabol  P  : y  x đường thẳng  d  : y  3x  Xét phương trình hoành độ giao điểm  P   d  x  3x   x  3x   Có a  b  c    3   Vậy phương trình có nghiệm: x1  1; x2  x1  1  y1   1  NHĨM TỐN THCS HÀ NỘI https://www.facebook.com/groups/650500558651229/ x1   y1  42  16 Vậy  d  cắt  P  điểm  1;1 ;  4;16  2) Cho phương trình x   m  3 x  2m   1 ( m tham số) a) Chứng minh rằng: Phương trình 1 ln có hai nghiệm phân biệt với giá trị m Ta có  '     m  3   1 2m    m  6m   2m   m  8m  16   m    0m 2 Vậy phương trình ln có nghiệm với m b) Với m phương trình ln có nghiệm x1 ; x2 Áp dụng hệ thức Vi-ét ta có:  x1  x2   m  3  2m    2  x1 x2  2m  1 Ta có x2  x1   x2  x1  Từ 1  x1  x1    m  3  x1  2m   x1  Từ    2m  2m  4m  11  x2  1  3 2m  4m  11  2m  3  m  2m   4m  20  4m  11    2m     1    m   0       4m  20  m   TM  Vậy m  ; m  giá trị cần tìm Bài IV (3 điểm) Cho MNP  MN  MP  có ba góc nhọn nội tiếp đường trịn O Ba đường cao MD, NE , PF MNP cắt H  D  NP; E  MP; F  MN  Kẻ đường kính MK đường tròn  O  1) (1,0 điểm) Chứng minh: Tứ giác MEHF tứ giác nội tiếp; 2) (1,0 điểm) Chứng minh: MN MP  MK MD ; 3) (0,5 điểm) Lấy điểm A đối xứng với K qua N Chứng minh: A thuộc đường tròn ngoại tiếp MNH ; 4) (0,5 điểm) Lấy điểm B đối xứng với K qua P Chứng minh: H trung điểm AB Lời giải NHĨM TỐN THCS HÀ NỘI https://www.facebook.com/groups/650500558651229/ M E F O H N P D K 1) Chứng minh: Tứ giác MEHF tứ giác nội tiếp;   MFH   90  GT   tứ giác MEHF nội tiếp đường trịn đường kính Tứ giác MEHF có MEH MH 2) Chứng minh: MN MP  MK MD ; Xét MND MKP có:   90 (góc nội tiếp chắn nửa đường tròn)  MDN   MPK   90 ;   90  GT  ; MPK MDN )   MKP  (hai góc nội tiếp chắn MP MND  MND” MKP  g g   MN MK   MN MP  MK MD MD MP c) M E F A O B H N P D K NHĨM TỐN THCS HÀ NỘI https://www.facebook.com/groups/650500558651229/ 3) Chứng minh: A thuộc đường tròn ngoại tiếp MNH , ta chứng minh tứ giác AMHN nội tiếp,   MHN   1800 hay ta chứng minh: MAN   900 góc nội tiếp chắn nửa đường tròn  O  ) + Xét MAK có MN  AK ( MNK MN đường trung tuyến ( AN  NK (gt)) MAK cân M   MKN  mà MKN   MPN  ( góc nội tiếp  O  chắn MN  ) nên MAN   MPN  1 MAN   NHD  + Chứng minh: MPN Xét NHD MPD có:   MDP   900 NDH   DMP  (cùng phụ với EPN ) HND NHD  MPD ( g  g )   MPN  NHD  2   NHD  + Từ 1    MAN   MHN   NHD   MHN   MHD   1800 ( M , H , D thẳng hàng) + Ta có: MAN   MHN   1800 => Tứ giác AMNH nội tiếp MAN A thuộc đường tròn ngoại tiếp MNH 4) Lấy I trung điểm NP + Chứng minh: Tứ giác NHPK hình bình hành Ta có: NH //KP ( vng góc MP ) KN //PH (cùng vng góc MN ) Tứ giác NHPK hình bình hành Mà I trung điểm NP  I trung điểm HK  HI  IK + Xét AHK có: N trung điểm AK ; I trung điểm HK NI đường trung bình AHK NI  AH ; NI //AH hay NP //AH  3 + Xét HKB có: I trung điểm HK ; P – trung điểm KB IP đường trung bình HKB IP  HB ; IP //HB hay NP //HB   + Từ  3 ,    A, H , B thẳng hàng Ta có: IP  1 HB ; NI  AH mà NI  IP  AH  HB hay H trung điểm AB (đpcm) 2 NHĨM TỐN THCS HÀ NỘI https://www.facebook.com/groups/650500558651229/ NHĨM TỐN THCS HÀ NỘI https://www.facebook.com/groups/650500558651229/ NHĨM TỐN THCS HÀ NỘI https://www.facebook.com/groups/650500558651229/ ... giải NHĨM TỐN THCS HÀ NỘI https://www.facebook.com/groups/6505005586512 29/ M E F O H N P D K 1) Chứng minh: Tứ giác MEHF tứ giác nội tiếp;   MFH   90   GT   tứ giác MEHF nội tiếp đường trịn... H , B thẳng hàng Ta có: IP  1 HB ; NI  AH mà NI  IP  AH  HB hay H trung điểm AB (đpcm) 2 NHĨM TỐN THCS HÀ NỘI https://www.facebook.com/groups/6505005586512 29/ NHĨM TỐN THCS HÀ NỘI https://www.facebook.com/groups/6505005586512 29/ ... F A O B H N P D K NHÓM TOÁN THCS HÀ NỘI https://www.facebook.com/groups/6505005586512 29/ 3) Chứng minh: A thuộc đường tròn ngoại tiếp MNH , ta chứng minh tứ giác AMHN nội tiếp,   MHN   1800

Ngày đăng: 04/05/2021, 19:34

TỪ KHÓA LIÊN QUAN