1. Trang chủ
  2. » Giáo án - Bài giảng

Bài giảng Tai lieu on thi HSG toan 9

30 421 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 30
Dung lượng 1,46 MB

Nội dung

tuần 1+2 Căn bậc hai - hằng đẳng thức 2 A A = . I, Mục tiêu: * Kiến thức - Kĩ năng: - HS đợc củng cố đ/n, phân biệt cách tìm CBH, CBHSH của một số thực. - Nắm vững và tìm đợc đkxđ của A - áp dụng khai triển HĐT 2 A A= , vận dụng rút gọn đợc biểu thức. * Thái độ: Rèn tính cẩn thận, chính xác. II, Lí thuyết cần nhớ: Căn bậc hai của một số a không âm là một số x sao cho 2 x = a. Số a > 0 có hai CBH là a và a . Số a 0 , a đợc gọi là CBHSH của a. a, b là các số không âm, a < b a < b . A xác định (hay có nghĩa) A 0 (A là một biểu thức đại số). III, Bài tập và h ớng dẫn: Bài tập: Tìm CBH, CBHSH của những số sau: 25; 3; 5; 17; 23, 81, 144; 225; 324; 289. Bài 1. Tính: a, 9 ; 4 25 ; 2 3 ; 2 6 ; 2 ( 6) ; 25 16 ; 9 25 . b, 2 5 ; 2 ( 7) ; 2 3 4 ữ ữ ; 2 3 4 ữ . c, 4 5 ; 4 (2) ; ( Sử dụng HĐT 2 A A= ). Bài 2. So sánh các cặp số sau: a, 10 và 3 ; 10 và 3; 3 5 và 5 3 ; b, 8 1 và 2; -2 5 và -5 2 ; 3 và 16 2 . ( Sử dụng a, b là các số không âm, a < b a < b ). Bài 3 . Tính: a, 2 (3 2)+ ; 2 (2 3) ; ( ) 2 2 3+ ; ( ) 2 3 2 . b, 2 a (a 0); 4 2 a (a < 0) ; 2 2 x ; 6 3 x ; 2 (2 )x ; 2 6 9x x + ( x > 3); 2 2 1x x+ + ; 2 4( 2)a (a < 2); 2 (3 11) . 4 9( 5)x ; 2 2 2 ( 2 )b a ab b+ + (b > 0); 2 2 2 3 4 ( ) ( 0; 0; ) a b a b b a a b bc a > < . c, 2 (2 5)+ ; 2 (3 15) ; 3 2 2+ ; 4 2 3+ ; 11 6 2 ; 28 10 3 . ( Chú ý ĐK của các chữ trong biểu thức ) 1 Bài 4 . Tìm điều kiện xác định của các CTBH sau: a, 3a ; 3a ; 2a ; 5 a ; 3 6a + ; 4 2a ; 2 5a ; 7 3a . b, 2 2 1a ; 4 3 b ; 2 2 1a ; 2 1 8 16b b + ; 3 4 5 a . c, 2 2x ; 2 2x ; 2 2 1x + ; 2 5 1x + . d, 2 2 x ; 2 5 3 x x ; 2 4 4 1x x + ; 2 1 2x x+ . ( Chú ý ĐK để biểu thức dới căn không âm, mẫu khác 0). Bài 5. Tìm x biết: a, 2 16 0x = ; 2 1 9 x = ; 2 16 0x + = ; 2 9 0x + = . b, 5x = ; 1 2 x = ; 5x = ; 3 2 x = ; 2 2 0x = . c, 3 2 x = ; 2 0 3 x + = ; 2 4 x = ; 1 0 2 x = . ( Chú ý sử dụng định nghĩa CBH 2 0x a x x a = = ). Bài 6. Phân tích thành nhân tử: a, 2 5x ; 7 - x (x > 0); 3 + 2x (x < 0). b, 2 3 16x ; x - 9 (x > 0). c, 4 2 3 ; 3 2 2 ; 6 2 5 ; 7 2 6 . ( Rút ra HĐT 2 ( 1) 2 ( 1)a a a+ = + ) Bài 7. Rút gọn: a, ( , 0; ) a b a b a b a b > ; 2 1 ( 0; 1) 1 x x x x x + ; ( Chú ý sử dụng HĐT 2 2 ( )( )a b a b a b = + và HĐT 2 A A= ). b, 4 7 4 3+ + ; 5 3 5 48 10 7 4 3+ + + ; 13 30 2 9 4 2+ + + . c, 2 1 2 1( 1)x x x x x+ + . ( Chú ý sử dụng HĐT 2 ( 1) 2 ( 1)a a a+ = + và HĐT 2 A A= ). Bài 8. Giải các PT sau: 1, 2 4 4 3x x + = ; 2 12 2x = ; x x= ; 2 6 9 3x x + = ; 2, 2 2 1 1x x x + = ; 2 10 25 3x x x + = + . 3, 5 5 1x x + = ( Xét ĐK pt vô nghiệm); 2 2 1 1x x x+ + = + ( áp dụng: 0( 0)A B A B A B = = ). 4, 2 2 9 6 9 0x x x + + = (áp dụng: 0 0 0 A A B B = + = = ) . 5, 2 2 4 4 0x x + = ( ĐK, chuyển vế, bình phơng 2 vế). 2 2 2 2 4 5 4 8 4 9 0x x x x x x + + + + + = ( 1 4 5 3 5VT + + = + ; 2 ( 2) 0 2x x= = = ) 2 2 2 9 6 2 45 30 9 6 9 8x x x x x x + + + = + ( 2 2 2 (3 1) 1 5(3 1) 4 9 (3 1)x x x + + + = ; vt 3; vp 3 x = 1/3) . 2 2 2 2 4 3 3 6 7 2 2x x x x x x + + + = + (đánh giá tơng tự). 6, 2 2 4 5 9 6 1 1x x y y + + + = (x =2; y=1/3); 2 2 6 5 6 10 1y y x x + = (x=3; y=3). tuần 3 Hệ thức giữa cạnh và đờng cao trong tam giác vuông. I, Mục tiêu: - HS đợc củng cố, ghi nhớ hệ thống các hệ thức giữa cạnh và đờng cao trong tam giác vuông. - áp dụng các hệ thức đó vào làm đợc bài thập cơ bản tính toán các độ dài của các yếu tố trong tam giác vuông. II, Nhắc lại lí thuyết: Hệ thức giữa cạnh và đờng cao trong tam giác vuông: 2 , 2 , 2 2 2 . . b a b c a c a b c = = = + 2 , , 2 2 2 . . . 1 1 1 a h b c h b c h b c = = = + III, Bài tập. 1, Tìm x, y trong các hình vẽ sau: 3 B C H A B C H A B C H A B C H A 2, Cho tam giác vuông với các cạnh góc vuông có độ dài là 5 và 7. Kẻ đờng cao ứng với cạnh huyền. Tính đờng cao và hai đoạn thẳng mà nó định ra trên cạnh huyền. 3, Đờng cao của một tam giác vuông chia cạnh huyền thành hai đoạn thẳng có độ dài là 3 và 4.Tính các yếu tố còn lại của tam giác vuông này. 4, Cho một tam giác vuông. Biết tỉ số hai cạnh góc vuônglà 3 : 4 và cạnh hguyền là 125 cm, Tính độ dài các cạnh góc vuông và hình chiếu của các cạnh góc vuông trên cạnh huyền. 5, Cho tam giác ABC vuông tại A, biết 5 6 AB AC = . đờng cao AH = 30 cm. Tính HB, HC? 6, Cho tam giác ABC vuông tại A, kẻ đờng cao AH. Biết hai cạnh góc vuông là 7 và 8. Tính các yếu tố còn lại của tam giác vuông đó. 7, Cho tam giác MNP vuông tại M, kẻ đờng cao MH. Biết hai hình chiếu của hai cạnh góc vuông là 7 và 12. Tính các yếu tố càon lại của tam giác vuông đó. 8, Cho tam giác PRK vuông tại R. Kẻ đờng cao RH, biết đờng cao RH = 5, một hình chiếu là 7.Tính các yếu tố còn lại của tam giác vuông đó. tuần 4 Các phép biến đổi đơn giản biểu thức chứa căn thức bậc hai. I, Mục tiêu: * Kiến thức - Kĩ năng: - HS đợc củng cố các phép biến đổi đơn giản biểu thức chứa căn thức bậc hai . Vận dụng tính toán,rút gọn đợc biểu thức chứa căn thức bậc hai. * Thái độ: Rèn tính cẩn thận, chính xác, linh hoạt. II, Lí thuyết cần nhớ: Căn bậc hai của một số a không âm là một số x sao cho 2 x = a. Số a > 0 có hai CBH là a và a . Số a 0 , a đợc gọi là CBHSH của a. 4 B C H A B C H A B C H A a, b là các số không âm, a < b a < b . A xác định (hay có nghĩa) A 0 (A là một biểu thức đại số). Các công thức biến đổi đơn giản biểu thức chứa căn thức bậc hai.(GV cùng HS nhắc lại). III, Bài tập và h ớng dẫn: Bài 1. Tính. 1, 20 5 ; 12 27 ; 3 2 5 8 2 50+ ; 2 5 80 125 + ; 3 12 27 108 + ; 2 45 80 125+ ; 75 48 300+ ; 8 50 18 + ; 32 50 98 72 + ; 1 2 20 18 6 200 2 + ; 0,09 0,64 0,81 0,01 0,16 0, 25+ + . 2, 10. 40 ; 5. 45 ; 52. 13 ; 2. 162 ; 5 18 . 8 5 ; 8. 18. 98 ; 2 3 . 6 3 2 + ữ ữ . 3, 45.80 ; 75.48 ; 90.6,4 ; 2,5.14, 4 . 4, ( 12 27 3) 3+ ; ( ) 20 45 5 5 + ; 9 1 2 2 2 2 + ữ ữ ; 5, ( ) ( ) 2 1 2 1+ ; 7 4. 4 7+ ; 4 3 2. 4 3 2+ ; 3 5 2 . 3 5 2 + + + . 6, 3 3 ; 2 2 1 ; 3 3 3 + ; 5 3 20 ; 3 2 2 1 ; 5 3 5 2 + ; 2 3 2 3 + ; 3 2 3 2 + . 7, 2 2 2 1 ; 10 2 1 5 ; 15 6 2 5 ; 3 2 2 3 2 3 . 8, 8 2 15+ ; 12 2 35+ ; 8 60+ ; 17 12 2 ; 9 4 2+ ; (Chú ý rút ra HĐT: ( ) 2 2a ab b a b + = ) Bài 2. Rút gọn 1, 3 9 a a ; 2 1 1 a a a + ; 4 4 4 a a a + ; 5 4 1 a a a + ; 5 6 3 a a a + ; 2, 6 24 12 8 3+ + + ; 5 3 29 12 5 ; 6 2 2 12 18 128 + + . 3, a a b b ab a b + + (a > o; b > 0). 4, x y y x xy + (x > 0; y > 0). 5, 1 : a b b a ab a b + ( ) , 0;a b a b> . 6, 1 1 1 1 a a a a a a + + ữ ữ ữ ữ + ( ) 0; 1a a . 7, 1 1 4 4 2 2 x x x + + ( 0; 4x x ). 5 tuần 5+6 rút gọn biểu thức có chứa căn thức bậc hai. I, Mục tiêu: * Kiến thức - Kĩ năng: - HS đợc củng cố các phép biến đổi đơn giản biểu thức chứa căn thức bậc hai . Vận dụng tính toán,rút gọn đợc biểu thức có chứa căn thức bậc hai. * Thái độ: Rèn tính cẩn thận, chính xác, linh hoạt. II, Lí thuyết cần nhớ: * Cách tìm ĐKXĐ của các căn thức, phân thức. - Biểu thức dới căn không âm. - Mẫu thức khác 0. * Phân tích đa thức thành nhân tử thành thạo. * Nắm vững thứ tự thực hiện các phép tính. ( ) [ ] { } . ; ,: , n a ì + và các phép tính về đơn thức, đa thức, phân thức, căn thức. * Vận dụng linh hoạt các HĐT: 2 ( 1) 2 ( 1)a a a + = + ; ( ) 2 2a ab b a b + = ( ) ( ) a a b b a b a ab b = +m ; ( ) ( ) a b a b a b = + . III, Bài tập và h ớng dẫn: * Ph ơng pháp: - Tìm ĐKXĐ(BT dới căn có nghĩa, mẫu 0). - Rút gọn từng phân thức trong biểu thức (Nếu có thể). - Biến đổi, rút gọn cả biểu thức. - Kết luận. * Bài tập. Rút gọn các biểu thức sau: 1 1 1 1 1 1 : 1 1 1 1 1 A x x x x x = + + ữ ữ + + kq: 1 x x 2 1 1 2 : 2 a a a a a A a a a a a + + = ữ ữ + kq: 2 4 2 a a + 3 1 2 1 : 1 1 1 x x A x x x x x x = + ữ ữ ữ ữ + + kq: 1 1 x x x + + 4 1 1 2 : 1 1 1 x A x x x x x = + ữ ữ ữ + kq: 1x x ( ) 5 2 : a a b b b A a b a b a b + = + + + kq: a ab b a b + 6 : 2 a a a a a A b a a b a b a b ab = + ữ ữ ữ ữ + + + + kq: ( ) a b a b a + 7 1 1 1 : 1 1 1 a a a a a A a a a + + = + ữ ữ ữ ữ + 6 8 1 1 8 3 2 : 1 9 1 3 1 3 1 3 1 x x x A x x x x = + ữ ữ ữ ữ + + kq: 3 1 x x x + 9 2 9 3 2 1 5 6 2 3 x x x A x x x x + + = + kq: 1 3 x x + 10 : x x y y x y A xy x y x y + = ữ ữ + + * Các dạng toán có sử dụng kết quả của bài toán rút gọn. 1. Tính giá trị của biểu thức sau khi rút gọn. + Hớng dẫn: - Nếu biếu thức đã rút gọn chứa căn, giá trị của biến chứa căn, ta biến đổi giá trị của biến về dạng HĐT. - Nếu giá trị của biến chứa căn ở mẫu, ta trục căn thức ở mẫu trớc khi thay vào biểu thức. + Ví dụ: Tính 1 A khi 7 4 3x = + . ( ta biến đổi ( ) 2 7 4 3 2 3+ = + rồi hãy thay vào tính). 2. Tìm giá trị của biến để biểu thức đã rút gọn bằng một số. + Hớng dẫn: - Thực chất là giải PT A = a. - Sau khi tìm x phải đối chiếu với ĐK đầu bài để KL. + Ví dụ: Tìm x để 4 5A = . (Ta giải PT: 1 5 x x = . ĐK: 0; 1x x> ). 3. Tìm giá trị của biến để biểu thức đã rút gọn lớn hơn, hoặc bé hơn một số ( một biểu thức). + Hớng dẫn: - Thực chất là giải BPT A > a(P) ( hoặc A < a(P)). - Sau khi tìm x phải đối chiếu với ĐK đầu bài để KL. + Ví dụ: Tìm x để 4 1A > . (Ta giải BPT: 1 5 x x > . ĐK: 0; 1x x> ). 4. Tìm giá trị nguyên của biến để biểu thức đã rút gọn nhận giá trị nguyên. + Hớng dẫn: - Tách phần nguyên, xét ớc. - Sau khi tìm x phải đối chiếu với ĐK đầu bài để KL. + Ví dụ: Tìm giá trị nguyên của biến x để biểu thức 9 A nhận giá trị nguyên. ( Ta có 9 1 4 1 3 3 x A x x + = = . 9 A nguyên 3x là ớc của 4. Sau đó xét ớc của 4, rồi đối chiếu với ĐK để KL). 5. Tìm giá trị lớn nhất, nhỏ nhất của biểu thức đã rút gọn. + Hớng dẫn: Có thể đánh giá bằng nhiều cách, tuỳ bài toán cụ thể mà ta chọn cách nào đó cho phù hợp. 6. So sánh biểu thức đã rút gọn với một số hoặc một biểu thức. + Hớng dẫn: Xét hiệu A - m - Nếu A - m > 0 thì A > m. - Nếu A - m < 0 thì A < m. - Nếu A - m = 0 thì A = m. + Ví dụ: So sánh 4 A với 1. ( Lập hiệu 1 1 x x , rồi xét xem hiệu này > 0; < 0; = 0 KL). 7 tuần 7 + 8 +9 Bài tập tổng hợp. Bài 1. Cho biểu thức: 1 1 3 : 1 1 x x x x x A x x x x x + = ữ ữ ữ ữ + + kq: 1 1 x x + 1, Tìm ĐK XĐ của biểu thức A. 2, Rút gọn A. 3, Tính giá trị của biểu thức A khi 1 6 2 5 x = 4, Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên. 5, Tìm giá trị của x để giá trị biểu thức A bằng -3. 6, Tìm giá trị của x để giá trị biểu thức A nhỏ hơn -1. 7, Tìm giá trị của x để giá trị biểu thức A lớn hơn 2 1x + 8, Tìm giá trị của x để giá trị biểu thức A - 1 Max 9, So sánh A với 1x + Bài 2. Cho biểu thức: 4 1 2 1 : 1 1 1 x x x B x x x = + ữ ữ kq: 3 2 x x 1, Tìm x để biểu thức B xác định. 2, Rút gọn B. 3, Tính giá trị của biểu thức B khi x = 11 6 2 4, Tìm giá trị nguyên của x để biểu thức B nhận giá trị nguyên. 5, Tìm giá trị của x để giá trị biểu thức B bằng -2. 6, Tìm giá trị của x để giá trị biểu thức B âm. 7, Tìm giá trị của x để giá trị biểu thức B nhỏ hơn -2. 8, Tìm giá trị của x để giá trị biểu thức B lớn hơn 1x Bài 3. Cho biểu thức: 3 3 2 1 1 1 1 1 x x x C x x x x x + + = ữ ữ ữ ữ + + + kq: 1x 1, Biểu thức C xác định với những giá trị nào của x? 2, Rút gọn C. 3, Tính giá trị của biểu thức C khi x = 8 2 7 4, Tìm giá trị của x để giá trị biểu thức C bằng -3. 5, Tìm giá trị của x để giá trị biểu thức C lớn hơn 1 3 . 6, Tìm giá trị của x để giá trị biểu thức C nhỏ hơn 2 3x + . 7, Tìm giá trị của x để giá trị biểu thức C nhỏ nhất. 8, So sánh C với 2 x . Bài 4. Cho biểu thức: 2 4 2 3 1 : 4 6 3 2 x x x x x D x x x x x = ữ ữ ữ ữ + kq: 2 3x 1, Tìm ĐK XĐ của biểu thức D. 8 2, Rút gọn D. 3, Tính giá trị của biểu thức D khi x = 13 48 . 4, Tìm giá trị của x để giá trị biểu thức D bằng 1. 5, Tìm giá trị của x để giá trị biểu thức D âm. 6, Tìm giá trị của x để giá trị biểu thức D nhỏ hơn -2 . 7, Tìm giá trị nguyên của x để biểu thức D nhận giá trị nguyên. 8, Tìm giá trị của x để giá trị biểu thức D lớn nhất. 9, Tìm x để D nhỏ hơn 1 x . Bài 5. Cho biểu thức: 1 1 8 3 1 : 1 1 1 1 1 a a a a a E a a a a a + = ữ ữ ữ ữ + kq: 1, Tìm a để biểu thức E có nghĩa. 2, Rút gọn E. 3, Tính giá trị của biểu thức E khi a = 24 8 5 4, Tìm giá trị của a để giá trị biểu thức E bằng -1. 5, Tìm giá trị của a để giá trị biểu thức E dơng. 6, Tìm giá trị của a để giá trị biểu thức E nhỏ hơn 3a + . 7, Tìm giá trị của a để giá trị biểu thức E nhỏ nhất. 8, So sánh E với 1 . Bài 6. Cho biểu thức: 1 1 1 4 1 1 a a F a a a a a + = + ữ ữ ữ + kq: 4a 1, Tìm ĐK XĐ của biểu thức F. 2, Rút gọn F. 3, Tính giá trị của biểu thức F khi a = 6 2 6+ 4, Tìm giá trị của a để giá trị biểu thức F bằng -1. 5, Tìm giá trị của a để giá trị biểu thức E nhỏ hơn 1a . 6, Tìm giá trị của a để giá trị biểu thức E nhỏ nhất. 7, Tìm giá trị của a để F F> . ( 2 1 0 0 4 F F a > < < ). 8, So sánh E với 1 a . Bài 7. Cho biểu thức: 2 2 2 2 1 1 2 2 1 x x x x M x x x + + = ữ ữ + + kq: x x + 1, Tìm x để M tồn tại. 2, Rút gọn M. 3, CMR nếu 0 <x < 1 thì M > 0. ( 1 0; 0 0x x M > > > ) 3, Tính giá trị của biểu thức M khi x = 4/25. 4, Tìm giá trị của x để giá trị biểu thức M bằng -1. 5, Tìm giá trị của x để giá trị biểu thức M âm ; M dơng. 6, Tìm giá trị của x để giá trị biểu thức M lớn hơn -2 . 7, Tìm giá trị nguyên của x để biểu thức M nhận giá trị nguyên. 8, Tìm giá trị của x để giá trị biểu thức M lớn nhất. 9 9, Tìm x để M nhỏ hơn -2x ; M lớn hơn 2 x . 10, Tìm x để M lớn hơn 2 x . Tuần 10 + 11 . Tỉ số lợng giác của góc nhọn. I, Mục tiêu: * Kiến thức - Kĩ năng: - HS đợc củng cố các định nghĩa tỉ số lợng giác của góc nhọn, tính chất tỉ số lợng giác của góc nhọn, các hệ thức giữa cạnh và góc trong tam giác . - Vận dụng tính toán,tìm đợc tỉ số lợng giác của một góc, dựng một góc biết tỉ số lợng giác của góc đó . * Thái độ: Rèn tính cẩn thận, chính xác, linh hoạt. II, Lí thuyết cần nhớ: *Đ/n tỉ số lợng giác của góc nhọn. * T/ c tỉ số lợng giác của góc nhọn: + 0 sin , 1cos < < ; 2 2 sin 1cos + = ; sin : cos tg = ; : sin coscos tg = . + Nếu và là hai góc phụ nhau thì sin cos = ; cottg g = + .cot 1tg g = . * Hệ thức giữa cạnh và góc trong tam giác vuông. III, Bài tập và h ớng dẫn: Bài tập 1: Cho hình vẽ sau, chỉ ra các hệ thức sai. B A C 1, sin BC A AC = ; 2, cos AB C AC = ; 3, AB tgC BC = ; 4, cot BC gA AB = ; 5, .cot 1tgA gB = 6, 0 sin cos(90 )A C= ; 7, 2 2 sin cos 1A C+ = ; 8, sin cos A tgA C = ; 9, sin cot cos A gA A = ; 10, cottgA gC= Bài tập 2: Cho hình vẽ sau, các hệ thức nào sau đây là đúng. B A C H 1, .cosAB BC C = ; 2, .AC AH tgC= ; 3, .AH AB tgB= ; 4, .BH AH tgB= ; 5, .sinAC BC B = ; 6, .AB AC tgC= ; 7, .cosBH AB B = ; 8, cos AB BC C = ; 9, cot AC AB gC = ; 10, AB AC tgC = Bài tập 3: 10 [...]... Bài 8 Hai lớp 9A và 9B có tổng cộng 70 HS nếu chuyển 5 HS từ lớp 9A sang lớp 9B thì số HS ở hai lớp bằng nhau Tính số HS mỗi lớp Bài 9 Hai trờng A, B có 250 HS lớp 9 dự thi vào lớp 10, kết quả có 210 HS đã trúng tuyển Tính riêng tỉ lệ đỗ thì trờng A đạt 80%, trờng B đạt 90 % Hỏi mỗi trờng có bao nhiêu HS lớp 9 dự thi vào lớp 10 Bài 10 Hai vòi nớc cùng chảy vào một bể không có nớc sau 2 giờ 55 phút thì... đờng thẳng song song với nhau chúng cắt nửa đờng tròn lần lợt tạiC và D CMR: MC và ND cùng vuông góc với CD - Tuần 15 +16 15 ÔN TậP CHƯƠNG I: CĂN BậC HAI I, Mục tiêu: * Hệ thống lại các công thức va các dạng bài tập chơngI * Ôn lại bài toán rút gọn biểu thức CTBH và các dạng bài tập có sử dụng KQ bài toán rút gọn 1, GV hệ thống lại các công thức về CTBH 2, Bài tập: a,... (nếu có) Bài 2 Xác định hàm số y = ax + b biết: a, ĐTHS song song với đờng thẳng y = 2x, cắt trục hoành tại diểm có tung độ là 3 b, ĐTHS song song với đờng thẳng y = 3x - 1, đi qua diểm A(2;1) c, ĐTHS đi qua B(-1; 2) và cắt trục tung tại -2 1 2 d, ĐTHS đi qua C( ; -1) và D(1; 2) y = mx + m 2 luôn đi qua 1 điểm 2mx + 1 m Bài 3 Cho hàm số y = 3x + m (m- tham số) CMR: họ đờng thẳng cố định Bài 4 Cho... tải chạy chậm hơn tắc xi 10 km/h 24 PT: ( HD: Cấu trúc bài khác nhau song PT vẫn tơng tự bài trên) Bài 3 Một ca nô xuôi khúc sông dài từ A đến B dài 120 km , rồi ngợc dòng từ B về A hết 9 giờ Tính vận tốc của ca nô biết vận tốc dòng nớc là 3 km/h Xuôi V x + 3 (km/h) S 120 km Ngợc x - 3 (km/h) 120 km T 120 (h) x+3 120 (h) x 3 120 120 + =9 x +3 x 3 Bài 4 Một ca nô xuôi khúc sông dài từ A đến B dài 120... điểm (0;2), vẽ đờng thẳng song song với 0x cắt hai đờng thẳng trên lần lợt tại A, B CMR tam giác AOB vuông Bài 6 Cho hàm số g ( x ) = 3x + b Xác định b nếu: a g (1) = 4 ; b g ( 2) =2 2 ; c g ( 8) = 3 Bài 7 Xác định hàm số bậc nhất biết : f (3) = 7 a f ( 3) = 2 ; b f (5) = 0 ; f (0) = 2 c f (1) = 2 ; f( Tuần 13 2) = 3 ======================================= đờng thẳng song song- đờng thẳng cắt nhau... đi qua hai điểm vừa tìm ta đợc đồ thị hàm số y = ax + b * ĐK để hai đờng thẳng song song ( a = a, ; b b, ), cắt nhau( a a, ), trùng nhau( a = a, ; b = b, ), vuông góc nhau( a.a, = 1 ) III, Bài tập và hớng dẫn: Bài 1 Cho hàm số y = (m - 1)x + m a, m =? Thì hàm số đồng biến? nghịch biến? b, m =? Thì đồ thị hàm số song song với đồ thị hàm số y = 3x? c, m =? Thì đồ thị hàm số đi qua A(-1; 5) d, m =?... mỗi vòi chảy riêng thì đầy bể 23 Bài 11 Hai tổ cùng làm chung một công việc hoàn thành sau 15 giờ nếu tổ một làm trong 5 giờ, tổ hai làm trong 3 giờ thì đợc 30% công việc Hỏi nếu làm riêng thì mỗi tổ hoàn thành trong bao lâu Bài 12 Một thửa ruộng có chu vi 200m nếu tăng chiều dài thêm 5m, giảm chiều rộng đi 5m thì diện tích giảm đi 75 m 2 Tính diện tích thửa ruộng đó Bài 13 Một phòng họp có 360 ghế... vuông tại A AB = 30 cm góc B bằng Biết tg = 5 Tính cạch AB, AC 12 Bài tập 4: Tìm x trong hình vẽ sau: Bài tập 5: Cho tam giác ABC vuông tại A Kẻ đờng cao AH Tính sin B,sin C trong các trờng hợp sau: A, AB = 13 ; BH = 5 B, BH = 3 ; CH = 4 Bài tập 6: Dựng góc nhọn biết : a, sin = 1 ; 2 2 3 4 5 b, cos = ; c, tg = ; d, cot g = Bài tập7: a, Sắp xếp các tỉ số lợng giác sau theo thứ tự từ nhỏ đến lớn... 1 = (25% = ) 4 x 1 x 4 x Bài 6 Một xí nghiệp đóng giày dự định hoàn thành kế hoạch trong 26 ngày Do cải tiến kĩ thuật nên mỗi ngày vợt mức kế hoạch 6000 đôi giày Do đố, chẳng những đã hoàn thành kế hoạch trong 24 ngày mà còn vợt mức 104.000 đôi Tính số giày phải làm theo kế hoạch? PT: x + 104.000 x = 6000 24 26 PT: Bài 7 Trong dịp tổ chức đi tham quan, 180 HS khối lớp 9 đợc tham gia Ngời ta dự tính,... b) h 2 Bài 1 Một mảnh vờn hình chữ nhật có diện tích 400 m 2 Chiều dài hơn chiều rộng 9m Tính Chiều dài, chiều rộng PT: x(x + 9) = 400 Bài 2 Cạnh huyền của một tam giác vuông dài 10 m Hai cạnh góc vuông hơn kém nhau 2 m Tìm các cạnh góc vuông PT: x 2 + ( x + 2) 2 = 102 Bài 3 Hai cạnh của một hình chữ nhật hơn kém nhau 6m Diện tíchcủa nó bằng 40 cm 2 Tính cạnh của HCN đó PT: x(x - 6) = 40 Bài 4 Vờn . đại số). III, Bài tập và h ớng dẫn: Bài tập: Tìm CBH, CBHSH của những số sau: 25; 3; 5; 17; 23, 81, 144; 225; 324; 2 89. Bài 1. Tính: a, 9 ; 4 25 ; 2 3. (nếu có) Bài 2. Xác định hàm số y = ax + b biết: a, ĐTHS song song với đờng thẳng y = 2x, cắt trục hoành tại diểm có tung độ là 3. b, ĐTHS song song với

Ngày đăng: 30/11/2013, 14:11

HÌNH ẢNH LIÊN QUAN

1 ,  Tìm x, y trong các hình vẽ sau: - Bài giảng Tai lieu on thi HSG toan 9
1 Tìm x, y trong các hình vẽ sau: (Trang 3)
7,  Cho tam giác MNP vuông tại M, kẻ đờng cao MH. Biết hai hình chiếu của hai cạnh góc vuông là 7  và 12 - Bài giảng Tai lieu on thi HSG toan 9
7 Cho tam giác MNP vuông tại M, kẻ đờng cao MH. Biết hai hình chiếu của hai cạnh góc vuông là 7 và 12 (Trang 4)
Bài tập 1:  Cho hình vẽ sau, chỉ ra các hệ thức sai. - Bài giảng Tai lieu on thi HSG toan 9
i tập 1: Cho hình vẽ sau, chỉ ra các hệ thức sai (Trang 10)
   Tìm x trong  hình vẽ sau: - Bài giảng Tai lieu on thi HSG toan 9
m x trong hình vẽ sau: (Trang 11)
                     - HS xác định đợc tính đồng biến, nghịch biến, hình dạng, cách vẽ đồ thị HSBN - Bài giảng Tai lieu on thi HSG toan 9
x ác định đợc tính đồng biến, nghịch biến, hình dạng, cách vẽ đồ thị HSBN (Trang 12)
  HS đợc củng cố kĩ năng xác định một đờng tròn; hình tròn, tâm đờng tròn đi qua 3 điểm, các bài toán  CM vuông góc; đoạn thẳng bằng nhau, tính độ dài đoạn thẳng thông qua quan hệ giữa đờng kính và  dây của đờng tròn. - Bài giảng Tai lieu on thi HSG toan 9
c củng cố kĩ năng xác định một đờng tròn; hình tròn, tâm đờng tròn đi qua 3 điểm, các bài toán CM vuông góc; đoạn thẳng bằng nhau, tính độ dài đoạn thẳng thông qua quan hệ giữa đờng kính và dây của đờng tròn (Trang 14)
 a. Tứ giác OBDC là hình gì?  b. Tính số đo  CBDã,  CBOã,    ã BOA . - Bài giảng Tai lieu on thi HSG toan 9
a. Tứ giác OBDC là hình gì? b. Tính số đo CBDã, CBOã, ã BOA (Trang 15)
ÔN TậP HìNH HọC Kì I. - Bài giảng Tai lieu on thi HSG toan 9
ÔN TậP HìNH HọC Kì I (Trang 18)
Hình tròn tâm A bán kính 2 cm  là tập hợp tất cả các điểm cách điểm O một  khoảng 3 cm. - Bài giảng Tai lieu on thi HSG toan 9
Hình tr òn tâm A bán kính 2 cm là tập hợp tất cả các điểm cách điểm O một khoảng 3 cm (Trang 19)
*Điền vào các ô trống trong bảng, biết rằng đờng tròn tâm O có bán kính R,  đờng tròn tâm O’ có bán  kính r và OO’ = d,  R &gt; r. - Bài giảng Tai lieu on thi HSG toan 9
i ền vào các ô trống trong bảng, biết rằng đờng tròn tâm O có bán kính R, đờng tròn tâm O’ có bán kính r và OO’ = d, R &gt; r (Trang 20)
*Ph  ơng pháp :    Lập bảng, tóm  tắt tìm lời giải. - Bài giảng Tai lieu on thi HSG toan 9
h ơng pháp : Lập bảng, tóm tắt tìm lời giải (Trang 24)
   Dạng II1 : Toán có nội dung hình học. - Bài giảng Tai lieu on thi HSG toan 9
ng II1 : Toán có nội dung hình học (Trang 27)
                    Bảng phân tích:  - Bài giảng Tai lieu on thi HSG toan 9
Bảng ph ân tích: (Trang 28)
           - HS đợc củng cố kĩ năng phân tích tìm lời giảI bài toán về đờng tròn củng cố các dạng hình học liên quan đờng tròn nh góc với đờng tròn. - Bài giảng Tai lieu on thi HSG toan 9
c củng cố kĩ năng phân tích tìm lời giảI bài toán về đờng tròn củng cố các dạng hình học liên quan đờng tròn nh góc với đờng tròn (Trang 29)

TỪ KHÓA LIÊN QUAN

w