Từ đây xác định thiết diện của hình chóp cắt bởi mặt phẳng song song với một hoặc hai đường thẳng cho trước theo phương pháp đã biết.. IV.Mặt phẳng //.[r]
(1)TỔNG HỢP MỘT SỐ KINH NGIỆM GIẢI TỐN HÌNH KHƠNG GIAN
I Đường thẳng mặt phẳng
1 Tìm giao tuyến hai mặt phẳng (cách 1) Phương pháp :
- Tìm điểm chung mặt phẳng
- Đường thẳng qua hai điểm chung giao tuyến hai mặt phẳng
Chú ý : Để tìm điểm chung hai mặt phẳng ta thường tìm hai đường thẳng địng phẳng nằm hai mặt phẳng Giao điểm , có hai đường thẳng điểm chung hai mặt phẳng
2 Tìm giao điểm đường thẳng mặt phẳng Phương pháp :
Để tìm giao điểm đường thẳng a mặt phẳng (P) , ta tìm (P) đường thẳng c cắt A điểm A A giao điểm a (P)
Chú ý : Nếu c chưa có sẵn ta chọn mặt phẳng (Q) qua a lấy c giao tuyến (P) (Q)
3 Chứng minh điểm thẳng hàng , chứng minh đường thẳng đồng quy Phương pháp :
- Muốn chứng minh điểm thẳng hàng ta chứng minh điểm điểm chung hai mặt phẳng phân biệt.Khi chúng thẳng hàng giao tuyến hai mặt phẳng
- Muốn chúng minh đường thẳng đồng quy ta chứng minh giao điểm hai đường nàylà điểm chung hai mặt phẳng mà giao tuyến đường thẳng thứ ba
4 Tìm tập hợp giao điểm hai đường thẳng di động Phương pháp :
M giao điểm hai đường thẳng di động d d' Tìm tập hợp điểm M * Phần thuận : Tìm hai mặt phẳng cố định chứa d d' M di đọng giao tuyến cố định hai mặt phẳng
* Giới hạn (nếu có) * Phần đảo
Chú ý : d di động qua điểm cố định A cắt đường thẳng cố định a khơng qua A d ln nằm mặt phẳng cố định (A,a)
5 Thiết diện
Thiết diện hình chóp mặt phẳng (P) đa giác giới hạn giao tuyến (P) với mặt hình chóp
Phương pháp :
Xác định giao tuyến (P) với mặt hình chóp theo bước sau :
(2)- Cho giao tuyến cắt cạnh mặt hình chóp ta điểm chung (P) với mặt khác Từ xác định giao tuyến với mặt
- Tiếp tục giao tuyến khép kín ta thiết diện II.Đường thẳng //
1 Chứng minh hai đường thẳng song song Phương pháp :
Có thể dùng cách sau :
- Chứng minh hai đường thẳng đồng phẳng , áp dụng phương pháp chứng minh song song rong hình học phẳng (như tính chất đường trung bình, định lý đảo định lý Ta-lét )
- Chứng minh hai đường thẳng song song song với đường thẳng thứ - Áp dụng định lý giao tuyến
2 Tìm giao tuyến hai mặt phẳng (cách / dạng 1)
Thiết diện qua đường thẳng song song với đường thẳng cho trước Phương pháp :
* Tìm điểm chung hai mặt phẳng
* Áp dụng định lý giao tuyến để tìm phương giao tuyến (tức chứng minh giao tuyến song song với đường thẳng có)
Giao tuyến sẽd đường thẳng qua điểm chung song song với đường thẳng
Ghi : Ta có cách để tìm giao tuyến :
Cách 1(2 điểm chung) cách (1 điểm chung + phương giao tuyến) ta thường sử dụng phối hợp cách xác định thiết diện hình chóp
3 Tính góc hai đường thẳng a,b chéo Phương pháp :
Tính góc :
Lấy điểm O
Qua O dựng a' // a b' // b
Góc nhọn góc vng tạo a',b' gọi góc a b
Tính góc : Sử dụng tỉ số lượng giác góc tam giác vuông dùng định lý hàm số côsin tam giác thường
III.Đường thẳng // với mặt phẳng
1 Chứng minh đường thẳng d song song với mặt phẳng P Phương pháp :
Ta chứng minh d không nằm (P) song song với đường thẳng a chứa (P)
Ghi : Nếu a khơng có sẵn hình ta chọn mặt phẳng (Q) chứa d lấy a giao tuyến (P) (Q)
(3)Phương pháp :
Nhắc lại hệ : Nếu đường thẳng d song song với mặt phẳng (P) mặt phẳng (Q) chứa d mà cắt (P) cắt (P) theo giao tuyến song song với d
Từ xác định thiết diện hình chóp cắt mặt phẳng song song với hai đường thẳng cho trước theo phương pháp biết
IV.Mặt phẳng //
1 Chứng minh hai mặt phẳng song song Phương pháp :
* Chứng minh mặt phẳng chứa hai đường thẳng cắt song song với hai đường thẳng cắt nằm mặt phẳng
Chú ý :Sử dụng tính chất
ta có cách thứ để chưngs minh đường thẳng a song song với mặt phẳng (P)
2 Tìm giao tuyến hai mặt phẳng (cách / dạng 3)
Thiết diện cắt mặt phẳng song song với mặt phẳng cho trước Phương pháp :
- Tìm phương giao tuyến hai mặt phẳng định lý giao tuyến :"Nếu hai mặt phẳng song song bị cắt mặt phẳng thứ ba hai giao tuyến song song với "
- Ta thường sử dụng định lý để xác định thiết diện hình chóp cắt mặt phẳng song song với mặt phẳng cho trước theo phương pháp biết
- Chú ý : Nhớ tính chất
V.Đường thẳng vng góc với mặt phẳng
1 Chứng minh đường thẳng vng góc với mặt phẳng Chứng minh hai đường thẳng vng góc với Phương pháp :
* Chứng minh đường thẳng a vng góc với mặt phẳng (P)
- Chứng minh a vng góc với hai đường thẳng cắt chứa (P) - Chứng minh a song song với đường thẳng b vuông góc với (P)
* Chứng minh hai đường thẳng vng góc với
- Chứng minh hai đường thẳng vng góc với mặt phẳng chứa đường thẳng
- Nêú hai đường thẳng cắt áp dụng phương pháp chứng minh vng góc học hình học phẳng
(4)Cho khối đa diện (S) , ta tìm thiết diện (S) với mặt phẳng (P) , (P) qua điểm M cho trước vng góc với đường thẳng d cho trước
- Nếu có hai đường thẳng cắt hay chéo a,b vng góc với d :
(P) // a (hay chứa a) (P) // b (hay chứa b)
Phương pháp tìm thiết diện loại trình bày - Dựng mặt phẳng (P) sau :
Dựng hai đường thẳng cắt vng góc với d , có đường thẳng qua M
mặt phẳng xác định hai đường thẳng (P)
Sau xác định thiết diện theo phương pháp học VI.Đường vng góc đường xiên
1 Dựng đường thẳng qua điểm A cho trước vuông góc với mặt phẳng (P) cho trước
Tính khoảng cách từ điểm đến mặt phẳng Phương pháp :
Thực bước sau :
*Chọn (P) đường thẳng d, dựng mặt phẳng (Q) qua A vng góc với d (nên chọn d cho (Q) dễ dựng )
*Xác định đường thẳng
* Dựng AH vng góc với c H
- Đường thẳng AH đường thẳng qua A vng góc với (P) - Độ dài đoạn AH khoảng cách từ A đến (P)
Chú ý :
- Trước chọn d dựng (Q) nên xét xem d (Q) cío sẵn hình vẽ chưa
- Nếu có sẵn đường thẳng m vng góc với (P), cần dựng Ax // m
- Nếu AB // (P) d(A,(P)) = a(B, (P))
- Nếu AB cắt (P) I d(A,(P) : d(B, (P)) = IA : IB Ứng dụng trục đường trịn
Định nghĩa : Đường thẳng vng góc với mặt phẳng chứa đường trịn tâm đường trịn
Ta dùngn tính chất trục đường tròn để chứng minh đường thẳng vng góc với mặt phẳng tính khoảng cách từ điểm đến mặt phẳng
(5)hàng đường thẳng MN trục đường trịn qua ba điểm A,B,C; MN vng góc với mặt phẳng (ABC) tâm O đương tròn qua ba điểm A,B,C Tập hợp hình chiếu điểm cố định đường thẳng di động Ta thường gặp tốn : Tìm tập hợp hình chiếu vng góc M điểm cố định A đường thẳng d di động mặt phẳng (P) cố định qua điểm cố định O
Phương pháp :
- Dựng , theo định lý ba đường vng góc ta có
- Trong mặt phẳng (P), nên M thuộc đường trịn đường kính OH chứa (P)
4 Tìm tập hợp hình chiếu vng góc điểm cố định mặt phẳng di động
Ta thường gặp tốn : Tìm tập hợp hình chiếu vng góc H điểm cố dịnh A mặt phẳng (P) di động chứa đường thẳng d cố định Phương pháp :
- Tìm mặt phẳng (Q) qua A vng góc với d - Tìm
- Chiếu vng góc A lên c, điểm chiếu H H hình chiếu A (P)
Gọi E giao điểm d với (Q) Trong mặt phẳng (Q), nên H thuộc đường tròn đương kính AE
5 Góc đương thẳng mặt phẳng Cách xác định góc a (P) Phương pháp :
- Tìm giao điểm O a với (P) - Chọn điểm dựng
VII Mặt phẳng vng góc
1 Nhị diện góc hai mặt phẳng
Khi giải toán liên quan đến số đo nhị diện hay góc hai mặt phẳng ta thường xác định góc phẳng nhị diện Nếu góc chưa có sẵn hình ta dựng theo phương pháp
Phương pháp :
- Tìm cạnh c nhị diện (giao tuyến hai mặt phẳng (P) (Q) chứa hai mặt nhị diện )
- Dựng đoạn thẳng AB có hai đầu mút hai mặt nhị diện vng góc với mặt nhị diện
(6)Chú ý :
- Nếu có đường thẳng d cắt hai mặt nhị diện A, B vng góc với cạnh c nhị diện ta dựng góc phẳng nhị diện sau ; Chiếu vng góc A ( hay B hay điểm AB ) c thành H Khi
là góc phẳng nhị diện
- Nếu hai đường thẳng a , b vng góc với hai mặt phẳng (P), (Q)
- Nếu hai mặt nhị diện chứa hai tam giác cân MAB NAB có chung đáy AB ( I trung điểm AB ) góc phẳng nhị diện
2 Mặt phân giác nhị diện , cách xác định mặt phân giác Phương pháp :
C1 :
- Tìm góc phẳng nhị diện
- Mặt phân giác nhị diện mặt qua cạnh c nhị diện phân giác Ot góc phẳng xOy
C2 :
- Tìm điểm A cách hai mặt nhị diện
- Mặt phân giác nhị diện mặt qua A cạnh c nhị diện Mặt phẳng vng góc
Chứng minh đường thẳng vng góc với mặt phẳng * Chứng minh hai mặt phẳng vng góc
Phương pháp :
- Cách : Chứng minh mặt phẳng chứa đường thẳng vng góc với mặt phẳng
- Cách : chứng minh góc hai mặt phẳng có số đo 90 * Chứng minh đường thẳng vng góc với mặt phẳng
- Cách : Chứng minh a vng góc với hai đường thẳng cắt chứa (P)
- Cách : Chứng minh a song song với đường thẳng b vng góc với (P) - Cách : Chứng minh a trục đường tròn ngoại tiếp tam giác ABC với A, B, C thuộc (P)
- Cách : Sử dụng định lý : " Nếu a chứa mặt phẳng (Q) vng góc với (P) a vng góc với giao tuyến (P) (Q) a vng góc với (P) " - Cách : Sử dụng định lý : " Nếu a giao tuyến hai mặt phẳng vng góc với (P) a vng góc với (P) "
4 Xác định mặt phẳng chứa đường thẳng vng góc với mặtphẳng Thiết diện
(7)mặt phẳng (Q) chứa a vng góc với (P) Phương pháp :
- Từ điểm a dựng b vng góc với (P) (Q) mặt phẳng (a, b) Chú ý : Nếu có đường thẳng (Q) // d hay (Q) chứa d
Chúc bạn học tốt! Nguyễn Nam Thắng