1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi Đại học môn Toán 2013 khối A,A1 (kèm đáp án)

5 8 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 231,48 KB

Nội dung

Tham khảo đề thi Đại học môn Toán 2013 khối A,A1 kèm đáp án gồm các câu hỏi về: khảo sát sự biến thiên và vẽ đồ thị hàm số, giải hệ phương trình. tính tích phân,… giúp các thí sinh có thêm tư liệu chuẩn bị ôn thi Đại học với kết quả tốt hơn.

BỘ GIÁO DỤC VÀ ĐÀO TẠO −−−−−−−−−− ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2013 Môn: TOÁN; Khối A khối A1 Thời gian làm bài: 180 phút, không kể thời gian phát đề −−−−−−−−−−−−−−−−−−− I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu (2,0 điểm) Cho hàm số y = −x3 + 3x2 + 3mx − (1), với m tham số thực a) Khảo sát biến thiên vẽ đồ thị hàm số (1) m = b) Tìm m để hàm số (1) nghịch biến khoảng (0; + ∞) √ π Câu (1,0 điểm) Giải phương trình + tan x = 2 sin x + √ √ x + + x − − y4 + = y Câu (1,0 điểm) Giải hệ phương trình x2 + 2x(y − 1) + y − 6y + = (x, y ∈ R) Caâu (1,0 điểm) Tính tích phân x2 − ln x dx x2 I= Câu (1,0 điểm) Cho hình chóp S.ABC có đáy tam giác vuông A, ABC = 30◦ , SBC tam giác cạnh a mặt bên SBC vuông góc với đáy Tính theo a thể tích khối chóp S.ABC khoảng cách từ điểm C đến mặt phẳng (SAB) Câu (1,0 điểm) Cho số thực dương a, b, c thỏa mã√ n điều kiện (a + c)(b + c) = 4c2 Tìm giá trị 32a3 32b3 a + b2 nhỏ biểu thức P = + − (b + 3c)3 (a + 3c)3 c II PHAÀN RIÊNG (3,0 điểm): Thí sinh làm hai phần (phần A phần B) A Theo chương trình Chuẩn Câu 7.a (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có điểm C thuộc đường thẳng d : 2x + y + = A(−4; 8) Gọi M điểm đối xứng B qua C, N hình chiếu vuông góc B đường thẳng MD Tìm tọa độ điểm B C, biết N(5; −4) x−6 y+1 z+2 Câu 8.a (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ : = = −3 −2 điểm A(1; 7; 3) Viết phương trình mặ t phẳ n g (P ) qua A vuô n g gó c vớ i ∆ Tìm tọ a độ điể m √ M thuộc ∆ cho AM = 30 Câu 9.a (1,0 điểm) Gọi S tập hợp tất số tự nhiên gồm ba chữ số phân biệt chọn từ chữ số 1; 2; 3; 4; 5; 6; Xác định số phần tử S Chọn ngẫu nhiên số từ S, tính xác suất để số chọn số chẵn B Theo chương trình Nâng cao Câu 7.b (1,0 điểm) Trong √ mặt phẳng với hệ tọa độ Oxy, cho đường thẳng√∆ : x − y = Đường tròn (C) có bán kính R = 10 cắt ∆ hai điểm A B cho AB = Tiếp tuyến (C) A B cắt điểm thuộc tia Oy Viết phương trình đường tròn (C) Câu 8.b (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P ) : 2x + 3y + z − 11 = mặt cầu (S) : x2 + y + z − 2x + 4y − 2z − = Chứng minh (P ) tiếp xúc với (S) Tìm tọa độ tiếp điểm (P ) (S) √ Câu 9.b (1,0 điểm) Cho số phức z = + i Viết dạng lượng giác z Tìm phần thực phần ảo số phức w = (1 + i)z5 −−−−−−Hết−−−−−− Thí sinh không sử dụng tài liệu Cán coi thi không giải thích thêm Họ tên thí sinh: ; Số báo danh: ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2013 Mơn: TỐN; Khối A khối A1 (Đáp án - thang điểm gồm 04 trang) BỘ GIÁO DỤC VÀ ĐÀO TẠO ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ CHÍNH THỨC Câu (2,0 điểm) Đáp án Điểm a (1,0 điểm) Khi m = ta có y = − x3 + x − • Tập xác định: D = \ • Sự biến thiên: 0,25 - Chiều biến thiên: y ' = −3x + x; y ' = ⇔ x = x = Khoảng đồng biến: (0; 2); khoảng nghịch biến: (−∞; 0) (2; + ∞) - Cực trị: Hàm số đạt cực tiểu x = 0, yCT = −1; đạt cực đại x = 2, yCĐ = - Giới hạn: lim y = +∞; lim y = −∞ x→−∞ 0,25 x→+∞ - Bảng biến thiên: x −∞ y' − +∞ 0 + +∞ y − 0,25 −1 • Đồ thị: −∞ y 0,25 O x −1 b (1,0 điểm) Ta có y ' = −3x + x + 3m Hàm số (1) nghịch biến khoảng (0; + ∞) y ' ≤ 0, ∀x > ⇔ m ≤ x − x, ∀x > Xét f ( x) = x − x với x > Ta có f '( x) = x − 2; f '( x) = ⇔ x = 0,25 0,25 Bảng biến thiên: x − f '( x) f ( x) +∞ + +∞ 0,25 −1 Dựa vào bảng biến thiên ta giá trị m thỏa mãn yêu cầu toán m ≤ −1 Trang 1/4 0,25 Câu (1,0 điểm) Đáp án Điểm Điều kiện: cos x ≠ Phương trình cho tương đương với + sin x = 2(sin x + cos x) cos x ⇔ (sin x + cos x)(2cos x − 1) = • sin x + cos x = ⇔ x = − • 2cos x − = ⇔ x = ± 0,25 π + kπ ( k ∈ ]) 0,25 π + k 2π (k ∈ ]) Đối chiếu điều kiện ta nghiệm: x = − (1,0 điểm) 0,25 π π + kπ x = ± + k 2π (k ∈ ]) ⎧⎪ x + + x − − y + = y (1) ⎨ ⎪⎩ x + x( y − 1) + y − y + = (2) 0,25 0,25 Điều kiện: x ≥ Từ (2) ta y = ( x + y − 1) , suy y ≥ Đặt u = x − 1, suy u ≥ Phương trình (1) trở thành: Xét f (t ) = t + + t , với t ≥ Ta có f '(t ) = 2t t +2 u4 + + u = y + + y (3) + > 0, ∀t ≥ 0,25 Do phương trình (3) tương đương với y = u, nghĩa x = y + Thay vào phương trình (2) ta y ( y + y + y − 4) = (4) Hàm g ( y ) = y + y + y − có g '( y ) = y + y + > với y ≥ Mà g (1) = 0, nên (4) có hai nghiệm khơng âm y = y = Với y = ta nghiệm ( x; y ) = (1; 0); với y = ta nghiệm ( x; y ) = (2; 1) Vậy nghiệm ( x; y ) hệ cho (1; 0) (2; 1) (1,0 điểm) Đặt u = ln x, dv = x2 − x dx ⇒ du = dx , v= x+ x x 0,25 0,25 0,25 2 1 Ta có I = ⎛⎜ x + ⎞⎟ ln x − ∫ ⎛⎜ x + ⎞⎟ dx x⎠ x⎠x ⎝ 1⎝ 0,25 1 = ⎛⎜ x + ⎞⎟ ln x − ⎛⎜ x − ⎞⎟ x⎠ x ⎠1 ⎝ ⎝ = ln − 2 (1,0 điểm) 0,25 0,25 Gọi H trung điểm BC, suy SH ⊥ BC Mà (SBC) vng góc với (ABC) theo giao tuyến BC, nên SH ⊥ (ABC) Ta có BC = a, suy SH = S AB = BC cos30o = Do VS ABC = I B H C A 0,25 a a ; AC = BC sin 30o = ; 2 a 0,25 a3 SH AB AC = 16 Tam giác ABC vuông A H trung điểm BC nên HA = HB Mà SH ⊥ (ABC), suy SA = SB = a Gọi I trung điểm AB, suy SI ⊥ AB 0,25 AB a 13 = 4 3V 6V a 39 Suy d (C ,( SAB )) = S ABC = S ABC = S ΔSAB SI AB 13 0,25 Do SI = SB − Trang 2/4 Câu (1,0 điểm) Đáp án Đặt x = Điểm a b , y = Ta x > 0, y > Điều kiện toán trở thành xy + x + y = c c 3 32 y Khi P = 32 x + − x2 + y2 3 ( y + 3) ( x + 3) (u + v)3 Với u > 0, v > ta có u + v = (u + v) − 3uv(u + v) ≥ (u + v) − (u + v)3 = 4 3 3 0,25 3 32 x3 + 32 y ≥ ⎛ x + y ⎞ = ⎛ ( x + y ) − xy + x + y ⎞ ⎜ ⎟⎟ ⎜ ⎟ ⎜ xy + x + y + ⎝ y +3 x+3⎠ ( y + 3)3 ( x + 3)3 ⎝ ⎠ Thay xy = − x − y vào biểu thức ta Do 3 32 x3 + 32 y ≥ ⎛ ( x + y − 1)( x + y + 6) ⎞ = ( x + y − 1)3 Do ⎜ ⎟ 2( x + y + 6) ⎝ ⎠ ( y + 3)3 ( x + 3)3 0,25 P ≥ ( x + y −1)3 − x + y = ( x + y −1)3 − ( x + y ) − xy = ( x + y −1)3 − ( x + y ) + 2( x + y ) − Đặt t = x + y Suy t > P ≥ (t − 1)3 − t + 2t − ( x + y)2 t2 nên (t − 2)(t + 6) ≥ Do t ≥ =t+ 4 t +1 Xét f (t ) = (t − 1)3 − t + 2t − 6, với t ≥ Ta có f '(t ) = 3(t − 1) − t + 2t − Ta có = x + y + xy ≤ ( x + y ) + Với t ≥ ta có 3(t − 1) ≥ t +1 t + 2t − = 1+ 0,25 ≤ + = , nên 2 (t + 1) − > Suy f (t ) ≥ f (2) = − Do P ≥ − Khi a = b = c P = − Do giá trị nhỏ P − Do C ∈ d nên C (t ; −2t − 5) Gọi I tâm hình chữ nhật ABCD, suy I trung điểm AC Do I t − ; −2t + 2 Tam giác BDN vuông N nên IN = IB Suy IN = IA A D Do ta có phương trình f '(t ) ≥ − 7.a (1,0 điểm) ) ( ( I N B 8.a (1,0 điểm) C M ) ( ) 2 ⎛ − t − ⎞ + − − −2t + = − − t − + ⎛8 − − 2t + ⎞ ⎜ ⎟ ⎜ ⎟ ⎠ 2 ⎠ ⎝ ⎝ ⇔ t = Suy C (1; −7) Do M đối xứng với B qua C nên CM = CB Mà CB = AD CM||AD nên tứ giác ACMD hình bình hành Suy AC||DM Theo giả thiết, BN ⊥ DM, suy BN ⊥ AC CB = CN Vậy B điểm đối xứng N qua AC Đường thẳng AC có phương trình: x + y + = Đường thẳng BN qua N vng góc với AC nên có phương trình x − y − 17 = Do B(3a + 17; a ) Trung điểm BN thuộc AC nên 3a + 17 + ⎞ a − 3⎛⎜ + = ⇔ a = −7 Vậy B ( −4; −7) ⎟+ 2 ⎝ ⎠ JG Δ có véctơ phương u = (−3; −2;1) JG (P) qua A nhận u làm véctơ pháp tuyến, nên (P) có phương trình −3( x − 1) − 2( y − 7) + ( z − 3) = ⇔ 3x + y − z − 14 = 0,25 0,25 0,25 0,25 0,25 0,25 0,25 M thuộc Δ nên M (6 − 3t ; −1 − 2t ; −2 + t ) 0,25 AM = 30 ⇔ (6 − 3t − 1) + (−1 − 2t − 7) + (−2 + t − 3)2 = 120 ⇔ 7t − 4t − = 51 ; − ; − 17 ⇔ t = t = − Suy M (3; −3; −1) M 7 7 Trang 3/4 ( ) 0,25 Câu Đáp án Điểm 9.a (1,0 điểm) Số phần tử S A37 = 210 Số cách chọn số chẵn từ S 3.6.5 = 90 (cách) 90 = Xác suất cần tính 210 Gọi M giao điểm tiếp tuyến A B (C), H giao điểm AB IM Khi M (0; t ), với t ≥ 0; H trung điểm AB = 2 AB Suy AH = M 1 = + , suy AM = 10 2 AH AM AI B Do MH = AM − AH = |t | , nên t = Do M (0; 8) Mà MH = d ( M , Δ ) = H Đường thẳng IM qua M vng góc với Δ nên có phương I x + y − = Do tọa độ điểm H thỏa mãn hệ trình A ⎧x − y = Δ ⇒ H (4;4) ⎨ ⎩x + y − = JJJG JJJJG Ta có IH = IA2 − AH = = HM , nên IH = HM 4 Do I (5;3) 0,25 7.b (1,0 điểm) 0,25 0,25 0,25 0,25 0,25 0,25 0,25 Vậy đường trịn (C) có phương trình ( x − 5) + ( y − 3) = 10 8.b (1,0 điểm) (S) có tâm I (1; −2;1) bán kính R = 14 d ( I ,( P)) = | 2.1 + 3(−2) + 1.1 − 11| = 14 = R Do (P) tiếp xúc với (S) 14 22 + 32 + 12 Gọi M tiếp điểm (P) (S) Suy M thuộc đường thẳng qua I vuông góc với (P) Do M (1 + 2t ; −2 + 3t ;1 + t ) Do M thuộc (P) nên 2(1 + 2t ) + 3(−2 + 3t ) + (1 + t ) − 11 = ⇔ t = Vậy M (3;1; 2) 9.b (1,0 điểm) ⎛1 3⎞ z = + 3i = ⎜ + i ⎟ ⎠ ⎝2 π π = ⎛⎜ cos + i sin ⎞⎟ 3⎠ ⎝ 5π 5π Suy z = 25 ⎛⎜ cos + i sin ⎞⎟ = 16(1 − 3i ) 3 ⎠ ⎝ Do w = 16( + 1) + 16(1 − 3)i Vậy w có phần thực 16( + 1) phần ảo 16(1 − 3) - Hết - Trang 4/4 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 ...ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2013 Mơn: TỐN; Khối A khối A1 (Đáp án - thang điểm gồm 04 trang) BỘ GIÁO DỤC VÀ ĐÀO TẠO ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ CHÍNH THỨC Câu (2,0 điểm) Đáp án Điểm... ⇔ x = 0,25 0,25 Bảng biến thi? ?n: x − f '( x) f ( x) +∞ + +∞ 0,25 −1 Dựa vào bảng biến thi? ?n ta giá trị m thỏa mãn yêu cầu toán m ≤ −1 Trang 1/4 0,25 Câu (1,0 điểm) Đáp án Điểm Điều kiện: cos... biến thi? ?n: 0,25 - Chiều biến thi? ?n: y ' = −3x + x; y ' = ⇔ x = x = Khoảng đồng biến: (0; 2); khoảng nghịch biến: (−∞; 0) (2; + ∞) - Cực trị: Hàm số đạt cực tiểu x = 0, yCT = −1; đạt cực đại x

Ngày đăng: 30/04/2021, 17:11

w