Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 62 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
62
Dung lượng
4,59 MB
Nội dung
Truong THCS Son Hång Gv: Ngun ThÕ Toµn CHƯƠNG III : GÓC VỚI ĐƯỜNG TRÒN Tiết 37 GÓC Ở TÂM - SỐ ĐO CUNG I. Mục tiêu − HS nhận biết được góc ở tâm, cung bò chắn − Đo góc ở tâm, so sánh hai cung trên một đường tròn − HS nắm được đònh lý “sđAB = sđAC + sđCB” (với C nằm trên AB) II. Phương pháp dạy học Compa, thước đo góc, thước thẳng, phấn màu, bảng phụ III. Quá trình hoạt động trên lớp 1/ Ổn đònh lớp 2/ Kiểm tra bài cũ 3/ Bài mới : Hoạt động 1 : Góc ở tâm GV giới thiệu góc ở tâm : 2 cạnh của góc ở tâm cắt đường tròn tại2 điểm, đỉnh của góc là tâm đường tròn Cung nằm bên trong góc gọi là “cung nhỏ” Cung nằm bên ngoài góc gọi là “cung lớn” AOB : góc ở tâm AmB : cung nhỏ AnB : cung lớn Cung nằm trong góc còn gọi là cung bò chắn 1 - Góc ở tâm Đònh nghóa : Góc có đỉnh trùng với tâm đường tròn được gọi là góc ở tâm Góc bẹt COD chắn nửa đường tròn Góc AOB chắn cung nhỏ AmB ⇒ AmB là cung chắn bởi AOB Hoạt động 2 : Số đo cung GV hướng dẫn HS quan sát hình vẽ và yêu cầu tìm số đo của AmB ⇒ sđAmB ? Cho HS nhận xét về số đo của cung nhỏ, cung lớn, cả đường tròn So sánh với số đo góc ở tâm và số đo cung bò chắn của góc ấy SđAmB = 100 0 SđAmB = 360 0 - 100 0 = 260 0 Số đo góc ở tâm bằng số đo cung bò chắn 2 - Số đo cung Số đo cung được tính như sau : - Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó - Số đo của cung lớn bằng 360 0 trừ đi số đo của cung nhỏ - Số đo của nửa đường tròn bằng 180 0 Kí hiệu : số đo của cung AB : SđAB Chú ý : - Cung nhỏ có số đo nhỏ hơn 180 0 - Cung lớn có số đo lớn hơn 180 0 - Cung cả đường tròn có số đo 360 0 GiaoAnHinh hoc 9 Truong THCS Son Hång Gv: Ngun ThÕ Toµn Hoạt động 3 : So sánh hai cung GV lưu ý HS chỉ so sánh hai cung trong một đường tròn hay hai đường tròn bằng nhau ?1 HS vẽ một đường tròn rồi vẽ 2 cung bằng nhau 3 - So sánh hai cung Tổng quát : Trong một đường tròn hay hai đường tròn bằng nhau : - Hai cung được gọi là bằng nhau nếu chúng có số đo bằng nhau - Trong hai cung, cung nào có số đo lớn hơn được gọi là cung lớn hơn Hoạt động 4 : Khi nào thì SđAB = SđAC + SđCB ? Quan sát h.3, h.4 làm ?2 Tìm các cung bò chắn của AOB, AOC, COB Hướng dẫn HS làm ? 2 bằng phương pháp chuyển số đo cung sang số đo góc ở tâm a/ Kiểm tra lại b/ AOB = AOC + COB ⇒ SđAB = SđAC + SđCB (với cả 2 trường hợp cung nhỏ và cung lớn) 4 - Khi nào thì SđAB = SđAC + SđCB Nếu C là một điểm nằm trên AB thì : SđAB = SđAC + SđCB Hoạt động 5 : Làm bài tập 2, 3 trang 69 SGK Bài 2/69 xOs = tOy = 40 0 xOt = sOy = 140 0 xOy = sOt = 180 0 Bài 3/69 Đo AOB ⇒ SđAmB ⇒ SđAnB Bài tập về nhà : làm 4, 5, 9 trang 69 SGK GiaoAnHinh hoc 9 Truong THCS Son Hång Gv: Ngun ThÕ Toµn Tiết 38 LUYỆN TẬP VỀ GÓC Ở TÂM - SỐ ĐO CUNG I. Mục tiêu − HS nhận biết được góc ở tâm ⇒ chỉ ra cung bò chắn tương ứng − HS biết vẽ, đo góc ⇒ số đo cung − Vận dụng thành thạo đònh lý : “Cộng hai cung” II. Phương pháp dạy học Compa, thước đo góc, thước thẳng, phấn màu III. Quá trình hoạt động trên lớp 1/ Ổn đònh lớp 2/ Kiểm tra bài cũ − Góc ở tâm là gì ? Vẽ hình, nêu ví dụ − Mỗi góc ở tâm ứng với mấy cung ? Hãy chỉ ra cung bò chắn ở h.1a và h.1b (SGK/67) 3/ Bài mới : Luyện tập ∆ ATO thuộc loại tam giác gì ? ⇒ AOB = ? ⇒ Sđ cung nhỏ AB ⇒ Sđ cung lớn AB Nhắc lại tính chất tiếp tuyến của đường tròn Tính AOB Nhận xét : AOB = BOC = COA ⇒ So sánh SđAB, SđBC, SđCA ? (cung nhỏ) Tính SđABC, SđBCA, SđCAB Xác đònh các cung nhỏ theo câu hỏi a Xác đònh các cung bằng nhau Sđ cung lớn AB = 360 0 - 45 0 = 315 0 Dựa vào tứ giác AOBM ⇒ SđAOB ⇒ SđAB Bài 4/69 ∆ ATO vuông cân tại A ⇒ AOB = 45 0 ⇒ Sđ cung nhỏ AB là 45 0 ⇒ Sđ cung lớn AB là 315 0 Bài 5/69 a/ AOB = 180 0 - 35 0 = 145 0 b/ Sđ cung nhỏ AB là 145 0 ⇒ Sđ cung lớn AB là 215 0 Bài 6/69 a/ AOB = BOC = COA = 120 0 b/ SđAB = SđBC = SđCA = 120 0 SđABC = SđBCA = SđCAB = 240 0 Bài 7/69 a/ Có cùng số đo b/ AM = DQ ; CP = BN AQ = MD ; BP = NC GiaoAnHinh hoc 9 Truong THCS Son Hång Gv: Ngun ThÕ Toµn Phương pháp trắc nghiệm GV hướng dẫn HS vẽ hình Áp dụng quy tắc “Cộng hai cung” HS trả lời Bài 8/69 a. Đ b. S c. S d. Đ Bài 9/69 a/ Điểm C nằm trên cung nhỏ AB Số đo cung nhỏ BC : 100 0 - 45 0 = 55 0 Số đo cung lớn BC : 360 0 - 55 0 = 305 0 b/ Điểm C nằm trên cung lớn AB Số đo cung nhỏ BC : 100 0 + 45 0 = 145 0 Số đo cung lớn BC : 360 0 - 145 0 = 215 0 4/ Hướng dẫn về nhà : Chuẩn bò xem trước bài “Liên hệ giữa cung và dây” GiaoAnHinh hoc 9 Truong THCS Son Hång Gv: Ngun ThÕ Toµn Tiết 39 Ngµy So¹n LIÊN HỆ GIỮA CUNG VÀ DÂY I. Mục tiêu − HS làm quen cụm từ : “Cung căng dây” và “Dây căng cung” − HS hiểu và chứng minh được đònh lý 1 và đònh lý 2 II. Phương pháp dạy học − Chuẩn bò các dụng cụ : compa, thước, phấn màu − GV hướng dẫn HS thực hiện III. Quá trình hoạt động trên lớp 1/ Kiểm tra bài cũ Trên (O) lấy các điểm A, B, C, D sao cho AOB = COD a/ So sánh SđAB và SđCD (xét cung nhỏ) b/ Có nhận xét gì về AB và CD 2/ Bài mới : Liên hệ giữa cung và dây Hoạt động 1 : Đònh lý 1 GV lưu ý HS : - Người ta dùng cụm từ “cung căng dây” hoặc “dây căng cung” để chỉ mối liên hệ giữa cung và dây có chung hai mút - Vì trong một đường tròn, mỗi dây căng hai cung phân biệt nên trong hai đònh lý dưới đây, ta chỉ xét những cung nhỏ GV hướng dẫn HS chứng minh đònh lý 1 1 - Đònh lý 1 Đònh lý : (SGK trang 71) Chứng minh đònh lý : a/ ∆ AOB = ∆ COD (c-g-c) ⇒ AB = CD b/ ∆ AOB = ∆ COD (c-g-c) ⇒ AOB = COD ⇒ SđAB = SđCD a/ SđAB = SđCD So sánh AOB và COD từ đó xét ∆ AOB và ∆ COD ⇒ ∆ AOB = ∆ COD b/ AB = CD ⇒ ∆ AOB = ∆ COD GiaoAnHinh hoc 9 Truong THCS Son Hång Gv: Ngun ThÕ Toµn 2- Đònh lý 2 Đònh lý : (SGK trang 77) a/ AB > CD ⇒ AB > CD b/ AB > CD ⇒ AB > CD GV hướng dẫn HS xét ∆ OAB và ∆ OCD Nhắc lại đònh lý đã học : Đònh lý thuận : (SGK - 78) Đònh lý đảo : (SGK - 78) XÐt ∆ AOB và ∆ COD có : OA = OC = OB = OD AOB > COD (AB > CD) ⇒ AB > CD AB > CD ⇒ AOB > COD Do đó : AB > CD Hoạt động 2 : Làm bài tập áp dụng Bài 11/72 a/ Xét hai tam giác vuông ABC và ABD (bằng nhau) ⇒ CB = BD ⇒ CB = BD b/ ∆ AED vuông tại E ⇒ EB = BD ⇒ EB = BD Bài 13/72 : Xét hai trường hợp a/ Chứng minh trường hợp tâm đường tròn nằm ngoài hai dây song song b/ Chứng minh trường hợp tâm đường tròn nằm trong hai dây song song 4/ Hướng dẫn về nhà : − Làm bài tập 10, 12, 14/72 - 73 − Chuẩn bò bài “Góc nội tiếp” GiaoAnHinh hoc 9 Truong THCS Son Hång Gv: Ngun ThÕ Toµn Tiết 40 GÓC NỘI TIẾP I. Mục tiêu − HS nhận biết được góc nội tiếp − HS phát biểu và chứng minh được đònh lý về số đo góc nội tiếp − HS nhận biết và chứng minh được các hệ quả của đònh lý trên II. Phương pháp dạy học Compa, thước đo góc, thước thẳng, phấn màu III. Quá trình hoạt động trên lớp 1/ Ổn đònh lớp 2/ Kiểm tra bài cũ 3/ Bài mới : Góc nội tiếp Hoạt động 1 : Đònh nghóa góc nội tiếp Xem h.13 SGK và trả lời : Góc nội tiếp là góc nào ? Nhận biết cung bò chắn trong mỗi h.13a và h.13b ? ?1 Tại sao mỗi góc ở h.14, h.15 không phải là góc nội tiếp ? BAC là góc nội tiếp BC là cung bò chắn (cung nằm trong BAC) h.14a : góc có đỉnh trùng với tâm h.14b : góc có đỉnh nằm trong đường tròn h.14c : góc có đỉnh nằm ngoài đường tròn h.15a : hai cạnh của góc không cắt đường tròn h.15b : có một cạnh của góc không cắt đường tròn h.15c : góc có đỉnh nằm ngoài đường tròn 1 - Đònh nghóa : Góc nội tiếp là góc có đỉnh nằm trên đường tròn và hai cạnh cắt đường tròn đó Cung nằm bên trong góc là cung bò chắn ?1 SGK trang 80 Hoạt động 2 : Đònh lý về số đo góc nội tiếp Đo góc nội tiếp, cung bò chắn trong mỗi h.16, h.17, h.18 SGK rồi nêu nhận xét Áp dụng đònh lý về góc ngoài của tam 2 - Đònh lý Số đo góc nội tiếp bằng nửa số đo của cung bò chắn CM đònh lý : a/ TH1 : Tâm O nằm trên một cạnh của BAC GiaoAnHinh hoc 9 Truong THCS Son Hång Gv: Ngun ThÕ Toµn giác vào ∆ AOC cân tại O GV hướng dẫn vẽ đường kính AD và đưa về trường hợp 1 BAC = BAD - CAD BAC = ACO Mà BOC = BAC + ACO Nên BAC = 2 1 BOC BAD + DAC = BAC (1) (tia AO nằm giữa tia AB và AC) BD + DC = BC (2) (D nằm trên cung BC) Làm tương tự TH2 ∆ AOC cân tại O, ta có : BAC = 2 1 BOC SđBOC = SđBC (góc ở tâm BOC chắn cung BC) Mà BAC = 2 1 BOC Nên SđBAC = 2 1 SđBOC b/ TH2 : Tâm O nằm bên trong BAC Theo TH1, từ hệ thức (1) và (2) ta có : SđBAD = 2 1 BD SđDAC = 2 1 DC ⇒ SđBAC = SđBAD + SđDAC = 2 1 BC c/ TH3 : tâm O nằm bên ngoài BAC (HS tự chứng minh) Hoạt động 3 : Hệ quả của đònh lý GV yêu cầu HS vẽ hìnhtheo từng nội dung cột bên và neu nhận xét ?3 HS vẽ hình minh họa : a/ Vẽ hai góc nội tiếp cùng chắn một cung hoặc chắn hai cung bằng nhau b/ Vẽ hai góc cùng chắn nửa đường tròn c/ Vẽ một góc nội tiếp (có số đo nhỏ hơn hoặc bằng 90 0 ) 3 - Hệ quả a/ Các góc nội tiếp cùng chắn một cung hoặc chắn hai cung bằng nhau thì bằng nhau b/ Mọi góc nội tiếp chắn nửa đường tròn đếu là góc vuông c/ Mọi góc nội tiếp (nhỏ hơn hoặc bằng 90 0 ) có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung GiaoAnHinh hoc 9 Truong THCS Son Hång Gv: Ngun ThÕ Toµn Bài tập áp dụng : Bài 15/75 : a. Đ b. S Bài 16/75 a/ MAN = 30 0 ⇒ MBN = 60 0 ⇒ PCQ = 120 0 b/ PCQ = 136 0 ⇒ MBN = 68 0 ⇒ MAN = 34 0 4/ Hướng dẫn về nha ø : Làm bài tập 18, 19, 20, 22/75 - 76 GiaoAnHinh hoc 9 Truong THCS Son Hång Gv: Ngun ThÕ Toµn Tiết 41 LUYỆN TẬP I. Mục tiêu − HS nhận biết được góc nội tiếp − Biết áp dụng đònh lý và hệ quả về số đo góc nội tiếp II. Phương pháp dạy học Compa, thước đo góc, thước thẳng, phấn màu III. Quá trình hoạt động trên lớp 1/ Ổn đònh lớp 2/ Kiểm tra bài cũ a/ Góc nội tiếp là gì ? Nêu đònh lý về số đo góc nội tiếp b/ Nêu các hệ quả của đònh lý về số đo góc nội tiếp 3/ Bài mới : CM : AMB = 90 0 ⇒ BM ⊥ SA BM và AN cắt tại H ⇒ H ? CM : ABC = 90 0 ABD = 90 0 ⇒ C, B, D thẳng hàng Nhận xét 2 đường tròn (O) và (O’) và cung AB ? Xét ∆ ABC rồi áp dụng hệ thức lượng Bài 19/75 AMB = 90 0 (Góc nội tiếp chắn nửa đường tròn đường kính AB) ⇒ BM ⊥ SA Tương tự AN ⊥ SB BM và AN là hai đường cao của ∆ SAB H là trực tâm của ∆ SAB Trong một tam giác 3 đường cao đồng quy ⇒ SH ⊥ AB Bài 20/75 ABC = 90 0 (Góc nội tiếp chắn nửa đường tròn đường kính AC) ABD = 90 0 (Góc nội tiếp chắn nửa đường tròn đường kính AD) ⇒ C, B, D thẳng hàng Bài 21/75 Hai đường tròn bằng nhau ⇒ 2 cung nhỏ AB bằng nhau (cùng căng dây AB) N ˆ M ˆ = (góc nội tiếp cùng chắn AB) ⇒ ∆ BMN cân tại B Bài 22/75 CAB = 90 0 (CA là tiếp tuyến (O) tại A) AMB = 90 0 (nội tiếp nửa đường tròn) ∆ ABC vuông tại A có AM ⊥ BC tại M GiaoAnHinh hoc 9 [...]... có bán kính là 2cm Vậy diện tích hình tròn là π (22 ) = 4 π (cm2) GiaoAnHinh hoc 9 Truong THCS Son Hång Gv: Ngun ThÕ Toµn Bài 78 /98 Theo giả thiết thì C = 2 π R = 12m ⇒R = 12 6 = 2 π Diện tích phần mặt đất mà đống cát chiếm chỗ là : S= π R2 = π 6 Bài 79/ 98 2 π Theo công thức S = = 36 ≈ 1,4 m2 π πR 2 n 360 π 6 2. 36 = 3,6π cm2 Ta có : S = 360 4/ Hướng dẫn về nhà : Làm bài tập 81, 82/ SGK... tích là π R2 Vậy hình quạt 10 có diện tích là : πR 2 360 Do đó hình quạt n0 có diện tích : S= l.R πR 2 n hay S = 2 360 S : diện tích của hình quạt n0 GV hướng dẫn HS l : độ dài cung hình quạt n0 hình thành công thức tính diện tích hình πR 2 n πRn R R quạt n0 theo độ dài = ⋅ = 1⋅ 0 360 180 22 cung n Hoạt động 3 : Áp dụng giải bài tập 77, 78, 79 SGK trang 98 Bài 77 /98 Hình tròn nội tiếp hình vuông có... MO’B = 2 α Gv: Ngun ThÕ Toµn Độ dài đường tròn lớn : C = 2 πR ⇒ độ dài kinh tuyến : π R lMB = πO' M .2 πO' M.α = (1) 180 90 Độ dài MA : lMA = πOM.α πO' M.α = (2) 180 90 So sánh (1) và (2) ⇒ lMA = lMB Bài 76 /96 Độ dài AmB : Tính độ dài AmB Tính độ dài đoạn gấp khúc AOB lAmB = π.R. 120 π.R .2 π = = 2R (1) 180 3 3 Độ dài đoạn AOB : lAOB = R + R = 2R π Chứng tỏ > 1 3 π ⇒ 2R ⋅ > 2 R 3 Ta có : (2) π ≈... ThÕ Toµn Bài 68 /95 Gọi C1, C2, C3 lần lượt là độ dài của các nửa đường tròn đường kính AC, AB, BC ta có : C1 = π AC (1) C2 = π AB (2) C3 = π BC (3) So sánh (1), (2) , (3) ta thấy : C2 + C3 = π (AB + BC) = π AC (vì B nằm giữa A, C) Vậy C1 = C2 + C3 4/ Hướng dẫn về nhà : Làm bài tập 66, 69/ SGK trang 95 Bài 69/ 95 Chu vi bánh xe sau : π 1,6 72 (m) Chi vi bánh xe trước : π 0,88 (m) Khi bánh xe sau lăn được... 3cm) = 2 π 3 C(A ; 4cm) = 2 π 4 Độ dài đường xoắn : 1 ⋅ 2 (1 + 2 + 3 + 4) = 5π 4 Gọi số đo AOB là x0 3600 ứng với 540mm x0 ứng với 20 0mm Bài 72 /96 Số đo AOB là : x= 20 0.360 540 x ≈ 1330 Bài 73 /96 Độ dài kinh tuyến trái đất : π R = 20 000 (km) (gt) Gọi bán kính trái đất là R GV hướng dẫn HS : kinh tuyến trái đất là gì ? R= 20 000 20 000 ≈ ≈ 63 69 (km) π 3,14 Bài 75 /96 Độ dài MB : GiaoAnHinh hoc 9 Truong... Công thức : S = π R2 S : diện tích của hình tròn R : bán kính của hình tròn Hoạt động 2 : Công thức tính diện tích hình quạt tròn GV giải thích thế nào là hình quạt tròn Hình quạt tròn là một phần hình tròn giới hạn bởi một cung tròn và hai bán kính đi qua hai mút của cung đó Hình quạt tròn ứng với cung bao nhiêu độ ? ⇒ Diện tích hình quạt 10 2 - Công thức tính diện tích hình quạt tròn Hình tròn (3600)... 3600 có độ dài ? → C = 2 πR - Vậy cung 10 có độ dài ? → 2 R 360 πRn - Độ dài cung n0 : l = 180 - Độ dài cung 10 : l : độ dài cung n0 2 R 360 - Suy ra cung n0 có độ dài l bằng ? → l= πRn 180 Hoạt động 3 : Áp dụng giải bài tập Bài 67 /95 Bán kính R Số đo độ của cung tròn Độ dài của cung tròn 10cm 90 0 15,7cm 40,8cm 500 35,6cm GiaoAnHinh hoc 9 21 cm 570 20 ,8cm 6,2cm 410 4,4cm 21 cm 25 0 9, 2cm Truong THCS Son... Bài 71 /96 Vẽ hình vuông ABCD có cạnh dài 1cm 1 đường tròn (B ; 1cm) có cung AE 4 1 Vẽ đường tròn (C ; 2cm) có cung EF 4 1 Vẽ đường tròn (D ; 3cm) có cung FG 4 1 Vẽ đường tròn (A ; 1cm) có cung GH 4 1 lAE = ⋅ 2 ⋅1 4 1 lEF = ⋅ 2 ⋅ 2 4 1 lFG = ⋅ 2 ⋅ 3 4 1 lGH = ⋅ 2 ⋅ 4 4 Vẽ Vẽ (B ; BA) ; BA = 1cm (C ; CE) ; CE = 2cm (D ; DF) ; DF = 3cm (A ; AG) ; AG = 4cm C(B ; 1cm) = 2 π 1 C(C ; 2cm) = 2 π 2 C(D ;... = CME Bài 39/ 82 sđMSE = sdCA + sdBM (1) (góc có 2 đỉnh ở trong đường tròn) sđCME = sdCM sdCB + sdBM = (2) 22 (góc tạo bởi tiếp tuyến và dây) CA = CB (vì AB ⊥ CD) (3) Từ (1), (2) và (3) ⇒ MSE = CME ⇒ ∆ESM cân tại E ⇒ ES = EM Tương tự bài 39 CM : ADS = SDA Cách 2 : dựa vào tính chất góc ngoài của tam giác Bài 40/83 sdAB + sdCE (1) 2 sdAB + sdBE sđSAD = (2) 2 sđADS = BE = CE (3) Từ (1), (2) và (3) ⇒... SđABx = 90 0 SđAB = 1800 ⇒ SđBAx = 1 SđAB 2 b/ Tâm O nằm bên ngoài BAx : ˆ BAx = O1 (góc có cạnh tương ứng vuông góc) 1 ˆ O1 = AOB 2 1 ⇒ BAx = AOB 2 Mà SđAOB = SđAB Nên SđBAx = GiaoAnHinh hoc 9 1 sđAB 2 Truong THCS Son Hång Gv: Ngun ThÕ Toµn c/ Tâm O nằm bên trong BAx (HS chứng minh tương tự) Hoạt động 3 : Làm bài tập 28 , 29 / 79 SGK (Xem SGV trang 75) 4/ Hướng dẫn về nhà : Làm bài tập 30, 31, 32/ 79 SGK . tập 2, 3 trang 69 SGK Bài 2/ 69 xOs = tOy = 40 0 xOt = sOy = 140 0 xOy = sOt = 180 0 Bài 3/ 69 Đo AOB ⇒ SđAmB ⇒ SđAnB Bài tập về nhà : làm 4, 5, 9 trang 69. BC) Mà BAC = 2 1 BOC Nên SđBAC = 2 1 SđBOC b/ TH2 : Tâm O nằm bên trong BAC Theo TH1, từ hệ thức (1) và (2) ta có : SđBAD = 2 1 BD SđDAC = 2 1 DC ⇒ SđBAC