1. Trang chủ
  2. » Cao đẳng - Đại học

trường thcs hoàng xuân hãn

5 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 161,02 KB

Nội dung

Givenarectangle ABCD with AB =4and BC =6andasquare AEFG oflength 13that sharesavertex A withtherectangle ABCD. Supposethissquare,onthesameplaneas[r]

(1)

2010WorldMathematicsTeamChampionship AdvancedLevel

Team Round·Problems

Fig.1

1.GiventwononemptysetsAandB.IntheVenn'sdiagramshowninFig.1, defineA※Btobetheshadedarea.If

M={x|y= -x2+3x+10},andN={y|y=3x-1},

thenM※N=

2.Givenfunctionsf(x)=x2-3andg(x)=m(x-1).Ifforanyx

0∈[-3,3]thereexists

x′∈[-3,3]suchthatg(x′)=f(x0),thenthevaluerangefortherealnumbermis

3.Ifthesolutionsetofxfortheinequalitymx>nis(-∞,3),thenthesolutionsetofxforthe inequality(m-n)x+m+n>0is

4.Use[x]torepresentthelargestintegerthatisnotlargerthanx.Ifarealnumberrsatisfies

[r+101]+[r+102]+…+[r+109]=122,thenthevalueof[10r]is

5.Givenaquadraticequationx2-xsinθ+sinθ-5=0intermsofx.Thenthisequation'slargest

rootis anditssmallestrootis

6.Ifthethreestraightlines2x-y+1=0,x+y+2=0,x+ay=0cannotformatriangle,then

amusttakeonvaluesof

7.Supposethatx,yandzarerealnumbersthatsatisfyx+2y+3z=1andyz+zx+xy=-1, thenthevaluerangeforx+y+zis

8.Supposea,b,c∈R+,a+b+c=1andM= 3a+1+ 3b+1+ 3c+1,thentheintegerpartof

Mis

9.Givenasequence{an}wherea1=3 ,a2=5andan+2a2n=a3n+1.Thentheformulafor

an=

10.Therootoftheequationlogm(x2+1+x)+logm(x2+2+x)=1

2logm2(m>0andm≠1)isx

=

11.Givena=(m+2,n),b=(m-2,n-4),a⊥band|a|+|b|=8,thenm+n= 12.Theareaof△ABCis2.LetAD,BEandCFbethethreemediansintersectingatpointG,

andpointsH,IandJbeonthesethreemedians,respectively,suchthatAH∶HD=1∶1,

BI∶IE=1∶2,andCJ∶JF=1∶3,thentheareaof△HIJis

13.Supposea+b+c=12andab+bc+ca=45wherea,bandcarepositiverealnumbers,then themaximumpossiblevalueofabcis

14.SupposeC:x2+(y-1)2=r2andy=sinxhaveonlyoneintersectionandthexcoordinateof

(2)

15.TheareaoftheregiononthexyplaneoverwhichPranges,

P∈ (x,y) (x-cos4θ)2+ỉy-12sinθ

è

ư ø

2

=1,θ∈R

{ },is

16.Suppose[r(cosθ+isinθ)]10=243(1- 3)i-243(1+ 3)

64(1+i) Ifr>0,0<θ<π3, thenr= ,θ=

17.Fromapoint(5, 2)insidetheellipsex9 +2 y5 =12 ,drawtwochordsABandCDwithA,

B,CandDontheellipse.FromAandB,drawtwotangentssothattheyintersectatE

FromCandDdrawanothertwotangentssothattheyintersectatF Thenthelinearequa-tionforthelinethatconnectsEandFis

18.Foreachn=1,2,3,…,straightliney=x+n+1intersectstheparabolax2=1

8y-321 ỉ è

ư øat twopoints.Let|AnBn|denotethelengthofthechordconnectingtheintersecting2pointsfor

eachn.Definean=

n|AnBn|2.LetSnbethesumofthefirstntermsinthesequence{an}

ThenS2010=

19.Consideracubewithedgelengthathatishangingaboveaplaneα.Parallellightraysthatare perpendiculartoplaneαprojectthiscubeontoαtoformashadowregionandthencirclesare drawninsidethatprojectionregion.Thenthediameterofthelargestcircleis

20.Lettheradiusof☉Abe2andpointPisoutsideof☉A.Also,letstraightlinePMtangentcircle ☉AatpointMandthatcos∠MPA=23.NowifweusethelinesegmentPAastheaxisandrotate thelinesegmentPMand☉AaroundPA foronerevolution.Thenthevolumeofthepartofthesol-idformedbyrotatingPAthatisoutsideofthesphereformedby☉Ais

Team RoundAnswers 1.[-2,-1]∪(5,+∞)

2.æè-∞,-32ùû∪[3,+∞) 3.(2,+∞)

4.135

5.1+ 172 ;-3 6.±1or-12 7.3-3

4 ,3+3 34 é

ë

ù û

8.4 9.3· 5ỉ3

è ø

2n-1-1

10.0

11.2 12.1948 13.54 14.-4 15.4π

16.26;12π,1760π

17.95x+52y=1 18.20102011

(3)

RelayRound·Problems FirstRound

1A Solvetheinequalityfora,2a2+(4 2-7)a+(3-2 2)<0 1B LetA=theanswerpassedfromyourteammate.Solvetheinequality

2loga(x-2)>loga2+loga(6-x)usingvalueofafromA SecondRound

2A Giveasequence{an}suchthata1=1and2an+1+an=2n+1.Findan

2B LetA=theanswerpassedfromyourteammate.Supposethehypotenuseofarighttriangle

hasalengthof5andthecosineofoneofitsanglesislimn→+∞2An-1.Ifweuseoneofsidesofthis

righttriangleasaxisandrotatethetrianglearoundthisaxistogetasolidofrevolution,find thelargestvolumeofallsuchsolids

ThirdRound

3A Supposethatthedirectrixofaparabolay2=2px(p>0)istangenttothecircle

x2+y2-4x+2y-4=0.Findp.

3B LetA=theanswerpassedfromyourteammate.Abaghasxblackand(15-x)whiteballs

thatareidenticalineverywayexceptfortheircolors.Supposethatonetakesout(A+1)balls randomly.UseP(x)torepresenttheprobabilityofgettingAblackballsand1whiteball

ThenP(x)hasthelargestvaluewhenx= RelayRoundAnswers FirstRound

1A 3-2 2,1

2 ỉ

è

ư ø

1B (2,4)

SecondRound

2A

5[2n-(-1)n·2-n]

2B.16π.

ThirdRound

(4)

IndividualRound·Problems FirstRound

1.Iff(x)= 11+2lgx+1+41lgx+1+81lgx,thenf(x)+f x1

ỉ è

ư

ø=

2.Whenx→+∞,thegraphoffunctionf(x)=x3(3xx+1 isapproachingthegraphofwhichof-5)

thefollowingfunction ? Answer:

(A)y=x.  (B)y=x3.  (C)y=x 1   (D)y=x2 3.Thesolutionto2|x|-2|x|=22isx= .

4.Thenumberofnon-emptysubsetsofsetA={x x|x2|-2<0-30 ,x∈Z}is whereZis thesetofintegers

SecondRound

5.IfM=7×10753+2×10573+10372+5×10357+4×102+2×10,thenthesumoftheelementsin

{3,4,5,6,8,9,10,11}thatarefactorsofMis

6.Supposethatrealnumbersxandysatisfyx2+y2=2,andx+ 3y≥ 6.Thenthemaximum

valueofx+yis

7.Ifasequence{an}isdefinedasa1=2,a2=5andan+1=an+an+2,thena2010=

8.If{x|-1≤x≤3}isthesolutionsetforinequality -x2+2x+3-a(x-4)>0,thenthe

valuerangeforais

ThirdRound

9.Ifxandyarepositiverealnumbersthatsatisfy(1+x2-x+1)(1+y2-y+1)=2,

thenxy=

10.TheedgesAA1,ABandADinaparallelepipedABCD-A1B1C1D1havelengthsof2,3and

4,respectively.Ifbothoftheiranglesare60°,thenthelengthofthisparallelepiped'sdiagonal

AC1is

11.Defineasequence{an}tobea1=2,an=4

5an-1whenn≥2.StartingfrompointM,point

Mnmovesrightbya1unitsarrivingatpointM1.Thenthepointmakesaleftturnfor90°and

movesforwardbya2unitsarrivingatpointM2.Makeanother90°leftturnandmoveforward

bya3unitsarrivingatpointM3.Keepingthisprocess,thepointMnapproachestoafixed

pointNinfinitely.UseMasthecoordinateoriginandthestraightlinethroughMtoward rightas

thexaxistoformarectangularCartesiancoordinate,thenthecoordinateofthepointNis

12.Suppose∠B=15°and ∠C=30°in △ABC.LetDbeapointonBCsothatADistheangle bisectorfor∠A.IfAD→=λAB→+μAC→(λ,μ∈R),thenthevalueofλ

(5)

FourthRound

13.Foranyrealnumberθ,movethestraightlinel:xcosθ+ysinθ=2andformaregion.Thearea oftheregionis

14.GivenarectangleABCD withAB=4andBC=6andasquareAEFGoflength 13that sharesavertexAwiththerectangleABCD.Supposethissquare,onthesameplaneas

ABCD,rotatesaroundpointAforonerevolution,thenthevaluerangeforthelengthCEis

FifthRound

Fig.1

15.AsinFig.1ontheright,theedgeofthiscubeisa,pointMisonCDso thatCM=a4,andpointNisonGHsothatGN=23a.Supposeaplanethat passesthroughpointsB,MandNanddividesthiscubeintoupperand lowerparts,thenthevolumeofthelowerpartis

16.Giventhefollowingconditions:straightlinesl1:x+3y=2,l2:y=kx(k> 0),andellipseC:x2+4y2=4.l

2intersectsCatpointsMandNwhereMis

inQuadrantⅢ.Supposethatl1intersectsl2atpointP,Oistheorigin,and|MO|,|OP|and

|PN|formanarithmeticsequence.Thenk=

IndividualRoundAnswers FirstRound

1.3 2.(A) 3.±5 4.63 SecondRound 5.39 6.2 7.-3

8.(0,+∞) ThirdRound 9.1 10.55 11.ỉ5041,4041

è ø

12.6- 22

FourthRound 13.4π

14.[13,3 13] FifthRound 15.13a3.

Ngày đăng: 09/04/2021, 21:59

w