1. Trang chủ
  2. » Giáo Dục - Đào Tạo

20 Đề và đáp án thi thử 2015 môn Toán

118 10 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 118
Dung lượng 7,87 MB

Nội dung

20 Đề và đáp án thi thử 2015 môn Toán phục vụ cho các bạn học sinh tham khảo nhằm củng cố kiến thức môn Toán, luyện thi tốt nghiệp THPT và giúp các thầy cô giáo trau dồi kinh nghiệm ôn tập cho kỳ thi này. Mời các bạn tham khảo tài liệu để nắm bắt nội dung đề thi. 

hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ơn thi đại học mơn tốn ĐỀ THI THỬ THPT QUỐC GIA ĐỀ 11 Câu (2,0 điểm) Cho hàm số y = x − x + x − a) Khảo sát biến thiên vẽ đồ thị (C) hàm số cho b) Tìm giá trị thực tham số m để phương trình x − 3x + x − m = có nghiệm nhất: 2 Câu (1,0 điểm) a) Giải phương trình: cos x + (1 + cos x)(sin x − cos x ) = b) Cho số phức z thỏa mãn điều kiện (1 + i ) z − − 3i = Tìm phần ảo số phức w = − zi + z Câu (0,5 điểm) Giải bất phương trình: 2log ( x − 1) + log (2 x − 1) ≤  x + y − x − y = Câu (1,0 điểm) Giải hệ phương trình  2 2  x + y + = + x − y (x,y∈ ¡ ) Câu (1,0 điểm) Tính tích phân I = ∫ ( − x ) ( + e ) dx 2x Câu (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh 2a Tam giác SAB cân S nằm mặt phẳng vuông góc với đáy, góc cạnh bên SC đáy 600 Tính theo a thể tích khối chóp S.ABCD khoảng cách hai đường thẳng BD SA Câu (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình: x + y + = , phương trình đường cao kẻ từ B là: x − y − = Điểm M(2;1) thuộc đường cao kẻ từ C Viết phương trình cạnh bên tam giác ABC Câu (1,0 điểm) Trong không gian với hệ tọa độ Oxyz cho ba điểm A(1;-2;1), B(-1;0;3), C(0;2;1) Lập phương trình mặt cầu đường kính AB tìm tọa độ điểm H chân đường cao kẻ từ A tam giác ABC Câu (0,5 điểm) Một hộp đựng thẻ đánh số 1,2,3, ,9 Rút ngẫu nhiên thẻ nhân số ghi ba thẻ với Tính xác suất để tích nhận số lẻ Câu 10 (1,0 điểm) Cho x, y, z số thực dương thỏa mãn x ≥ y ≥ z x + y + z = Tìm giá trị nhỏ biểu thức: P = x z + + 3y z y -Hết ĐÁP ÁN THI THỬ THPT QUỐC GIA (ĐỀ 11) hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ơn thi đại học mơn tốn Câu 1.a (1,0 điểm) Đáp án Điểm x = y'= ⇔  x =1 TXĐ: D = ¡ , y / = x − 12 x + 0.25 Hàm số nghịch biến khoảng(- ∞ ;1) (3;+ ∞ ), đồng biến khoảng (1;3) lim y = −∞, lim y = +∞ x →−∞ BBT 0.25 x →+∞ x −∞ y' + y +∞ – + −∞ 0.25 +∞ -1 0.25 Đồ thị : qua điểm (3;-1), (1;3), (2;1), (0;-1) Pt : 1.b x − 3x + x − m =  x − x + x − = 2m − (*) 2 y = 2m − (d phương (1,0 điểm) Pt (*) pt hoành độ giao điểm (C) đường thẳng d trục Ox) Số nghiệm phương trình số giao điểm (C) d Dựa vào đồ thị  2m − < −1 m < (C), để pt có nghiệm :     2m − > m > 0.25 0.25 0.25 0.25 cos x + (1 + cos x)(sin x − cos x ) = 2.a (0,5 điểm) sin x − cos x = ⇔ (sin x − cos x)(sin x − cos x − 1) = ⇔  sin x − cos x = π  sin( x − ) = ⇔ π  sin( x − ) = 2.b π  x = + kπ   π ⇔  x = + k 2π   x = π + k 2π   (1 + i ) z − − 3i =  z = (0,5 điểm) => w = – i (0,5 điểm) ĐK: x > 0.25 (k ∈¢ ) 0.25 + 3i = 2+i 1+ i 0.25 Số phức w có phần ảo - , log ( x − 1) + log (2 x − 1) ≤ ⇔ x − 3x − ≤  − Điều kiện: x+y ≥ 0, x-y ≥ ≤x≤2 0.25 ⇔ log [( x − 1)(2 x − 1)] ≤ => tập nghiệm S = (1;2] 0.25 0.25 0.25 hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ơn thi đại học mơn tốn  u − v = (u > v)  u + v = uv + u = x + y   ⇔  u + v2 + ta có hệ:  u + v + (1,0 điểm) Đặt:  v = x − y − uv =  − uv =  2   0.25  u + v = uv + (1)  ⇔  (u + v) − 2uv + Thế (1) vào (2) ta có: − uv = (2)   uv + uv + − uv = ⇔ uv + uv + = (3 + uv ) ⇔ uv = 0.25  uv = ⇔ u = 4, v = (vì u>v) Kết hợp (1) ta có:  u + v = Từ ta có: x =2; y =2.(Thỏa đ/k) 0.25 KL: Vậy nghiệm hệ là: (x; y)=(2; 2) u = − x Đặt  2x  dv = (2 + e )dx (1,0 điểm)  du = − dx  =>  2x v = x + e 1 I = (1 − x)(2 x + e x ) + ∫ (2 + e x )dx 2 2x 1 2x = (1 − x)(2 x + e ) + ( x + e ) 0 0.25 = e2 + Gọi H trung điểm AB-Lập luận SH ⊥ ( ABC ) -Tính SH = a 15 (1,0 điểm) Tính VS ABC = 0.25 4a 15 0,5 0.25 0.25 Qua A vẽ đường thẳng ∆ / /BD , gọi E hình chiếu H lên ∆ , K hình chiếu H lên SE Chứng minh được:d(BD,SA)=d(BD,(S, ∆ ))=2d(H, (S, ∆ ))=2HK Tam giác EAH vuông cân E, HE = 0.25 a 2 1 31 15 = + = ⇒ HK = a 2 2 HK SH HE 15a 31 ⇒ d ( BD, SA) = 15 a 31 · · = = cos HCB Gọi H trực tâm ∆ ABC Tìm B(0;-1), cos HBC 10 r Pt đthẳng HC có dạng: a(x-2)+b(y-1)=0( n = (a; b) VTPT a + b > ) (1,0 điểm) 0.25 0.25 hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ơn thi đại học mơn tốn · cos HCB = a+b 2(a + b2 ) = a a ⇒ 4a + 10ab + 4b = ⇔  ÷ +  ÷+ = 10 b b a  b = −2  a = −2, b = ⇔ ⇒ ,  a = −1, b = 2(l ) a = −  b phương trình CH: -2x + y + = 0.25 0.25 AB ⊥ CH Tìm pt AB:x+2y+2=0 0.25 Tìm : C ( ; − ) ,pt AC:6x+3y+1=0 3 Tìm tọa độ tâm I mặt cầu I(0;-1;2), bán kính mặt cầu: R = Phương trình mặt cầu (S): x + ( y + 1)2 + ( z − 2) = (1,0 điểm) uuur uuur uuur Giả sử H(x;y;z), AH = (x − 1; y + 2; z − 1), BC = (1; 2; −2), BH = ( x + 1; y; z − 3) uuur uuur uuur uuur AH ⊥ BC ⇔ AH BC = ⇔ x + y − z = −5 uuur 2 x − y = −2 uuur , BH phương BC ⇔  y + z = 23 Tìm H( − ; ; ) 9 Số phần tử không gian mẫu n( Ω ) = C = 84 (0,5 điểm) 0.25 0.25 0.25 0.25 Số cách chọn thẻ có tích số lẻ n(A) = C5 = 10 10 => Xác suất cần tính P(A) = = 84 42 Ta có 10 (1,0 điểm) 0.25 x + xz ≥ x, z Từ suy P= 0.25 0.25 z + yz ≥ z y x z + + y ≥ x − xz + z − yz + y z y 0.25 = 2( x + z ) + y ( x + y + z ) − xz − yz = 2( x + z ) + y + x( y − z ) Do x > y ≥ z nên x( y − z ) ≥ Từ kết hợp với ta P= x z + + y ≥ 2( x + z ) + y = 2(3 − y ) + y = ( y − 1) + ≥ z y Vậy giá trị nhỏ P đạt x=y=z=1 ĐỀ THI THỬ THPT QUỐC GIA ĐỀ 12 Câu ( 2,0 điểm) Cho hàm số y = − x + 3mx + (1) a) Khảo sát biến thiên vẽ đồ thị hàm số (1) m = 0,25 0.25 hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ơn thi đại học mơn tốn b) Tìm m để đồ thị hàm số (1) có điểm cực trị A, B cho tam giác OAB vuông O ( với O gốc tọa độ ) sin x + = 6sin x + cos x Câu (1,0 điểm) Giải phương trình Câu (1,0 điểm) Tính tích phân I = ∫ Câu (1,0 điểm) a) Giải phương trình x − ln x dx x2 52 x +1 − 6.5 x + = b) Một tổ có học sinh nam học sinh nữ Giáo viên chọn ngẫu nhiên học sinh để làm trực nhật Tính xác suất để học sinh chọn có nam nữ Câu (1,0 điểm) Trong không gian với hệ toạ độ Oxyz , cho điểm A ( −4;1;3) đường thẳng d: x +1 y −1 z + = = Viết phương trình mặt phẳng ( P) qua A vng góc với đường thẳng d Tìm tọa −2 độ điểm B thuộc d cho AB = 27 Câu (1,0 điểm) Cho hình chóp S ABC có tam giác ABC vng A , AB = AC = a , I trung điểm SC , hình chiếu vng góc S lên mặt phẳng ( ABC ) trung điểm H BC , mặt phẳng ( SAB ) tạo với đáy góc 60o Tính thể tích khối chóp S ABC tính khoảng cách từ điểm I đến mặt phẳng ( SAB ) theo a Câu (1,0 điểm) Trong mặt phẳng với hệ toạ độ Oxy cho tam giác ABC có A ( 1; ) , tiếp tuyến A đường tròn ngoại tiếp tam giác ABC cắt BC D , đường phân giác ·ADB có phương trình x − y + = , điểm M ( −4;1) thuộc cạnh AC Viết phương trình đường thẳng AB Câu (1,0 điểm) Giải hệ phương trình Câu (1,0 điểm) P= bc 3a + bc + ca 3b + ca  x + xy + x − y − y = y +   y − x − + y − = x − Cho a, b, c số dương a + b + c = Tìm giá trị lớn biểu thức: + ab 3c + ab hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ơn thi đại học mơn toán …….Hết……… ĐÁP ÁN (ĐỀ 12) Câu Nội dung a.(1,0 điểm) Điểm hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ơn thi đại học mơn tốn Vơí m=1 hàm số trở thành : y = − x3 + 3x + 0.25 TXĐ: D = R y ' = −3 x + , y ' = ⇔ x = ±1 Hàm số nghịch biến khoảng ( −∞; −1) ( 1; +∞ ) , đồng biến khoảng ( −1;1) 0.25 Hàm số đạt cực đại x = , yCD = , đạt cực tiểu x = −1 , yCT = −1 lim y = −∞ , x →+∞ lim y = +∞ x →−∞ * Bảng biến thiên x 0.25 –∞ y’ -1 + +∞ – +∞ + y -∞ -1 Đồ thị: 2 b.(1,0 điểm) y ' = −3 x + 3m = −3 ( x − m ) 0.25 hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ơn thi đại học mơn toán 0.25 y ' = ⇔ x − m = ( *) Đồ thị hàm số (1) có điểm cực trị ⇔ PT (*) có nghiệm phân biệt ⇔ m > ( **) ( ) Khi điểm cực trị A − m ;1 − 2m m , B ( m ;1 + 2m m ) uuu r uuu r Tam giác OAB vuông O ⇔ OA.OB = ⇔ 4m + m − = ⇔ m = ( TM (**) ) Vậy m = 0.25 0.25 0,25 (1,0 điểm) sin x + = 6sin x + cos x 0.25 ⇔ (sin x − 6sin x) + (1 − cos x) = ⇔ 2sin x ( cos x − 3) + 2sin x = 0 25 ⇔ 2sin x ( cos x − + sin x ) = sin x = ⇔ sin x + cos x = 3(Vn) 25 ⇔ x = kπ Vậy nghiệm PT x = kπ , k ∈ Z 0.25 (1,0 điểm) 2 2 ln x x2 ln x ln x I = ∫ xdx − ∫ dx = −2 ∫ dx = − 2∫ dx x 1 x x 1 Tính J = ∫ ln x dx x2 Đặt u = ln x, dv = 0.25 0.25 1 dx Khi du = dx, v = − x x x 2 1 Do J = − ln x + ∫ dx x x 1 1 1 J = − ln − = − ln + x1 2 0.25 hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ơn thi đại học mơn tốn Vậy I = + ln 2 0.25 (1,0 điểm) a,(0,5điểm) 0.25 5 x = 2x x 52 x +1 − 6.5 x + = ⇔ 5.5 − 6.5 + = ⇔  x =  x = ⇔ Vậy nghiệm PT x = x = −1  x = −1 0.25 b,(0,5điểm) n ( Ω ) = C113 = 165 0.25 1 Số cách chọn học sinh có nam nữ C5 C6 + C5 C6 = 135 Do xác suất để học sinh chọn có nam nữ 135 = 165 11 0.25 (1,0 điểm) uu r Đường thẳng d có VTCP ud = ( −2;1;3) uu r Vì ( P ) ⊥ d nên ( P ) nhận ud = ( −2;1;3) làm VTPT 0.25 Vậy PT mặt phẳng ( P ) : −2 ( x + ) + 1( y − 1) + ( z − 3) = ⇔ −2 x + y + z − 18 = 0.25 Vì B ∈ d nên B ( −1 − 2t ;1 + t; −3 + 3t ) 0.25 AB = 27 ⇔ AB = 27 ⇔ ( − 2t ) + t + ( −6 + 3t ) = 27 ⇔ 7t − 24t + = t = ⇔ t =  (1,0 điểm)  13 10 12  Vậy B ( −7; 4;6 ) B  − ; ; − ÷ 7  7 0.25 hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ơn thi đại học mơn tốn Gọi K trung điểm AB ⇒ HK ⊥ AB (1) Sj Vì SH ⊥ ( ABC ) nên SH ⊥ AB (2) 0.25 Từ (1) (2) suy ⇒ AB ⊥ SK Do góc ( SAB ) với đáy góc M · SK HK SKH = 60o B H C a · Ta có SH = HK tan SKH = K A 1 a3 Vậy VS ABC = S ABC SH = AB AC.SH = 3 12 0.25 Vì IH / / SB nên IH / / ( SAB ) Do d ( I , ( SAB ) ) = d ( H , ( SAB ) ) Từ H kẻ HM ⊥ SK M ⇒ HM ⊥ ( SAB ) ⇒ d ( H , ( SAB ) ) = HM Ta có 1 16 a a = + = ⇒ HM = Vậy d ( I , ( SAB ) ) = 2 HM HK SH 3a 4 0.25 0,25 (1,0 điểm) · Gọi AI phân giác BAC A M' B · Ta có : ·AID = ·ABC + BAI E K I M C 0,25 · · · IAD = CAD + CAI D · · · · Mà BAI , ·ABC = CAD nên ·AID = IAD = CAI ⇒ ∆DAI cân D ⇒ DE ⊥ AI PT đường thẳng AI : x + y − = 0,25 Goị M’ điểm đối xứng M qua AI ⇒ PT đường thẳng MM’ : x − y + = Gọi K = AI ∩ MM ' ⇒ K(0;5) ⇒ M’(4;9) uuuuu r r VTCP đường thẳng AB AM ' = ( 3;5 ) ⇒ VTPT đường thẳng AB n = ( 5; −3) Vậy PT đường thẳng AB là: ( x − 1) − ( y − ) = ⇔ x − y + = 0,25 0,25 hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ơn thi đại học mơn tốn  x + xy + x − y − y = y + 4(1)   y − x − + y − = x − 1(2) (1,0 điểm) 0.25  xy + x − y − y ≥  Đk:  y − x − ≥  y −1 ≥  Ta có (1) ⇔ x − y + ( x − y ) ( y + 1) − 4( y + 1) = Đặt u = x − y , v = y + ( u ≥ 0, v ≥ ) u = v Khi (1) trở thành : u + 3uv − 4v = ⇔  u = −4v (vn) Với u = v ta có x = y + , thay vào (2) ta : ⇔ y − y − − ( y − 1) + ( y − 2) y2 − y − + y −1 ⇔ y = ( ⇔ + ( y2 − y − + y −1 = y 0.25 ) y −1 −1 =  y−2 = ⇔ ( y − 2)  +  y − y − + y −1 y −1 +1  y2 − y − + y −1 +  ÷= y −1 +1 ÷  > 0∀y ≥ ) y −1 +1 0.25 0.25 Với y = x = Đối chiếu Đk ta nghiệm hệ PT ( 5; ) (1,0 điểm) Vì a + b + c = ta có bc bc bc bc  1  = = ≤  + ÷ 3a + bc a (a + b + c) + bc (a + b)(a + c )  a+b a+c  1 + ≥ Vì theo BĐT Cơ-Si: , dấu đẳng thức xảy ⇔ b = c a+b a+c ( a + b)(a + c) Tương tự Suy P ≤ ca ca  1  ≤  + ÷ b+a b+c 3b + ca ab ab  1  ≤ +  ÷  c+a c+b  3c + ab bc + ca ab + bc ab + ca a + b + c + + = = , 2(a + b) 2(c + a ) 2(b + c) 2 Đẳng thức xảy a = b = c = Vậy max P = 0,25 0,25 0,25 a = b = c = 0,25 hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ơn thi đại học mơn toán n +1 = ( C21n+1 + C23n+1 + C25n+1 + + C22nn++11 ) Lầy (1) trừ (2), ta : 0,25 ⇔ 22 n = C21n+1 + C23n+1 + C25n+1 + + C22nn++11 Từ giả thiết ta có 22 n = 4096 Û 2 n = 212 Û 2n = 12 12 k k 12- k k Do ta có ( - 3x ) = å ( - ) C12 ( 3x ) 12 ( ≤ k ≤ 12, k nguyên) 0,25 k =0 ⇒ hệ số x9 : - C129 39 23 mp(Q) // AB, (Q) ⊥ (P), cắt (S) theo đường tròn có bán kính 1,0 Ta có x2 + y2 + z2 − 2x + 8z − = ⇔(x −1)2 + y2 + (z +4)2 = 24 0,25 Suy (S) có tâm I(1 ; ; − 4), bán kính R = r r Gọi n P , nQ vecto pháp tuyến mp(P), mp(Q) Ta có r r uuur r uuur n P = (1; 1; −1), AB = (1; 3; 1), [ n P , AB ] = (4; − 2; 2) ≠ r uuur nQ ⊥ AB r (Q) / / AB r uuur ⇒ r r Ta có  nên chọn nQ = [ n P , AB ] (Q) ⊥ ( P)  nQ ⊥ n P 0,25 r Hay nQ = (2; −1; 1) Suy pt mp(Q): 2x − y + z + d = Gọi r, d bán kính (C), khoảng cách từ tâm I (S) đến mp(Q) 0,25 Ta có diện tích hình trịn (C) 18π nên r2 = 18 Do d2 = R2 − r2 = 24 − 18 = ⇒d = Ta có d = ⇔|d −2| = ⇔d = d = − Từ đó, có mp (Q1): 2x − y + z + = 0, (Q2): 2x − y + z − = Mp(Q) có pt chứa AB Kiểm tra trực tiếp thấy A(1; −1; 1) ∉(Q1) nên AB // (Q1); A(1; −1; 1) ∈(Q2) nên AB ⊂(Q2) 0,25 KL: pt mp(Q): 2x − y + z + = Thể tích khối chóp S.ABCD khoảng cách hai đường thẳng CF SB Vì I trung điểm AB tam giác SAB vuông cân S nên SI ⊥ AB Ta có: ( SAB ) ∩ ( ABCD ) = AB  ⇒ SI ⊥ ( ABCD ) ( SAB ) ⊥ ( ABCD )   SI ⊂ ( SAB ) , SI ⊥ AB 1,0 hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ơn thi đại học mơn tốn Gọi J trung điểm CD, E hình chiếu vng góc I lên SJ Ta có: CD ⊥ IJ ⇒ CD ⊥ ( SIJ ) ⇒ CD ⊥ IE ⊂ ( SIJ )  CD ⊥ SI  IE ⊥ CD a ⇒ IE ⊥ ( SCD ) ⇒ IE = d ( I ; ( SCD ) ) =   IE ⊥ SJ x Đặt AB = x ; ( x > 0), SI = Trong tam giác vng SIJ ta có: Và 0,25 1 1 1 = 2+ 2⇒ = + ⇒ x = a 2 IE SI IJ x a 5 x  ÷  ÷    Thể tích khối chóp S.ABCD: VS ABCD 0,25 1 a a3 = S ABCD SI = a = 3 Qua B dựng đường thẳng song song CF cắt DA kéo dài K Khi CF// (SBK), suy d(CF; SB) = d(F; (SBK)) 0,25 Dựng IH ⊥ BK , ( H ∈ BK ) ; IL ⊥ SH , ( L ∈ SH ) Ta có:  BK ⊥ SI ⇒ BK ⊥ ( SIH ) ⇒ BK ⊥ IL   BK ⊥ IH  IL ⊥ BK ⇒ IL ⊥ ( SBK ) ⇒ IL = d ( I ; ( SBK ) ) Từ   IL ⊥ SH Tứ giác BCFK hình bình hành ⇒ FK = BC = a Lại có: FA = a a ⇒ AK = 2 Hai tam giác vng BHI BAK có góc nhọn B chung nên đồng dạng, suy ra: HI BI KA.BI = ⇒ HI = = KA BK BK Trong tam giác vuông SIH: AI ∩ ( SBK ) = { B} ⇒ a a 2 = a a2 a + 1 a = + ⇒ IL = 2 IL IH IS 24 d ( A; ( SBK ) ) d ( I ; ( SBK ) ) = 2a a BA = = ⇒ d ( A; ( SBK ) ) = 2d ( I ; ( SBK ) ) = , BI 24 0,25 hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ơn thi đại học mơn tốn tương tự : d ( F ; ( SBK ) ) = 2d ( A; ( SBK ) ) = 2a a a = Vậy : d ( CF ; SB ) = Viết phương trình đường trịn (S) 1,0 A +B giao điểm AB BD, tìm B(0; 2) +Tính góc hai đường thẳng AB BD 600 B +Ta có BD đường trung trực dây cung AC nên BD I D 0,25 đường kính C +Tam giác ABD vng A có ·ABD = 600 ⇒ AD = AB +Ta có S ABCD = S ∆ABD ⇔ S∆ABD = ⇔ AB AD = 0,25 AB = ⇔ AB = 2 uuu r +Ta có A ∈ AB ⇔ A ( a; ) , a > 0, AB = ( −a;0 ) ⇔ ( −a ) AB = ⇔ + 02 = ⇔ a = (a > 0) suy A ( 2; ) uuur +Ta có D ∈ BD ⇔ D d ; 3d + , AD = d − 2; 3d ( ) ( d − 2) Nên AD = AB ⇔ ( ( + ( ( 3d ) )  d = −1 = ⇔ 4d − 4d − = ⇔  d = ) 0,25  D −1; − + Suy  Vì yA < yD nên chọn D 2; +  D 2; +  ) ( ( ) ) + Đường trịn (S) có tâm I 1; + , bán kính IA = nên có phương trình: ( x − 1) ( + y− 3−2 ) 0,25 =4 7 x + y + 3xy ( x − y ) − 12 x + x = (1) ( x, y ∈ ¡ ) Giải hệ phương trình  (2)  x + y + + 3x + y = 1,0 Điều kiện: 3x+2y ≥ (1) ⇔ x3 − 12 x + x − = x − x y + xy − y ⇔ (2 x − 1)3 = ( x − y )3 ⇔ x − = x − y ⇔ y = − x Thế y = 1− x vào (2) ta được: 3x + + x + = 0,25 hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ơn thi đại học mơn toán 0,25 Đặt a = 3x + 2, b = x + (b ≥ 0) a + b = Ta có hệ   a = 3b − b = 4− a b = − a b = − a ⇔ ⇔ ⇔ 2 a = 3(4 − a) − a = 3(16 − 8a + a ) − a − 3a + 24a − 44 = 0,25 b = 4− a a = ⇔ ⇔ (a − 2)(a − a + 22) = b = 0,25  3x + = ⇔ ⇔ x = ⇒y = − (thỏa ĐK)  x + = Kết luận: Nghiệm hệ phương trình (x; y) = (2;−1) Cho số dương x, y , z thỏa x + y + z = Tìm GTNN biểu thức P = x2 + y + z + 1,0 xy + yz + zx x y + y2 z + z2 x Áp dụng BĐT TBC-TBN cho hai số dương, ta có x + xy ≥ x y, y + yz ≥ y z , z + zx ≥ z x ⇒ x + y + z ≥ ( x y + y z + z x ) − ( xy + yz + zx ) ( 1) 0,25 Mặt khác, x + y + z = nên ( x2 + y + z ) = ( x + y + z ) ( x2 + y + z ) = x3 + y + z + ( x y + y z + z x ) + ( xy + yz + zx ) ( ) Từ (1) (2), ta có x + y + z ≥ x y + y z + z x 2 Do P ≥ x + y + z + xy + yz + zx x2 + y + z 0,25 Ta có ( x + y + z ) = x + y + z + ( xy + yz + zx ) 2 2 Đặt t = x + y + z ⇒ xy + yz + zx = Do x + y + z 2 ( x + y + z) ≥ 9−t 2 ⇒t ≥3 9−t 2t − t + Khi P ≥ t + ,t ≥ ⇔ P ≥ ,t ≥ 2t 2t 0,25 hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ơn thi đại học mơn tốn Xét hàm số f ( t ) = 0,25 2t − t + , [ 3; +∞ ) 2t Lập bảng biến thiên, ta có hàm f đồng biến [ 3; +∞ ) ⇒ P ≥ m in f ( t ) = f ( 3) = t ≥3 Kết luận : P = ⇔ x = y = z = KỲ THI THPT QUỐC GIA (ĐỀ 29) Câu 1.(2,0 điểm) Cho hàm số y = x3 − x + (C ) a) Khảo sát biến thiên vẽ đồ thị (C) hàm số b) Tìm m để đồ thị hàm số y = x3 − x + m + cắt trục hoành điểm phân biệt Câu 2.( 1,0 điểm) a) Giải phương trình : 3cos5 x − sin x.cos2 x − s inx = b) Cho số phức: z = − 2i Xác định phần thực phần ảo số phức z + z Câu 3.( 0,5 điểm) log Giải phương trình: Câu 4.( 1,0 điểm) Giải phương trình: Câu 5.( 1,0 điểm) x + − log (2 − x ) − log 27 x3 = x − + − x = x − x + 11 x− Tính tích phân I = ∫ −13 x + + x + dx Câu 6.( 1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh a, Sc vng góc mặt phẳng (ABCD), SC có SC = a Gọi O giao điểm AC BD, gọi M trung điểm cạnh AB Tính thể tích khối chóp S.AMCD, tính khoảng cách từ điểm O đến mặt phẳng (SAB) theo a Câu 7.(1,0 điểm) Trong mặt phẳng với hệ trục tọa độ oxy, cho elip(E): x2 + y = điểm C(2;0).Tìm tọa độ điểm A,B ∈ (E) biết A,B đối xứng qua trục hoành ∆ ABC Câu 8.(1,0 điểm) Trong không gian oxyz cho điểm A(0;2;2) Viết phương trình đường thẳng ∆ qua A vng góc đường thẳng d1 : x −1 =  x = −2  = ; đồng thời cắt d :  y = t 2 z = + t  y+2 z Câu 9.(0,5 điểm) Từ chữ số 1,2,3,4,5,6,7,8,9 lập số tự nhiên số gồm chữ số khác hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ơn thi đại học mơn tốn tổng chữ số hàng chục, hàng trăm, hàng ngàn Câu 10.(1,0 điểm) ) ( Cho x, y số thực thỏa mãn x2 + y + + 3x2 y + = x2 + y Tìm GTLN GTNN biểu thức P = x + y − 3x2 y x2 + y2 + ĐÁP ÁN Câu 1b NỘI DUNG Điểm Tìm m để đồ thị hàm số y = x3 − x + m + cắt trục hoành điểm phân biệt 1.0đ Dựa vào đồ thị tìm −1 < m < 2a 0.5đ Giải phương trình : 3cos5 x − sin x.cos2 x − s inx = π π  x = + k  18 π  cos5 x − sin x = s inx ⇔ sin  − x ÷ = s inx ⇔  PT ⇔ 2 3  x = − π + k π  2b Cho số phức: z = − 2i Xác định phần thực phần ảo số phức z + z 0.5đ z + z = ( − 2i ) + ( − 2i ) = − 14i Phần thực a=8; phần ảo b=-14 Giải phương trình: log + ĐK: < x < (*) x + − log (2 − x ) − log 27 x3 = 0.5đ +PT ⇔ log3 ( x + 2) + log3 (2 − x) − log3 x = ⇔ log3 [( x + 2)(2 − x)]= log3 x ⇔ (2 + x)(2 − x) = x ⇔ x2 + x − = ⇔ x = −1 ± 17 Kết hợp với (*) ta nghiệm phương trình x = Giải phương trình: −1 + 17 x − + − x = x − x + 11 1.0đ hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ơn thi đại học mơn tốn + ĐK: x ∈ [ 2; 4] x − +1   x − ≤ ⇒ x−2 + 4− x ≤ + Áp dụng BĐT Cauchy   − x ≤ − x +1  x − = ⇔ x = Mặt khác x − x + 11 = ( x − 3) + ≥ dấu “=”xảy Dấu “=”khi  4 − x = x=3 Vậy phương trình có nghiệm x=3 Tính tích phân I = ∫ x− −13 x + + x + dx 1.0đ Đặt t = x + ĐS: I = 6ln3− 1.0đ Tìm tọa độ điểm A,B∈ (E) biết A,B đối xứng qua trục hoành ∆ ABC Giả sử A( x0 ; y0 ), B ( x0 ; − y0 ) 1.0đ x x + Vì A,B thuộc (E) nên + y = ⇔ y = − , (1) 0 4 ( + Mà tam giác ABC nên AB = AC ⇔ x − ) + y02 = y02 , (2) 2 3 2 3 + Từ (1) (2) suy A,B hai điểm  ; ÷ ÷;  ; − ÷ ÷ 7  7  Viết phương trình đường thẳng ∆ … Giả sử ∆ cắt d B(-2;t;1+t) uuu r Ta có AB = ( −2; t − 2; t − 1) r Đường thẳng d1 có VTCP u = ( 3; 2; ) uuu rr uuu r ∆ vuông d1 ⇔ AB.u = ⇔ t = ⇒ AB = ( −2;1; ) 1.0đ hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán  x = −2u uuu r  Vậy ∆ qua A có VTCP AB = ( −2;1; ) có PTTS:  y = + u  z = + 2u  Lập số tự nhiên số gồm chữ số khác … 0.5đ Giả sử số cần lập có dạng a1a2 a3a4 a5a6 a3 , a4 , a5 ∈ { 1; 2;5} Theo đề a3 + a4 + a5 = ⇒   a3 , a4 , a5 ∈ { 1; 3; 4} TH1: a3 , a4 , a5 ∈ { 1; 2; 5} Có cách chọn a1; cách chọn a2; 3! Cách chọn a3,a4,a5 cách chọn a6 Vậy có 6.5.3!.4=720 số TH2: a3 , a4 , a5 ∈ { 1;3; 4} Tương tự có 720 số Vậy có 1440 số thỏa đề Tìm GTLN GTNN biểu thức P = 10 ( * Từ giả thiết ta có: x2 + y ) ( x + y − 3x2 y x2 + y2 + 1.0đ ) ( − x + y + = − x2 − 3x2 y * Mà − x − 3x y ≤ ⇒ x2 + y ) ) ( − x2 + y + ≤ ; * Đặt t = x2 + y ⇒ t − 3t + ≤ ⇔ ≤ t ≤ *Ta P= x + y − 3x y x2 + y + = * Xét hàm số f (t ) = ) ( x + y − x2 − 3x y x2 + y + t2 − t + t +1 ( = x2 + y2 ) − ( x2 + y2 ) + = t − t + ,t ∈ [ 1;2] x2 + y2 + t +1  x =  f (t ) = f (1) =  P = 1,   1;2   y = ±1   ¡ , t ∈ [ 1; 2] ⇒  4⇒  x =  m ax f (t ) = f (2) =   m ax P = ,   1;2   y = ±  ¡ hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ơn thi đại học mơn tốn hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ơn thi đại học mơn toán ĐỀ THI THỬ QUỐC GIA THPT ĐỀ 30 Câu (2,0 điểm) Cho hàm số y = mx −1 , ( Cm ) x +m a) Khảo sát biến thiên vẽ đồ thị hàm số m =1 b) Gọi giao điểm hai đường tiệm cận đồ thị ( Cm ) Tiếp tuyến điểm ( Cm ) cắt tiệm cận đứng I tiệm cận ngang A B Tìm m để diện tích tam giác IAB 12 ( cos x + cos x − ) + s inx( − cos x ) = Câu (1,0 điểm) a) Giải phương trình b) Giải phương trình: 24x- - 17.22x- + = e Câu (1,0 điểm) Tính tích phân I = ∫ (x + 1) ln x + x + x ln x + 1 Gọi z1 , z2 hai nghiệm phức phương trình z −4 z +29 =0 Tính Câu (1,0 điểm) a) dx A = z1 + z2 18 3  b) Tìm hệ số chứa x khai triển  x − ÷ , x ≠ x   x y −3 z +6 = = hai mặt phẳng 1 −1 ( P ) : x +2 y −2 z −6 =0 , ( Q ) : x + y −2 z −7 = Viết phương trình mặt cầu ( S ) có tâm thuộc ∆ đồng thời Câu (1,0 điểm) Trong không gian với hệ tọa độ Õ Oxyz , cho đường thẳng ∆: tiếp xúc với hai mặt phẳng ( P ) , ( Q ) Câu (1,0 điểm) Cho hình chóp đáy Góc mặt phẳng ( SAB ) SC Chứng minh AK S ABC có tam giác mặt phẳng vng góc HK ABC vng C , AC = a, AB = 2a , SA ( SBC ) 60o Gọi H , K hình chiếu tính thể tích khối chóp vng góc với A lên SB S ABC Câu (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy , cho C ( 5; ) , đường thẳng d : x − y +11 = qua A song song với BC , đường phân giác AD có phương trình x +y −9 =0 Viết phương trình cạnh tam giác ABC Câu (1,0 điểm) Tìm tất giá trị tham số m x + x −8 ≤ m Câu (1,0 điểm) Cho để bất phương trình sau có nghiệm ( x − x −2 ) , ( x ∈¡ ) a > , b > , c > Chứng minh a2 + 1 + b + + c + ≥ b2 c a hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ơn thi đại học mơn toán ĐÁP ÁN – THANG ĐIỂM (ĐỀ THI THỬ 30) Câu Đáp án (2,0 điểm) a) Khi y= m = 1, Tập xác định Sự biến thiên: Điểm x −1 x +1 D = ¡ \ { − 1} y' = ( x + 1) > 0, ∀ x ≠ − Hàm số đồng biến khoảng Giới hạn tiệm cận: ( −∞ ; − 1) ( − 1; +∞ ) lim y = lim y = ; tiệm cận ngang: y = x → +∞ x→ −∞ lim y = +∞ , lim+ y = −∞ x→ − 1− 0,25 x→ − ; tiệm cận đứng: 0,25 x = − Bảng biến thiên 0,25 Đồ thị: 0,25 b) Với m, đồ thị hàm số có tiệm cận đứng x = − m , tiệm cận ngang y = m , hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ơn thi đại học mơn tốn I ( −m; m )  m2 +  Giả sử M  x0 ; m − ÷∈ ( Cm ) , phương trình tiếp tuyến M ( Cm ) x + m   : m2 + y= x − x0 ) + m − , ( x0 ≠ − m ) ( x + m ( x0 + m ) 0,25 m2 + Tìm  2m +  A  − m; m − ÷, x + m   IB = x0 + m B ( x0 + m; m ) , từ suy 0,25 m2 + IA = , x0 + m 0,25 S IAB = IA IB = m + = 12 ⇔ m = ± 2 (1,0 điểm) Phương trình cho tương đương với ( ) ( 0,25 ) 3s inx + cos x − 2sin x 3s inx + cos x = ⇔ ( − 2sin x )( ) s inx + cos x = 0,25 0,25 π  x = + k 2π   3  s inx = 2π ⇔ ⇔ x = + k 2π  π    cos x − ÷ = 5π    x = + k π , k ∈ ¢  b) 24x- - 17.22x- + = Û 16x 4x - 17 + = Û 42x - 17.4x + 16 = 16 16 é4x = ét = ê t - 17t + 16 = Û ê Û ê4x = 16 Û êt = 16 ê ê ë ë (1,0 điểm) e I =∫ éx = ê êx = ê ë e e x ( x ln x + 1) + ( ln x + 1) d ( x ln x + 1) dx =∫ xdx + ∫ x ln x + x ln x + 1 0,25 0,25 0,25 0,25 hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ơn thi đại học mơn tốn x2 I= e e + ln x ln x +1 = e2 − + ln ( e +1) 2 0,25 0,25 (1,0 điểm) a) ∆ ' = −25 < Phương trình cho có hai nghiệm phức z1 = − 5i, z2 = + 5i Khi z1 = z2 = 29 ⇒ A = 1682 0,5 0,5 9 b) ( −3) C18 (1,0 điểm) Gọi I tâm mặt cầu ( S ) , I ( t;3 + t; −6 − t ) 5t + 12 5t + 5t + 12 5t + d ( I ;( P ) ) = , d ( I ;(Q ) ) = = , theo giả thiết 3 3 0,25 ⇔ t = −2 ⇒ I ( −2;1; −4 ) , R = 0,25 Mặt cầu ( S ) : ( x + ) + ( y − 1) + ( z + ) 0,25 2 0,25 = SA ⊥ BC , AC ⊥ BC ⇒ BC ⊥ ( SAC ) ⇒ BC ⊥ AK (1,0 điểm) Mà AK ⊥ SC ⇒ AK ⊥ ( SBC ) ⇒ AK ⊥ HK S ABC a2 , = AK = AH sin 60o = AH 2 1 1 = 2+ = 2+ 2 AH SA AB SA 4a (1), 1 1 3 = + ⇒ = + ⇒ = + AK SA2 AC AH SA2 a AH 4SA2 4a Từ (1) (2) suy VS ABC a = ⇒ SA = SA2 a2 a3 = 12 0,25 0,25 (2) 0,5 hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ơn thi đại học mơn tốn (1,0 điểm) Tìm A ( 1;6 ) , AC : x + y − 13 = , BC : x − y + = C kẻ đường thẳng vuông góc AD , cắt AD cân A Từ Phương trình đường thẳng thẳng I , cắt AB J 0,5 Khi tam giác CI : x − y + = ⇒ I ( 2;3) , J ( −1;2 ) , ACJ phương trình đường AB : x − y + = 0,5 Điều kiện (1,0 điểm) ( x ≥ Bất phương trình cho tương đương với x3 + 2x2 − x − x−2 Xét hàm số f ( x) ) ≤ m ⇔ ( x3 + x − 8) f ( x ) = ( x + x − 8) đồng biến Bất phương trình [ 2; +∞ ) f ( x ) ≤ 8m ( ( x + x− có nghiệm x∈[ 2;+∞ ) m ≥2 Gọi I tâm mặt cầu ) x + x − ≤ 8m ⇔ 8m ≥ m in f ( x ) = f ( ) = 16 Vậy 0,25 ( S ) , I ( t;3 + t; −6 − t ) ) có f ' ( x ) > 0, ∀x ≥ nên hàm số 0,25 0,25 0,25 hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ơn thi đại học mơn tốn d ( I ;( P ) ) = 5t + 12 5t + , d ( I ;(Q ) ) = 3 ⇔ t = −2 ⇒ I ( −2;1; −4 ) , R = Mặt cầu (1,0 điểm) , theo giả thiết 5t + 12 5t + = 3 ( S ) : ( x + ) + ( y − 1) + ( z + ) = r   r   ur   Oxy u Trong mặt phẳng tọa độ ta chọn  a; ÷, v  b; ÷, w c; ÷  b  c  a r r ur r r ur Từ bất đẳng thức u + v + w ≥ u + v + w suy 1 a + + b2 + + c + ≥ b c a 0,5 1 ( a + b + c ) +  + + ÷ a b c 2  111 1 1  abc  ÷ a + b + c + + +  ÷ abc a b c   ≥ ≥ =3 2 Dấu xảy 0,25 a = b = c = 0,25 ... hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán ĐỀ THI THỬ THPT QUỐC GIA (ĐỀ 16) Câu (2,0 điểm) Cho hàm số y = x − x (1) 1) Khảo sát biến thi? ?n vẽ đồ... , y = ,a = b = 3 24 hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ơn thi đại học mơn toán ĐỀ THI THỬ THPT QUỐC GIA (ĐỀ 14) Câu (2,0 điểm): Cho hàm số: y = 2x +... - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ơn thi đại học mơn tốn …….Hết……… ĐÁP ÁN (ĐỀ 12) Câu Nội dung a.(1,0 điểm) Điểm hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm

Ngày đăng: 30/04/2021, 03:18

TỪ KHÓA LIÊN QUAN

w