1. Trang chủ
  2. » Mẫu Slide

The Duality Approach - Cost and Profit Functions

34 11 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 34
Dung lượng 180,47 KB

Nội dung

 Properties/restrictions of the dual functions (homogeneity, monotonicity, concavity and symmetry).  are not usually satisfied  are usually imposed.[r]

(1)

THE DUALITY APPROACH: COST AND PROFIT

FUNCTIONS

(2)

The primal vs duality approach

Derivation of cost and profit function

(3)

Production Economics

 optimal allocation of resources in the production of goods and services given

 technology

 resource constraints

 output demand (and thus prices of outputs)  prices of inputs

 Basic issues:

 optimal input uses

(4)

The primal vs dual approach  Primal approach

 optimal input and output levels are obtained by solving the optimization problem

 Dual approach

 Inputs demand and output supply functions can be derived from the dual functions

 

max

x pf xwx st  

c

x wx yf x

 

(5)

Problems of the primal approach

 endogeneity and simultaneity of the production function

(need instrumental variables, and more advanced techniques to fix)

 multicollinearity of inputs in the production function (may

result in incorrect estimates, sometimes unable to obtain the estimates)

 for some functional forms, it is hard to obtain input demands

and output supply (the optimization is not always easy)

(6)

Specification of the cost function  Cost problem

 Lagrangian function  FOCs

 Solving FOCs to obtain

 Cost function

 

min st c

x wx yf x

  c  

L xwx  yf x 

   

0 i

i i

L x

w f x

x

   

 ,  conditional factor demand

c

xx w y

 ,   , 

c

cwx w yc w y

(7)

Specification of the profit function  Profit max problem

 FOCs

 Solve FOCs to get

 Substitute into to obtain

 

max

x   pf xwx

  i

i i

pf xwx  

 ,  unconditional factor demand

xx p w

 

pf x wx

  

 , 

xx p w

p w, 

 

(8)

Properties

Issues in estimation

(9)

Properties of the cost function      

 Shephard lemma

 Symmetry by Young theorem

 ,  for ,

c w yw y

 ,  is non-decreasing in

c w y w

 ,  is non-decreasing in

c w y y

 ,  is linearly homogenous in

c w y w

 ,  is continuous and concave in

c w y w

 ,   

,

c i i

c w y

x w y w

 

 , 0

c w

        2 , , , , so c c j i

i j j i j i

x w y

c w y c w y x w y

w w w w w w

  

 

(10)

Issues in estimating the cost function  Factor cost shares sum to

(11)

Factor cost share

 The factor cost shares sum to

 For the translog cost function

 The cost share equations are

 ,    , 

,

c i i i

w x w y s w y

c w y

i  , 

i

s w y

1

ln ln ln ln ln ln

2

i i ij i j i i

i i j i

c     w   w w   w y

ln

ln ln

ln

i

i i ij j i

j i

i i

w

c c

s w y

w c w   

 

    

   

(12)

Homogeneity of the cost function

 Proportional changes in input prices leave factor demand unchanged

 For the translog cost function, linear homogeneity is satisfied if

 ,   , 

c tw ytc w y t

1

i i

 

ij

i

 

i

i

 

1

ln ln ln ln ln ln

2

i i ij i j i i

i i j i

(13)

Monotonicity

 The cost function must be increasing in w  For the translog cost function

ln ln

i i ij j i

j i

i i i

c c c

s w y i

w w w   

 

      

 

(14)

Concavity

 The cost function must be concave in w

(15)

Symmetry

 Cross price effects of factor demand are equal

       

2

,

, , ,

or

c c

j i

i j j i j i

x w y

c w y c w y x w y

w w w w w w

  

 

(16)

In empirical studies

 Cost shares: estimated simultaneously with the cost function (system of equations)

 Homogeneity, monotonicity, convavity and symmetry are either:

(17)

Uses of the cost function  Factor demand

 Output supply

 Morishima elasticity of substitution

 ,   ,  c

i

i

c w y x w y

w

 

 ,     

, ,

c w y

mc w y p y mc w p

y            , ln , ln i j ij j i

(18)

Example: Ray (1982)

 Title: A translog cost function analysis of U.S agriculture 1939-1977

 Objectives

 measure elasticity of substitution

 measure price elasticity of factor demand  measure technical change

(19)

Example: Ray (1982)  Data

 outputs  livestock  crop

 inputs

 hired labor

 capital (real estate, motor vehicles and machinery)  fertilizers

 purchased feed, seed and livestock  miscellaneous inputs

(20)

Example: Ray (1982)  Estimated equations:

 cost function

 cost share equations

 revenue share equations

 Functional form: translog cost function  Dependent variables:

 farm production expense (index)  cost shares

(21)

Example: Ray (1982)

 Technical change in the cost function

 

ln c w y,

t

(22)

Example: Ray (1982)

 Treatment for properties of the cost function  homogeneity: imposed

 monotonicity: ignored  concavity: ignored  symmetry: ignored  Findings

 declining substitutability between capital and labor  price elasticity increase over time for all inputs

(23)

Properties

Issues in estimation

(24)

Properties of the profit function     

 Hotelling lemma

 Symmetry

p w, 

 

p w,  non-decreasing in p

p w,  non-increasing in w

p w,  linear homogeneous in  p w, 

p w,  continuous and convex in  p w, 

  ,    , k k p w

y p w p      ,    , i i p w

x p w w       ,   ,   ,   , 

so i

k i i k i k

p w p w y p w x p w

p w w p w p

 

   

 

(25)

Issues in estimating the profit function

 Homogeneity

 Monotonicity

 Convexity: Hessian matrix positive semi-definite

 Symmetry

tp tw,  tp w,  t

     ,  k p w p       , i p w w      ,   , 

k i i k

p w p w

p w w p

 

 

(26)

Issues in estimating the profit function

 Although not required, profit function is usually estimated together with the revenue share

equations

and the input expenditure share equations

     

ln , ,

, ln

y

k k k

k

k k

p w p w p y p

s p w

p p                 

ln , ,

, ln

x

i i i

i

i i

p w p w w x w

s p w

(27)

Example: Alpay et al (2002)  Title: Productivity growth and environmental

regulations in Mexican and U.S food manufacturing  Objective: compare productivity growth of Mexican

(28)

Example: Alpay et al (2002)  Methodology

 profit function + revenue share equations + expenditure share equations

 profit: short-run profit (capital fixed)  functional form: translog profit

(29)

Example: Alpay et al (2002)  Data: aggregate

 output: restricted short-run profit  Inputs

 labor  material

 pollution abatement expenditure

(30)

Example: Alpay et al (2002)

 Dual productivity growth from the profit function

 The primal productivity growth could be derived from the dual productivity growth

 technical changes that are unaffected by prices

 

ln p w,

t

(31)

(32)

Primal and dual, what can they do?  estimate factor demand

 estimate output supply  factor substitution

 technical changes

(33)

Advantages of duality approach  sometimes it’s hard to solve the optimization

problem for the primal production function

 in production function, inputs are very likely to be co-linear (more than prices)

(34)

Disadvantages of duality  Prices are also co-linear

 Properties/restrictions of the dual functions (homogeneity, monotonicity, concavity and symmetry)

Ngày đăng: 05/04/2021, 22:01

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w