1. Trang chủ
  2. » Trung học cơ sở - phổ thông

PHUONG PHAP GIAI VA BAI TAP PHUONG TRINH HE PHUONG TRINH DAI SO

8 10 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 174,59 KB

Nội dung

Mọi hệ phương trình bậc nhất ba ẩn đều biến đổi được về dạng tam giác, bằng phương pháp khử dần ẩn số... Tiếp tục cộng hai vế tương ứng của phương trình thứ hai và phương trình t[r]

(1)

Phương trình, Hệ phương trình

1 Phương trình bậc hai ẩn

Phương trình bậc hai ẩn có dạng tổng quát là (1)

trong là hệ số, với điều kiện không đồng thời 0.

Chú ý

a) Khi ta có phương trình Nếu phương trình vơ nghiệm, cịn cặp số nghiệm

b) Khi , phương trình trở thành (2)

Cặp số nghiệm phương trình (1) điểm thuộc đường thẳng (2)

Tổng quát, người ta chứng minh phương trình bậc hai ẩn ln ln có vơ số nghiệm Biểu diễn hình học tập nghiệm phương trình (1) đường thẳng mặt phẳng tọa độ Oxy. 2 Hệ phương trình bậc hai ẩn

Hệ phương trình bậc hai ẩn có dạng tổng quát là

(3)

trong là hai ẩn số; chữ số lại hệ số Nếu cặp số đồng thời nghiệm hai phương trình hệ được gọi nghiệm hệ phương trình (3) Giải hệ phương trình (3) tìm tập nghiệm nó.

(2)

,

trong ba ẩn; hệ số không đồng thời Hệ phương trình bậc ba ẩn có dạng tổng qt là

(4)

Trong x, y, z ba ẩn ; chữ số lại hệ số Mỗi ba số nghiệm ba phương trình hệ gọi nghiệm hệ phương trình (4).

Chẳng hạn, nghiệm hệ phương trình

(5) Còn nghiệm hệ phương trình

(6)

Hệ phương trình (5) có dạng đặc biệt, gọi hệ phương trình dạng đa giác

Việc giải hệ phương trình dạng đơn giản Từ phương trình cuối tính thay vào phương trình thứ

ta tính cuối thay tính vào phương trình đấu tính

Mọi hệ phương trình bậc ba ẩn biến đổi dạng tam giác, phương pháp khử dần ẩn số Chẳng hạn, sau cách giải hệ phương trình (6)

Giải:Nhân hai vế phương trình thứ hệ (6) với -2 cộng vào phương trình thứ hai theo vế tương ứng, nhân hai vế phương trình thứ với cộng vào phương trình thứ ba theo vế tương ứng hệ phương trình (đã khử hai phương trình cuối)

(3)

Tiếp tục cộng hai vế tương ứng phương trình thứ hai phương trình thứ ba hệ nhận được, ta hệ phương trình tương đương dạng tam giác

Ta dễ dàng giải

Vậy nghiệm phương trình

Một số tập B 1

Phương trình có tập nghiệm là:

A B

C D

Baì 2

Tìm tập nghiệm phương trình:

A B

C D

Baì 3

(4)

A B

C D

Baì 4

Cho bất phương trình: Tìm m để bất phương trình

có nghiệm.

A B

C D

Baì 5

Cho phương trình :

Xác định m để phương trình có nghiệm phân biệt lập thành cấp số cộng.

A B

C D

B 6

Phương trình có tập xác định là: A

(5)

D

Baì 7

Số nghiệm phương trình là: A B

C D

Baì 8

Nghiệm phương trình: là:

A B

C D

B 9

Phương trình có số nghiệm là: A

nghiệm

B nghiệm C

nghiệm

D nghiệm Baì 10

(6)

A

B

C A, B đúng D Vơ nghiệm

B 11

Tìm tập nghiệm phương trình:

A B

C D

B 12

Tính tổng lũy thừa bậc bốn hai nghiệm phương trình:

A B

C D

Baì 13

Cho bất phương trình: Tìm m để bất phương trình có nghiệm.

A B

C D

(7)

Cho phương trình :

Xác định m để phương trình có nghiệm phân biệt lập thành cấp số cộng.

A B

C D

B 15

Phương trình có tập xác định là: A

B C D

Baì 17

Số nghiệm phương trình là: A B

C D Baì 18

Nghiệm phương trình: là:

A B

(8)

B 19

Phương trình có số nghiệm là: A

nghiệm

B nghiệm C

nghiệm

D nghiệm

Baì 20

Nghiệm hệ phương trình:

A

B

cấp số cộng

Ngày đăng: 11/04/2021, 18:37

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w