1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Rèn luyện tính độc đáo của tư duy cho học sinh thông qua dạy chuyên đề “giải toán hình học không gian bằng phương pháp tọa độ

94 13 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 94
Dung lượng 2,38 MB

Nội dung

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC GIÁO DỤC ĐINH THỊ VÂN RÈN LUYỆN TÍNH ĐỘC ĐÁO CỦA TƯ DUY CHO HỌC SINH THÔNG QUA DẠY CHUYÊN ĐỀ “GIẢI TỐN HÌNH HỌC KHƠNG GIAN BẰNG PHƯƠNG PHÁP TỌA ĐỘ” LUẬN VĂN THẠC SĨ SƯ PHẠM TOÁN HỌC HÀ NỘI – 2020 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC GIÁO DỤC ĐINH THỊ VÂN RÈN LUYỆN TÍNH ĐỘC ĐÁO CỦA TƯ DUY CHO HỌC SINH THÔNG QUA DẠY CHUN ĐỀ‘‘GIẢI TỐN HÌNH HỌC KHƠNG GIAN BẰNG PHƯƠNG PHÁP TỌA ĐỘ” LUẬN VĂN THẠC SĨ SƯ PHẠM TOÁN HỌC CHUYÊN NGÀNH: LÝ LUẬN VÀ PHƯƠNG PHÁP DẠY HỌC BỘ MƠN TỐN HỌC Mã số: 8.14.02.09.01 Người hướng dẫn khoa học: PGS TS Nguyễn Thị Hồng Minh HÀ NỘI – 2020 LỜI CẢM ƠN Trong suốt trình làm luận văn, nỗ lực thân, tác giả nhận bảo, giúp đỡ từ nhiều phía thầy giáo, gia đình đồng nghiệp Tác giả xin trân trọng cảm ơn Ban Giám Hiệu trường Đại Học Giáo Dục – Đại Học Quốc Gia Hà Nội thầy cô giảng dạy trường ln nhiệt tình giúp đỡ tạo điều kiện cho tơi q trình học tập nghiên cứu hồn thành luận văn Bằng lịng trân quý biết ơn sâu sắc, tác giả xin chân thành cảm ơn PGS TS Nguyễn Thị Hồng Minh người trực tiếp hướng dẫn, truyền thụ kiến thức, định hướng nghiên cứu nhiệt tình giúp đỡ tơi hồn thành luận văn Tác giả xin gửi lời cám ơn chân thành đến Ban Giám Hiệu, thầy cô giáo em học sinh trường Trung học phổ thông Mỹ Đức B tạo nhiều điều kiện thuận lợi giúp tơi hồn thành luận văn Cuối xin dành lời cám ơn đến gia đình, người thân học viên lớp Lý luận phương pháp dạy học mơn tốn QH 2018-S trường Đại học Giáo Dục cổ vũ, động viên đóng góp ý kiến cho tơi Mặc dù có nhiều cố gắng chắn luận văn cịn nhiều sai sót Kính mong đóng góp ý kiến thầy cơ, đồng nghiệp để luận văn xác đầy đủ Tác giả xin trân trọng cảm ơn ! Hà Nội, ngày…tháng….năm 2020 Tác giả Đinh Thị Vân i DANH MỤC CÁC BẢNG Bảng 1.1 Kết làm ví dụ 1.1 học sinh trung bình học sinh yếu 14 Bảng 1.2 Kết làm ví dụ 1.2 học sinh khá, giỏi 15 Bảng 1.3 Kết làm ví dụ 1.3 học sinh khá, giỏi 16 Bảng 3.1 Kết chọn lớp thực nghiệm đối chứng 57 Bảng 3.2 Đặc điểm học sinh lớp thực nghiệm lớp đối chứng 57 Bảng 3.3 Thống kê điểm kiểm tra tiết học sinh 66 Bảng 3.4 Thống kê mô tả điểm kiểm tra tiết học sinh 66 Bảng 3.6 Phân loại kiểm tra tiết lớp 12A1 12A3 67 ii DANH MỤC CÁC BIỂU ĐỒ Biểu đồ 1.1 Kết làm ví dụ 1.1 học sinh trung bình, yếu 14 Biểu đồ 1.2 Nhận thức giáo viên vai trò việc quan tâm rèn luyện tư sáng tạo cho học sinh 19 Biểu đồ 1.3 Thực trạng nhận thức giáo viên vai trò loại tư 20 Biểu đồ 1.4: Nhận thức học sinh giải tốn hình học khơng gian 20 Biểu đồ 3.1 Đường tích lũy biểu diễn kết kiểm tra tiết 67 Biểu đồ 3.2 Kết kiểm tra tiết lớp 12A1 12A3 68 iii MỤC LỤC LỜI CẢM ƠN i DANH MỤC CÁC BẢNG ii DANH MỤC CÁC BIỂU ĐỒ iii MỞ ĐẦU 1 Lý chọn đề tài Mục đích nghiên cứu .2 Nhiệm vụ nghiên cứu Phạm vi nghiên cứu .2 Đối tượng khách thể nghiên cứu đề tài Giả thiết nghiên cứu .3 Phương pháp nghiên cứu .3 Cấu trúc luận văn CHƯƠNG CƠ SỞ LÝ LUẬN VÀ THỰC TIỄN 1.1 Tư 1.1.1 Một số khái niệm tư 1.1.2 Quá trình tư 1.1.3 Vai trò tư 1.2 Tư sáng tạo 1.2.1 Các quan niệm tư sáng tạo 1.2.2 Một số thành tố đặc trưng tư sáng tạo 1.3 Tổng quan số kết nghiên cứu dạy học phát triển tư sáng tạo học sinh 11 1.3.1 Vấn đề tư sáng tạo Việt Nam .11 1.3.2 Vấn đề tư sáng tạo giới .12 1.4 Thực trạng vấn đề rèn luyện tư sáng tạo cho học sinh giảng dạy mơn tốn trường trung học phổ thông 13 iv 1.4.1 Một số biểu tư sáng tạo học sinh bậc Trung học phổ thông học tập .13 1.4.2 Vấn đề phát triển tư sáng tạo dạy học mơn Tốn cho học sinh Trung học phổ thơng 16 1.5 Khảo sát thực trạng tư sáng tạo việc phát triển tư sáng tạo cuả học sinh dạy học .18 1.5.1 Mục đích khảo sát 18 1.5.2 Phương pháp khảo sát 18 1.5.3 Đối tượng khảo sát .18 1.5.4 Nội dung khảo sát 18 1.5.5 Kết khảo sát 19 CHƯƠNG MỘT SỐ VẤN ĐỀ TRONG DẠY HỌC CHUN ĐỀ GIẢI TỐN HÌNH HỌC KHƠNG GIAN BẰNG PHƯƠNG PHÁP TỌA ĐỘ THEO ĐỊNH HƯỚNG PHÁT TRIỂN TƯ DUY SÁNG TẠO CHO HỌC SINH TRUNG HỌC PHỔ THÔNG 22 2.1 Một số biện pháp dạy học nhằm phát triển tư sáng tạo cho học sinh Trung học phổ thông 22 2.1.1 Phương pháp dạy học nhóm 22 2.1.2 Phương pháp lấy học sinh làm trung tâm 26 2.1.3 Phương pháp kỹ thuật tạo ý tưởng 31 2.2 Vận dụng phương pháp tọa độ hóa tập hình học khơng gian để phát triển tư sáng tạo cho học sinh 34 2.2.1 Định hướng lý thuyết áp dụng phương pháp giảng dạy 34 2.2.2 Một số tốn hình học khơng gian giải phương pháp tọa độ 37 CHƯƠNG THỰC NGHIỆM SƯ PHẠM 56 3.1 Mục đích thực nghiệm sư phạm .56 3.2 Nhiệm vụ thực nghiệm sư phạm 56 3.3 Nội dung thực nghiệm sư phạm .56 v 3.3.1 Đối tượng thực nghiệm sư phạm 56 3.3.2 Phương pháp thực nghiệm sư phạm .57 3.3.3 Giáo án thực nghiệm .58 3.4 Kết thực nghiệm sư phạm 65 3.4.1 Phương pháp xử lí đánh giá kết thực nghiệm sư phạm 65 3.4.2 Kết thực nghiệm sư phạm 65 KẾT LUẬN 70 TÀI LIỆU THAM KHẢO 71 PHỤ LỤC vi MỞ ĐẦU Lý chọn đề tài Ban chấp hành Trung ương Đảng khóa XI hướng dẫn đạo: Cốt lõi phát triển giáo dục đào tạo nâng cao dân trí, đào tạo nhân lực, bồi dưỡng nhân tài Chuyển từ việc chủ yếu dạy kiến thức sang phát triển lực phẩm chất cho học sinh Chương trình giáo dục nhằm cung cấp cho em học sinh tri thức phổ thơng tảng, tồn diện thực cần thiết, để học sinh có khả tự học, đạt phẩm chất lực thiết yếu, đặc biệt lực chung Giúp em hiểu rõ lực thân, thấy rõ sở trường để tự tin tham gia sống lao động tiếp tục học lên trường đại học, cao đẳng, trung cấp Trong chương trình giáo dục bậc trung học phổ thơng, mơn học có vai trị quan trọng mơn Tốn Tốn học giúp em phát triển trí tuệ, cung cấp cho em kiến thức bản, cần thiết để em dễ dàng học tập môn học khác giải số vấn đề thực tiễn Đổi giáo dục, trước hết phải đổi việc kiểm tra đánh giá học sinh, đặc biệt đổi phương pháp dạy học, đổi sách giáo khoa, đổi chương trình dạy học tất cấp học phổ thông cần thiết cấp bách nhằm đưa phương pháp dạy học hiệu hơn, tích cực khơi dậy lực học tập tất đối tượng học sinh Trong q trình tham gia cơng tác giảng dạy, tác giả nhận thấy nhiều học sinh không dễ dàng gặp tốn hình học khơng gian đề thi Vì chúng tơi chọn đề tài: “Rèn luyện tính độc đáo tư cho học sinh thơng qua dạy chun đề giải tốn hình học khơng gian phương pháp tọa độ” Qua đó, giúp em tiếp cận hình học khơng gian cách dễ dàng hơn, nhanh chóng định hướng tìm lời giải toán giúp đối tượng học sinh trung bình khơng cịn tâm lí thấy tốn hình học khơng gian bỏ qua, mà dần hình thành kỹ giải tốn hình học khơng gian phương pháp tọa độ hóa Mục đích nghiên cứu Mục đích nghiên cứu đề tài nhằm tìm phương pháp để hình thành, rèn luyện phát triển tính độc đáo tư sáng tạo cho học sinh việc dạy học chuyên đề “Giải tốn hình học khơng gian phương pháp tọa độ” Nhiệm vụ nghiên cứu Chúng tiến hành nghiên cứu đề tài nhằm thực số nhiệm vụ sau: - Khái niệm tư sáng tạo làm rõ - Quá trình sáng tạo, lực tư sáng tạo học sinh Trung học phổ thơng nghiên cứu Qua đề xuất số biện pháp sư phạm cần thực nhằm phát triển tư sáng tạo cho học sinh - Lựa chọn dạng tốn hình học khơng gian có tác dụng rèn luyện tư sáng tạo cho học sinh - Tiến hành làm thực nghiệm sư phạm nhằm đánh giá tính khả thi tính hiệu biện pháp đề xuất Phạm vi nghiên cứu - Nghiên cứu tư sáng tạo học sinh lớp 12 mơn hình học 11 - Nghiên cứu dạng tốn hình học khơng gian giải chúng phương pháp tọa độ - Thực nghiệm sư phạm trường: Trung học phổ thông Mỹ Đức B, huyện Mỹ Đức, thành phố Hà Nội năm học 2018 -2019 Đối tượng khách thể nghiên cứu đề tài Đối tượng nghiên cứu: Nội dung kiến thức, mục tiêu cần đạt học sinh tiến trình dạy học chun đề “Giải tốn hình học khơng gian 16 Nguyễn Cảnh Tồn (1997), Phương pháp luận vật biện chứng với việc học, dạy, nghiên cứu Toán học, NXB Đại học Quốc gia Hà Nội 17 Nguyễn Cảnh Toàn (1992), Tập cho học sinh giỏi Toán làm quen dần với nghiên cứu toán học, NXB Giáo dục 18 Trần Thúc Trình, Thái Sinh (1995), Một số vấn đề rèn luyện tư sáng tạo việc dạy mơn Hình học, NXB Giáo dục 72 PHỤ LỤC PHỤ LỤC PHIẾU HỎI HỌC SINH Họ tên…………………………………………………………………… Lớp……………… Trường : ……………………………………………… Để góp phần thu thập thông tin cần thiết cho việc nghiên cứu nâng cao chất lượng dạy học môn Tốn trường Trung học phổ thơng, em vui lịng cho biết ý kiến vấn đề I Trong trình làm thi kiểm tra, em thường mắc phải khó khăn, sai lầm nào? (tích dấu X vào mức độ lựa chọn) Rất thường xuyên Thỉnh thoảng Thường xuyên Không bao giở Câu hỏi STT Mức độ lựa chọn 1 Do tính tốn sai Do nhớ định lý, định nghĩa, cơng thức chưa xác Do khơng xét hết trường hợp xảy tốn Không biết đâu, không nắm kiến thức Không nắm vững chất vấn đề toán đặt Hạn chế việc vận dụng liên tưởng kiến thức liên quan để giải tốn Khơng nắm dạng tập Ngoài bổ sung thêm ý kiến khó khăn sai lầm mà thân hay mắc phải? ………………………………………………………………………………… ………………………………………………………………………………… ………………………………………………………………………………… ……… II Các em cho biết ý kiến đánh giá qua câu hỏi sau (tích dấu X vào lựa chọn mình): III Trong q trình học tốn hình học khơng gian, em cho biết ý kiến cá nhân câu hỏi sau : Điều làm em thấy thú vị nhất? Khó khăn em gặp phải gì? Để nhớ nội dung kiến thức học, em có thường sử dụng đồ tư không? Nếu không, em nêu vắn tắt cách học em: Trong q trình học tốn, theo em có cần thiết trao đổi, thảo luận với nhóm bạn (học nhóm) để tăng hiệu học tập khơng? A Rất cần thiết B Cần thiết C Không cần thiết Nếu có, em cho biết ưu điểm nhược điểm học nhóm: - Ưu điểm: - Nhược điểm: Một mục tiêu giáo dục mơn Tốn trường phổ thơng rèn luyện phát triển tư Liệu em có biết tư sáng tạo hay khơng? A Biết rõ quan tâm B Biết rõ khơng quan tâm C Có nghe chưa thực hiểu D Chưa nghe thấy Nếu em biết tư sáng tạo cho biết quan điểm tư sáng tạo xác: A Là sáng tạo mới, loại bỏ cũ B Tư sáng tạo tạo ý tưởng mới, độc đáo không loại bỏ cũ C Tư sáng tạo nhận thức cảm tính PHỤ LỤC PHIẾU XIN Ý KIẾN GIÁO VIÊN Kính thưa q Thầy, Cơ! Để góp phần nghiên cứu cải tiến phương pháp dạy học nhằm nâng cao chất lượng dạy học môn Sinh học trường THPT Xin q thầy (cơ) vui lịng cho biết ý kiến vấn đề sau cách đánh dấu (X) vào phương án mà thầy (cô) lựa chọn Phần I Thông tin chung Họ tên Đơn vị công tác ………………………………………………………… Quận/Huyện …………………………………………………………… Giới tính………………………………………………………………… Số năm thầy ( cô) tham gia giảng dạy:…………………………………… Phần II Nội dung khảo sát Câu 1: Một mục tiêu giáo dục mơn tốn trường THPT rèn luyện tư cho học sinh Các Thầy (cơ) có biết tư sáng tạo hay khơng? A Rất rõ quan tâm B Biết không quan tâm C Có nghe chưa thực hiểu D Chưa nghe Câu 2: Theo thầy/ cô có nên rèn luyện tư phản biện cho học sinh THPT mơn Tốn hay khơng? A Có B Không Câu 3: Xin thầy/ cô cho biết quan niệm tư sáng tạo Hồn tồn đồng ý Khơng đồng ý Đồng ý Khơng có ý kiến Quan niệm STT 1 Tư sáng tạo tư phản biện không liên quan đến Tư sáng tạo sáng tạo mới, phương pháp loại bỏ cú Sản phẩm tư sáng tạo mang tính chất cá nhân tạo Tư sáng tạo mục tiêu quan trọng giảng dạy môn Tốn, cần rèn luyện hình thành tư sáng tạo cho học sinh Môi trường giáo dục đòi hỏi tư sáng tạo hết Biểu tính độc đáo tư sáng tạo học sinh giỏi, thể rõ học sinh yếu, Để phát triển tư sáng tạo, giáo viên cần khuyến khích học sinh thảo luận, hoạt động nhóm, đặt câu hỏi Để phát triển tư sáng tạo, giáo viên nên cho học sinh tự học, tự ôn tập, tự nghiên cứu số nội dung học Tư độc lập khơng bị gị bó phụ thuộc vào có tư sáng tạo Nó khơng liên quan đến loại hình tư khác (tư lơgic, tư biện chứng…) 10 Trong q trình dạy học tốn, giáo viên cần luyện kỹ dạng tập Câu 4: Khi dạy học phần hình học khơng gian, học sinh thầy/cơ gặp khó khăn, sai lầm nào? Rất nhiều khó khăn Khơng nhiều Nhiều Khơng giao Khó khăn, sai lầm STT Không nhớ vận dụng định lý Khơng biết vẽ hình vẽ hình sai Khơng phân tích định hướng lời giải toán Khi giải toán cịn thiếu trường hợp Khơng nắm dạng tập nắm vận dụng cách máy móc, thiếu sáng tạo Ý kiến khác : ………………………………………………………………………………… ………………………………………………………………………………… ………………………………………………………………………………… ………………………………………………………………………………… ………………………………………………………………………………… ………………………………………………………………………………… PHỤ LỤC ĐỀ KIỂM TRA MỘT TIẾT I Phần trắc nghiệm (5 điểm) Câu : Cho hình chóp S.ABCD có đáy ABCD hình thang vng A B , SA = a , SA  (ABCD) , AB = BC = a AD = 2a Khoảng cách từ điểm B đến mặt phẳng (SCD) theo a : A B C D Câu : Cho hình chóp S.ABCD có đáy ABCD hình bình hành với AB = 2a , BC = a , BD = a Hình chiếu vng góc S lên (ABCD) trọng tâm G tam giác BCD Biết SG = 2a , khoảng cách từ điểm A đến (SBD) theo a : A B C D Đáp án khác Câu : Cho hình chóp S.ABC SA,AB,BC đơi vng góc với , biết SA = a , AB = a Khi khoảng cách từ A đến mặt phẳng (SBC) : A B C D Đáp án khác Câu 4: Cho hình chóp S.ABCD có đáy hình chữ nhật với AB = a , AD = 2a , SA  (ABCD) SA = a Gọi I la trung diểm cạnh SC a) Khoảng cách từ điểm C đến (SBD) : A B C D Đáp án khác C D Đáp án khác b) Khoảng cách từ điểm I đến (SBD) : A B Câu : Cho hình chóp S.ABCD có đáy ABCD hình vng tâm O cạnh a , SO vng góc (ABCD) SO = a Khoảng cách SC AB : A B C D Đáp án khác Câu : Cho hình chóp S.ABCD có đáy ABCD hình chữ nhật với AB = a , AD= 2a SA  (ABCD) , góc đường thẳng SB mặt phẳng (ABCD) 45 Gọi M,N trung điểm cạnh BC SC Khoảng cách hai đường thẳng BD SC : A B D Đáp án khác C Câu 7: Cho hình lăng trụ tam giác ABC.A’B’C’ có AB = a, góc hai mặt phẳng (A’BC) (ABC) 600 Tính theo a khoảng cách hai mặt phẳng (ABC) (A’B’C’) kết A 3a B a C 3a D 5a Câu 8: Cho hình lăng trụ ABC.ABC có đáy ABC tam giác cạnh a, AA = 2a đường thẳng AA tạo với mặt phẳng (ABC) góc 600 Tính theo a khoảng cách từ D đến mặt phẳng (SBC) kết A a B 3a C a D a Câu Cho khối chóp S ABC có SA   ABC  , tam giác ABC vuông B , AB  a, AC  a Tính thể tích khối chóp S ABC biết SB  a A a3 B a3 C a3 6 D a 15 Câu 10 Cho khối chóp S ABC có đáy ABC tam giác cạnh a Hai mặt bên  SAB   SAC  vng góc với đáy Tính thể tích khối chóp biết SC  a A 2a B a3 12 C a3 D a3 II Phần tự luận (5 điểm) Cho hình chóp tứ giác S.ABCD có cạnh BD  2 Mặt bên tạo với mặt đáy góc 600 a Tính thể tích khối chóp, xác định tâm bán kính mặt cầu ngoại tiếp hình chóp b Tính góc khoảng cách hai đường thẳng SB AC c Tính góc hai mặt phẳng (SAB) (SCD) d Gọi I trọng tâm tam giác SAB, tính khoảng cách từ I đến mặt phẳng (ABCD) (SCD) PHỤ LỤC HỆ THỐNG CÁC BÀI TOÁN TƯƠNG TỰ Bài 1.(ĐHA-2006) Cho hình lập phương ABCD.A’B’C’D’ có độ dài cạnh Gọi M, N trung điểm AB CD A, tính thể tích khối chóp M.A’B’D’ b Tính khoảng cách hai đường thẳng A’C MN Đ/S: d = 2 Bài (ĐHB- 2002) Cho hình lập phương ABCD.A’B’C’D’ có cạnh a A Tính theo a khoảng cách hai đường thẳng A’B B’D B Gọi M, N, P trung điểm cạnh BB’, CD, A’D’ Tính góc hai đường thẳng MP C’N Đ/S: Đáp số: A a 6 B MP C 'N Bài (ĐH A – 2003): Cho hình hộp chữ nhật ABCD.A‘B ‘C‘D‘có AB=a, AD = a, AA’ = b (a > 0, b > 0) Gọi M trung điểm cạnh CC’ a Tính thể tích khối tứ diện BDA’M theo a b b Xác định tỷ số a b để hai mặt phẳng (A’BD) (MBD) vng góc với Đ/S: a, v  a 2b , b a:b = Bài (ĐH– 2006) Cho hình hộp đứng ABCD A’ B’ C’ D’ có cạnh AB= AD = a, AA'= a góc BAD  600 Gọi M N trung điểm cạnh A’ D’ A’B’ A,Chứng minh AC ' vng góc với mặt phẳng BDM  B, Tính thể tích khối chóp A BDMN C, Tính khoảng cách đường thẳng AB C’D’ 3a3 Đ/S: V  16 Bài (ĐH – A 2002) Cho hình chóp tam giác S.ABC đỉnh S, có độ dài cạnh đáy a Gọi M N trung điểm cạnh SB SC A,Tính theo a diện tích tam giác AMN , biết mặt phẳng (AMN) vng góc với mặt phẳng (SBC) B, Tính khoảng cách đường thẳng SC AB Bài THPT Đông Sơn 1- lần 2- 2015 Cho hình chóp S ABC có đáy ABC tam giác vuông A, mặt bên SAB tam giác nằm mặt phẳng vng góc với mặt phẳng (ABC), gọi M trung điểm SC Biết AB  a , BC  a Tính thể tích khối chóp S.ABC khoảng cách hai đường thẳng AC BM Đ/S: V= a3 12 Bài THPT Chuyên ban Hạ Long – 2015 Cho hình chóp S.ABC có ABC, SBC tam giác cạnh a Góc mặt phẳng (SBC) (ABC) 60 độ Hình chiếu vng góc S xuống (ABC) nằm tam giác ABC Tính thể tích khối chóp S.ABC khoảng cách từ B đến (SAC) theo a 3a 13 a3 Đ/S: V  ;d= 16 13 Bài THPT Hậu Lộc - 2015 Cho hình chóp S.ABC có đáy tam giác ABC vuông A, AB= 2a , AC  2a Hình chiếu vng góc S (ABC) H, H trung điểm AB Góc mặt phẳng (SBC) (ABC) 30 độ Tính theo a thể tích khối chóp S.ABC khoảng cách từ điểm M trung điểm cạnh BC đến (SAC) Bài THPT Lương Thế Vinh – HN - 2015 Cho hình chóp S.ABCD có đáy hình chữ nhật, tam giác SAB cân S nằm tring mặt phẳng vng góc với đáy Hình chiếu S lên ABCD trung điểm H cạnh AB Góc đường thẳng SC (ABCD) 45 độ Gọi M trung điểm SD Tính theo a thể tích S.ABCD khoảng cách từ M đến mặt phẳng (SAC) Bài 10 Cho hình chóp S.ABCD có đáy hình vng cạnh a, SD = a 17 Hình chiếu vng góc H S (ABCD) trung điểm AB Gọi K trung điểm AD Tính thể tích khối chóp S.ABCD khoảng cách HK SD theo a Bài 11 Cho hình lập phương ABCD.A’B’C’D’ cạnh a Gọi I, K, M, N trung điểm A’D’, BB’, CD, BC Chứng minh I, K, M, N đồng phẳng Tính khoảng cách IK AD Tính diện tích tứ giác IKNM Bài 12 (trích đề thi Đại học khối A – 2003) Cho hình lập phương ABCD.A’B’C’D’ Tính góc phẳng nhị diện [B, A’C, D] Bài 13 Cho hình lăng trụ đứng tam giác ABC.A’B’C’ có đáy tam giác vuông A Cho AB = a, AC = b, AA’ = c Mặt phẳng ( ) qua B vng góc với B’C Tìm điều kiện a, b, c để ( ) cắt cạnh CC’ I (I không trùng với C C’) Cho ( ) cắt CC’ I a Xác định tính diện tích thiết diện b Tính góc phẳng nhị diện thiết diện đáy ...ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC GIÁO DỤC ĐINH THỊ VÂN RÈN LUYỆN TÍNH ĐỘC ĐÁO CỦA TƯ DUY CHO HỌC SINH THÔNG QUA DẠY CHUYÊN ĐỀ‘‘GIẢI TỐN HÌNH HỌC KHƠNG GIAN BẰNG PHƯƠNG PHÁP TỌA ĐỘ” LUẬN... nhiều học sinh không dễ dàng gặp tốn hình học khơng gian đề thi Vì chúng tơi chọn đề tài: ? ?Rèn luyện tính độc đáo tư cho học sinh thơng qua dạy chun đề giải tốn hình học khơng gian phương pháp tọa. .. đề tư sáng tạo Chương Trên sở lí luận thực tiễn, đề xuất thực ba phương pháp dạy học rèn luyện tính độc đáo tư sáng tạo cho học sinh thông qua dạy học chuyên đề Giải tốn hình học khơng gian phương

Ngày đăng: 09/04/2021, 10:41

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
1. Lê Quang Ánh, Trần Thái Hùng, Nguyễn Hoàng Dũng (1993), Tuyển tập những bài toán khó và phương pháp giải toán Hình học không gian, NXB Trẻ - Thành phố Hồ Chí Minh Sách, tạp chí
Tiêu đề: Tuyển tập những bài toán khó và phương pháp giải toán Hình học không gian
Tác giả: Lê Quang Ánh, Trần Thái Hùng, Nguyễn Hoàng Dũng
Nhà XB: NXB Trẻ - Thành phố Hồ Chí Minh
Năm: 1993
2. Nguyễn Hữu Châu (tháng 3 - 4/2001), “Một xu thế của giáo dục ở thế kỉ XXI”, Thông tin KHGD, Số 84 Sách, tạp chí
Tiêu đề: Một xu thế của giáo dục ở thế kỉ XXI”, "Thông tin KHGD
3. Hoàng Chúng (1969), Rèn luyện khả năng sáng tạo toán học ở trường phổ thông, NXB Giáo dục Sách, tạp chí
Tiêu đề: Rèn luyện khả năng sáng tạo toán học ở trường phổ thông
Tác giả: Hoàng Chúng
Nhà XB: NXB Giáo dục
Năm: 1969
4. Crutexki V.A (1980), Những cơ sở của Tâm lý học sư phạm, NXB Giáo dục Sách, tạp chí
Tiêu đề: Những cơ sở của Tâm lý học sư phạm
Tác giả: Crutexki V.A
Nhà XB: NXB Giáo dục
Năm: 1980
5. Crutexki V.A (1973), Tâm lý năng lực Toán học của học sinh, NXB Giáo dục Sách, tạp chí
Tiêu đề: Tâm lý năng lực Toán học của học sinh
Tác giả: Crutexki V.A
Nhà XB: NXB Giáo dục
Năm: 1973
6. Phạm Gia Đức, Phạm Văn Hoàn (1967), Rèn luyện kĩ năng công tác độc lập cho học sinh quan môn Toán, NXB Giáo dục Sách, tạp chí
Tiêu đề: Rèn luyện kĩ năng công tác độc lập cho học sinh quan môn Toán
Tác giả: Phạm Gia Đức, Phạm Văn Hoàn
Nhà XB: NXB Giáo dục
Năm: 1967
7. G. Polya (1968), Toán học và những suy luận có lý, NXB Giáo dục Sách, tạp chí
Tiêu đề: Toán học và những suy luận có lý
Tác giả: G. Polya
Nhà XB: NXB Giáo dục
Năm: 1968
8. G. Polya (1978), Sáng tạo toán học, NXB Giáo dục Sách, tạp chí
Tiêu đề: Sáng tạo toán học
Tác giả: G. Polya
Nhà XB: NXB Giáo dục
Năm: 1978
9. Phạm Văn Hoàn (1969), Rèn luyện trí thông minh qua môn Toán và phát hiện bồi dưỡng học sinh có năng khiếu toán ở cấp I, NXB Giáo dục Sách, tạp chí
Tiêu đề: Rèn luyện trí thông minh qua môn Toán và phát hiện bồi dưỡng học sinh có năng khiếu toán ở cấp I
Tác giả: Phạm Văn Hoàn
Nhà XB: NXB Giáo dục
Năm: 1969
10. Phạm Văn Hoàn, Nguyễn Gia Cốc, Trần Thúc Trình (1981), Giáo dục học môn Toán, NXB Giáo dục Sách, tạp chí
Tiêu đề: Giáo dục học môn Toán
Tác giả: Phạm Văn Hoàn, Nguyễn Gia Cốc, Trần Thúc Trình
Nhà XB: NXB Giáo dục
Năm: 1981
11. Omizumi Kagayaki (1991), Phương pháp luyện trí não, NXB Thông tin Sách, tạp chí
Tiêu đề: Phương pháp luyện trí não
Tác giả: Omizumi Kagayaki
Nhà XB: NXB Thông tin
Năm: 1991
12. Nguyễn Bá Kim, Vũ Dương Thụy (1989), Một số nghiên cứu phát triển lý luận dạy học toán học, ĐHSP Hà Nội I Sách, tạp chí
Tiêu đề: Một số nghiên cứu phát triển lý luận dạy học toán học
Tác giả: Nguyễn Bá Kim, Vũ Dương Thụy
Năm: 1989
13. Nguyễn Bá Kim, Vũ Dương Thụy (1992), Phương pháp dạy học môn Toán, NXB Giáo dục Sách, tạp chí
Tiêu đề: Phương pháp dạy học môn Toán
Tác giả: Nguyễn Bá Kim, Vũ Dương Thụy
Nhà XB: NXB Giáo dục
Năm: 1992
14. Nguyễn Thái Hoè (2001), Rèn luyện tư duy qua việc giải bài tập toán, NXB Giáo dục Sách, tạp chí
Tiêu đề: Rèn luyện tư duy qua việc giải bài tập toán
Tác giả: Nguyễn Thái Hoè
Nhà XB: NXB Giáo dục
Năm: 2001
15. Hứa Mộng (1991), Phương pháp phát triển trí tuệ, NXB Thông tin Sách, tạp chí
Tiêu đề: Phương pháp phát triển trí tuệ
Tác giả: Hứa Mộng
Nhà XB: NXB Thông tin
Năm: 1991
16. Nguyễn Cảnh Toàn (1997), Phương pháp luận duy vật biện chứng cùng với việc học, dạy, nghiên cứu Toán học, NXB Đại học Quốc gia Hà Nội Sách, tạp chí
Tiêu đề: Phương pháp luận duy vật biện chứng cùng với việc học, dạy, nghiên cứu Toán học
Tác giả: Nguyễn Cảnh Toàn
Nhà XB: NXB Đại học Quốc gia Hà Nội
Năm: 1997
17. Nguyễn Cảnh Toàn (1992), Tập cho học sinh giỏi Toán làm quen dần với nghiên cứu toán học, NXB Giáo dục Sách, tạp chí
Tiêu đề: Tập cho học sinh giỏi Toán làm quen dần với nghiên cứu toán học
Tác giả: Nguyễn Cảnh Toàn
Nhà XB: NXB Giáo dục
Năm: 1992
18. Trần Thúc Trình, Thái Sinh (1995), Một số vấn đề rèn luyện tư duy sáng tạo trong việc dạy bộ môn Hình học, NXB Giáo dục Sách, tạp chí
Tiêu đề: Một số vấn đề rèn luyện tư duy sáng tạo trong việc dạy bộ môn Hình học
Tác giả: Trần Thúc Trình, Thái Sinh
Nhà XB: NXB Giáo dục
Năm: 1995

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w