1. Trang chủ
  2. » Luận Văn - Báo Cáo

Bo de on thi tot nghiep 2010

6 4 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 382 KB

Nội dung

[r]

(1)

A/ Ph ơng trình mũ:

1) 52x-1+5x+1 - 250 =  x =2

2) 54 6 253 4  x

x  x =7/5 3) 33 4 92 2

x

x

4) 22x-3 - 3.2x-2 + =  x =1 vµ x=2

5) )4 2 ( )

5

( x  x  x =1

6) 34 4.32 3 0

   x

x  x =0 vµ x=

4

7) 52x - 7x - 52x.35 + 7x.35 =  x =

2

8)

4 10

9

2

x

x

  

 x =3

9) 2.0,3 3 100

32

x

x x

 x =

1 lg

3 lg

 10) 2x.5x=0,1(10x-1)5  x =

2

11) 3x+3x+1+3x+2=5x+5x+1+5x+2  x =

43 31 log

5

3

12) 2x+2x-1+2x-2=7x+7x-1+7x-2  x =

343 228 log

7

13) 2 1. 2 4 1  x

x  x =

2

14) ( 5 6)x ( 52 6)x 10  x =2 vµ x=-2

15) ( 4 15)x ( 4 15)x (2 2)x  x =2

16) ( 6)sin ( 6)sin

 

x x  x=k víi: kZ

17) 5.32 7.3 1 6.3

 

 

  

x x x

x  x=

5

log3 ;x= log35

18) 22 9.2 22 0  

  

x x x

x  x=-1;x=2

19) 8.3x 3.2x 24 6x

 

  x=1 vµ x=3

20) 3x+4x=5x

21) 5x-2=3-x

22) 2 32 1

 

x x

23) 8x-3.4x-3.2x+1+8=0

24) 2x 3x2 2x 3x2 2x 2x

 

    

25) 9 36.3 3 0  

 

x

x  x=?

26) 25x-2(3-x)5x+2x-7 =

27) 9x+2(x-2)3x+2x-5 =

B/ Bất Ph ơng trình mũ:

1) 4x 15x 13 )4 3x ( )

2

( 2  

  x =? 2) 22x-1 + 22x-3 - 22x-5 >27-x + 25-x - 23-x  x>8/3

3)

84 3

1

  

x

x  0<x<1

4) 4 3 . 31 2.3 . 2 6

  

xx x

x x x x  x =?

5)

1

1 ( 5 2)

)

( 

 

 

x

x

x  x 1

6) x2 2x x2 2x x2 2x 15 34

25       

(2)

7) x xxx

 3.2 41

4

8) 4x0,5  5.32x1 3x0,5 4x

C/ Ph ơng trình loga rit:

1) log2(2x-5)2=2  x=1,5;x=3,5

2) log (2 54) log ( 3) log3( 4)

1

3 x   x  x  x=6

3) log2 x 8logx2 23  x=16, x=0,5

4) lg2 20lg

 

x

x  x=10, x=9 10.

5) log 4log4 2

2  

x

x  x=2

6) log 4log  

x

x  x=1/4, x=1/4

7) log2(x2-3) - log2(6x-10) + =  x=2

8) log3(x2-6) = log3(x-2) +  x=3

9) logx(2x2-3x-4) =  x=4

10) logx+1(x2-3x+1) =  x=4

11) log2(9x+5.3x+1) =  x=.?

12) log2(4x+1)=log2(2x+3-6) + x  x=0

13) log ( 1) log log ( 2) 2log ( 2)

25

5

5 x    x  x  x= 21/2

14) ( 2)log ( 1) 4( 1)log3( 1) 16

2

3      

x x x

x  x=2, x=

81 80

 15)

2 )

1 (

log

3    

x x

x  x

2 3 

 vµ x =

2 29 9

16) x x

 

 )

9 (

log2  x=0 vµ x =3

17) log (9 4.3 2)

3    

x x

x

 x=0 vµ x=log3(3 15)

18 ) log26 log24

22 2.3

log

4 x x x

  x= 1/4

19) 27 3 log9( 3)2

2 log

2 ) (

log xx  x  x  x=5/3

20)

8

2

4( 1) log log (4 )

log x    x x  x=2 vµ x=2 24

21)

1

2

log2 1 

 

x x

x  x=?

22)

2 )

1 (

log

3    

x x

x

23) log7(7-x +6)=1+x  x=?

24) 2log 21 log5 2log5 0

5x   xx   x=5

D/ Bất Ph ơng trình loga rit:

1) lg(x+4)+lg(3x+46)>3 x 6 2)log4x-3x2>1  x3;

3)logx(x3-x2-2x)<3 x2; 4)

6 log

5

1 

x x

 x 

  

 

  

2 ;

5)lg2x-lgx3+20 x 0;10 100; 6)1+log

2(x-1)logx-14 x   

 5/4;2 3;

7)

1 ) ( log

5

    x x

 x=5 vµ x4 2;

8) 0

5

) ( log

2

2

  

x x

x

 x=4 vµ x5; 9)

5 log log

2 5 x  x  x1;

(3)

11) 14

2 24 log

2

16

25 

  

x x

x  x 3;13;4

12)

3 log

log 2

2

1 

 

x x

x  x 4;

13)logx(4+2x)<1 x 2;1 1;00;12;

14)log2x64logx2163 x ;2 1;4

1 13

     

  

 

15)log (2 1)log (2 2)

2

2   

x x

 x 2log25;log23

16) log log 5(log4 3)

2

2xx   x   x 8;16

1 ;  

    

 17) log (3 8)

3

1   x

x

18 )

1

log3  

x x

19) log (3 2) log (3 2)

3

9 xx   xx  x 

          

 

 

 ;1

3 1

;

ÔN TốT NGHIệP NĂM 2008-2009

A/ Ph ơng trình mũ:

1) 52x-1+5x+1 - 250 =  x =2

2) 54 6 253 4  x

x  x =7/5 3) 33 4 92 2

x

x

4) 22x-3 - 3.2x-2 + =  x =1 vµ x=2

11)3x+3x+1+3x+2=5x+5x+1+5x+2  x =

43 31 log

5

12)2x+2x-1+2x-2=7x+7x-1+7x-2  x =

343 228 log

7

2

13) 2 1. 2 4 1  x

x  x =

2

(4)

5) )4 2 ( )

5

(  

x

x  x =1

6) 34 4.32 3 0

   x

x  x =0 vµ x=

4

7) 52x - 7x - 52x.35 + 7x.35 =  x =

2

8)

4 10

9

2

x

x

  

 x =3

9) 2.0,3 100

32

x

x x

 x =

1 lg

3 lg

 10) 2x.5x=0,1(10x-1)5  x =

2

23) 8x-3.4x-3.2x+1+8=0

24) 2x 3x2 2x 3x2 2x 2x

 

    

25) 9 36.3 3 0  

 

x

x  x=?

26) 25x-2(3-x)5x+2x-7 =

27) 9x+2(x-2)3x+2x-5 =

 x =2 vµ x=-2

15) ( 4 15)x ( 4 15)x (2 2)x

 

 x =2

16) ( 6)sin ( 6)sin

 

x x

 x=k víi: kZ

17) 5.32 7.3 1 6.3

 

 

  

x x x

x

 x=

log3 ;x= log35

18)22 9.2 22 0  

  

x x x

x  x=-1;x=2

19) 8.3x 3.2x 246x  x=1 vµ x=3

20) 3x+4x=5x

21) 5x-2=3-x

22)

1 

x x

B/ Bất Ph ơng trình mò:

1) 4x 15x 13 )4 3x ( )

2

( 2  

  x =?

2)22x-1 + 22x-3 - 22x-5 >27-x + 25-x - 23-x x>8/3

3)

84 3

1

  

x

x  0<x<1

4) 4 3 . 31 2.3 . 2 6

  

xx x

x x x x

5)

1

1 ( 5 2)

)

( 

 

 

x

x

x  x 1

6) x2 2x x2 2x x2 2x 15 34

25       

7) x xxx

 3.2 41

4

8) 4x 0,5 5.32x 3x 0,5 4x

 

  

(5)

1) log2(2x-5)2=2  x=1,5;x=3,5 2) ) ( log ) ( log ) 54 ( log 3

3 x   x  x

 x=6

3) log2 x 8logx223  x=16, x=0,5

4)lg2 20lg

 

x

x  x=10, x=910 .

5) log 4log4 2

2xx   x=2 log log

4  

x

x  x=1/4,x=1/4

7)log2(x2-3) - log2(6x-10) + =  x=2

8) log3(x2-6) = log3(x-2) +  x=3

9) logx(2x2-3x-4) =  x=4

10) ) ( log

3    

x x

x

11) log2(9x+5.3x+1) =

12) log2(4x+1)=log2(2x+3-6) + x  x=0

20) 2log5x2  21log5x2log5x1 0  x=5

13) ) ( log ) ( log log ) ( log 25 5

5 x    x  x

 x= 21/2

14) 16 ) ( log ) ( ) ( log )

( 3

3      

x x x

x

 x=2, x=

81 80  15) ) ( log

3    

x x

x  x 3 

 vµ x =

2 29 9

16) x x

 

 )

9 (

log2  x=0 vµ x =3

17) log (9 4.3 2)

3    

x x

x

 x=0 vµ x=log3(3 15)

18 ) log26 log24

22 2.3

log

4 x x x

  x= 1/4

19)

8

2

4( 1) log log (4 )

log x    x x

 x=2 x=2 24

D/ Bất Ph ơng tr×nh loga rit:

1) lg(x+4)+lg(3x+46)>3 x 6 2)log4x-3x2>1  x3;

3)logx(x3-x2-2x)<3 x2; 4)

6 log   x x

 x 

        ;

5)lg2x-lgx3+2

0 x 0;10 100; 6)1+log2(x-1)logx-14 x   

 5/4;2 3;

7) ) ( log     x x

 x=5 vµ x4 2;

8) 0 ) ( log 2     x x x

 x=4 vµ x5; 9)

5 log log

2 5 x  x  x1;

10)logx2.log2x2.log24x>1  x2 2;0,5 1;2 2

11) 14 24 log 16

25 

  

x x

x  x 3;13;4

12) log log 2     x x

x  x 4; 13)log2x64logx2163 x

1;4

2 ;

1 31

          

14)logx(4+2x)<1 x 2;1 1;00;12;

15)log (2 1)log (2 2)

2

2   

x x

 x 2log25;log23

16) log log 5(log4 3)

2

2xx   x   x 8;16

1 ;  

      17) log (3 8)

3

1   x

x

18 )

1

log3  

x x

(6)

19) log (3 2) log (3 2)

2

9 xx   xx  x 

          

 

 

 ;1

3 1

;

Ngày đăng: 27/04/2021, 03:56

w