1. Trang chủ
  2. » Giáo án - Bài giảng

Tài liệu Tuyen tap de tuyen sinh 10 Hinh 9_hot

7 501 4
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 2,51 MB

Nội dung

Tuyển tập 102 bài ôn thi hh9 vao 10 Đây là 102 bài hình học ôn thi vào 10 toán 9 ban thân tôi thấy có nhiều bài tơng tự nhau . Nhìn chung đây là các bài hình học hay đáng để các đồng nghiệp giữ làm tài liệu. Chúc các đồng chí dạy tốt Bài 1 .Cho hình vuông ABCD. Trên cạnh BC, CD lần lợt lấy điểm E, F sao cho ã 0 45EAF = . Biết BD cắt AE, AF theo thứ tự tại G, H. Chứng minh: a) ADFG, GHFE là các tứ giác nội tiếp b) CGH và tứ giác GHFE có diện tích bằng nhau n Bài 2. Cho ABC không cân, đờng cao AH, nội tiếp trong đờng tròn tâm O. Gọi E, F thứ tự là hình chiếu của B, C lên đờng kính AD của đờng tròn (O) và M, N thứ tự là trung điểm của BC, AB. Chứng minh: a) Bốn điểm A,B, H, E cùng nằm trên đờng tròn tâm N và HE// CD. b) M là tâm đờng tròn ngoại tiếp HEF. Bài 3. Cho nửa đờng tròn đờng kính AB. Gọi H là điểm chính giữa cung AB, gọi M là một điểm nằm trên cung AH; N là một điểm nằm trên dây cung BM sao cho BN = AM. Chứng minh: 1. AMH = BNH. 2. MHN là tam giác vuông cân. 3. Khi M chuyển động trên cung AH thì đờng vuông góc với BM kẻ từ N luôn đi qua một điểm cố định ở trên tiếp tuyến của nửa đờng tròn tại điểm B. Gợi ý : 3) Gọi đthẳng qua N vuông góc với MB cắt ttuyến tại B ở Q Chứng minh AMB = BNQ BQ = BA = const 1 I BT 3 : Hai pt đồng dạng với nhau khi và chỉ khi Hoặc 1 và 2 nhỏ hơn 0 Hoặc a a , = b b' = c c' a) Chứng minh góc EHM = góc HCD b) MN// AC, AC CD, CD // HE MN HE mà MN là đường kính của vòng tròng ngoại tiếp ABHE MH = ME Từ M kẻ đường thẳng // BE như hình vẽ + PJ là đường TB của hthang BECF PJ FE + Từ đó dễ thấy MF = ME P K J N M F E H D C A B N Q H O A B M Tuyển tập 102 bài ôn thi hh9 vao 10 Bài 4.Cho (O) đờng kính AC. Trên đoạn OC lấy điểm B và vẽ đờng tròn (O / ) đờng kính BC. Gọi M là trung điểm đoạn AB. Từ M kẻ dây cung DEAB. Gọi I là giao của DC với (O / ) a) Chứng minh ADBE là hình thoi. b) BI// AD. c) I,B,E thẳng hàng . Gọi ý : c: Chứng minh qua B có 2 đờng thẳng: BE và BI Cùng song song với AD Bài 5. Trên đờng thẳng d lấy ba điểm A,B,C theo thứ tự đó. Trên nửa mặt phẳng bờ d kẻ hai tia Ax, By cùng vuông góc với dt. Trên tia Ax lấy I. Tia vuông góc với CI tại C cắt By tại K. Đờng tròn đờng kính IC cắt IK tại P. 1)Chứng minh tứ giác CBPK nội tiếp đợc đờng tròn 2)Chứng minh AI.BK = AC.CB 3)Giả sử A,B,I cố định hãy xác định vị trí điểm C sao cho diện tích hình thang vuông ABKI max. 2 I D E M O' A C B x y a/ Chứng minh KPC = KBC = 90 b/ Chứng minh AIC BCK P K A C B I Tuyển tập 102 bài ôn thi hh9 vao 10 Bài 6. Từ một điểm S ở ngoài đờng tròn (O) vẽ hai tiếp tuyến SA, SB và cát tuyến SCD của đờng tròn đó. a) Gọi E là trung điểm của dây CD. Chứng minh 5 điểm S,A,E,O,B cùng thuộc một đờng tròn b) Nếu SA = AO thì SAOB là hình gì? tại sao? c) Chứmg minh rằng: . . . 2 AB CD AC BD BC DA = = b/ SAOB là hình vuông c/ Lấy E thuộc CD Sao cho ã ã CAE BAD= chứng minh CAE BAD AB.CE = AC. AD (1) CM AB.DE = AC. CB (2) Từ (1) và (2) AB.CD = AC .BD + AD.BC (3) Cminh SAC SDA SA SC SD SB = (4) , AC SA AD SD = (5) SCB SBD BC SC BD SD = (6) Từ 4, 5, 6 AC.BD = AD. BC (7) Từ 3, 7 Đfải CM Bài 7. Cho ABC vuông ở A. Nửa đờng tròn đờng kính AB cắt BC tại D. Trên cung AD lấy một điểm E. Nối BE và kéo dài cắt AC tại F. a) Chứng minh: CDEF là một tứ giác nội tiếp. b) Kéo dài DE cắt AC ở K. Tia phân giác của góc CKD cắt EF và CD tại M và N. Tia phân giác của góc CBF cắt DE và CF tại P và Q. Tứ giác MNPQ là hình gì? Tại sao? c) Gọi r, r 1 , r 2 là theo thứ tự là bán kính của đờng tròn nội tiếp các tam giác ABC, ADB, ADC. Chứng minh rằng 2 2 1 2 r r r = + . 3 E C B A O S D O D A C B E Tuyển tập 102 bài ôn thi hh9 vao 10 Bài 8. Cho ABC có ba góc nhọn nội tiếp trong đờng tròn tâm O, bán kính R. Hạ các đ- ờng cao AD, BE của tam giác. Các tia AD, BE lần lợt cắt (O) tại các điểm thứ hai là M, N. Chứng minh rằng: 1. Bốn điểm A,E,D,B nằm trên một đờng tròn. Tìm tâm I của đờng tròn đó. 2. MN// DE 3. Cho (O) và dây AB cố định, điểm C di chuyển trên cung lớn AB. Chứng minh rằng độ dài bán kính đờng tròn ngoại tiếp CDE không đổi. Y 3 / Dễ chứng minh đợc HC = 2 2 2 2 AK AB 4R AB const = = 4 r r 2 r 1 a/ CM góc C = góc DEB b/ Chứng minh AQB = QPK( cùng bằng 1/2 sđBD ) + Từ đó suy ra KN là đường trung trực của PQ, QPlà đường trung trực của MN + KL MNPQ là hình thoi c/ CM COB AO 2 B BO BO 2 = r r 2 r 2 r = AB BC ; tương tự tacó r 1 r = AB BC r 2 1 r 2 + r 2 2 r 2 = AB 2 + AC 2 CB 2 = 1 Đpcm O1 O2 D O P L M Q N K F D A B A B C E C D E M H A K B C Tuyển tập 102 bài ôn thi hh9 vao 10 Bài 9. Cho nửa đờng tròn tâm O đờng kính AB. Lấy D trên cung AB (D khác A,B), lấy điểm C nằm giữa O và B. Trên nửa mặt phẳng bờ AB có chứa D kẻ các tia Ax và By vuông góc với AB. Đờng thẳng qua D vuông góc với DC cắt Ax và By lần lợt tại E và F . 1) CMR : Góc DFC bằng góc DBC 2) CMR : ECF vuông 3) Giả sử EC cắt AD tại M, BD cắt CF tại N. CMR : MN//AB 4)CMR: Đờng tròn ngoại tiếp EMD và đờng tròn ngoại tiếp DNF tiếp xúc nhau tại 4 a/ Sử dụng tc góc nội tiếp b/ Chng minh tổng 2 góc của ECF bằng 1 vuông c/ ã ã ã ã MCA MDE NDC NMC= = = (cùng phụ với góc MDC) Bài 10. Cho nửa đờng tròn (O) đờng kính AB = 2R. Trên nửa mặt phẳng bờ AB chứa nửa đòng tròn kẻ hai tia tiếp tuyến Ax và By. Qua điểm M thuộc nửa đờng tròn(M khác A và B) kẻ tiếp tuyến thứ ba cắt Ax và By ở C, D. 1. Chứng minh: a) CD = AC+BD b) AC.BD = R 2 2. Xác định vị trí điểm M để tứ giác ABDC có diện tích nhỏ nhất. 3. Cho R = 2 cm, diện tích tứ giác ABDC bằng 32cm 2 . Tính diện tích ABM 2 SABM nhỏ nhất khi CD nhỏ nhất CD nhỏ nhất khi CD song song với AB Khi đó M là điểm chính giữa cung AB 3 5 N d/ Lấy Q là trung điểm của MN khi đó DQ=QM=QN DEM = DAB = DMQ = MDQ DQ là tiếp tuyến của (O') O'DQ = 90 Tương tự O''DQ = 90 Từ đó suy ra điều cần chứng minh Chú ý: MN là tiếp tuyến chung của (O') và (O'') Q O'' O' M F E A B D C 2 Dễ thấy CD = 16; S COD = 16 COD AMB( theo tỉ số CD/ AB = 4) Từ đó rút ra diện tích AMB D C O A B M Tuyển tập 102 bài ôn thi hh9 vao 10 Bài 11. Cho đờng tròn tâm O, đờng kính AB = 2R. Gọi I là trung điểm của AO. Qua I kẻ dây CD vuông góc với AB. 1) Chứng minh: a) Tứ giác ACOD là hình thoi. b) ã ã 1 2 CBD CAD= 2) Chứng minh rằng O là trực tâm của BCD. 3) Xác định vị trí điểm M trên cung nhỏ BC để tổng (MB+MC+MD) đạt giá trị lớn nhất. Bài 12. Cho ABC có 3 góc nhọn AC > BC nội tiếp (O) . Vẽ các tiếp tuyến với (O) tại A và B, các tiếp tuyến này cắt nhau tại M . Gọi H là hình chiếu vuông góc của O trên MC CMR a/MAOH là tứ giác nội tiếp b/ Tia HM là phân giác của góc AHB c/ Qua C kẻ đờng thẳng song song với AB cắt MA, MB lần lợt tại E, F. Nối EH cắt AC tại P, HF cắt BC tại Q. Chứng minh rằng QP // EF. Bài 13. Cho (O) đờng kính AB = 2R, C là trung điểm của OA và dây MN vuông góc với OA tại C. Gọi K là điểm tuỳ ý trên cung nhỏ BM, H là giao điểm của AK và MM . a) CMR: BCHK là tứ giác nội tiếp. b) Tính AH.AK theo R. c) Xác định vị trí của điểm K để (KM+KN+KB) đạt giá trị lớn nhất và tính giá trị lớn nhất đó . Bài 14. Từ một điểm A ở ngoài đờng tròn (O) vẽ hai tiếp tuyến AB, AC và cát tuyến AMN của đờng tròn đó. Gọi I là trung điểm của dây MN, H là giao điểm của AO và BC. Chứng minh: a) Năm điểm A, B, I, O, C cùng nằm trên một đờng tròn. b) 2 AB AM AN= ì và ã ã AHM ANO= . Bài 15. Cho tam giác ABC không cân có ba góc nhọn nội tiếp trong đờng tròn tâm O. Hai đờng cao AI và BE cắt nhau tại H. 1/. Chứng minh CHI = CBA . 2/. Chứng minh EI CO. 6 Khai thác: 1/ CM AMON là hình thoi 2/ CM MNB đều 3/ CM KM+KB= KN Dễ thấy MNB đều Lấy E trên NK sao cho KM=KE +Dễ chứng minh được MK+KB = KN (do MEN= MKB) +KN AB; MK+KN+KB 2AB =4R "Dấu = khi K là điểm chính giữa cung MB" E H N M C O A B K Tuyển tập 102 bài ôn thi hh9 vao 10 3/. Cho góc ACB = 60 0 . Chứng minh CH = CO. Bài 16. Cho tứ giác ABCD có hai đỉnh B và C ở trên nửa đờng tròn đờng kính AD, tâm O. Hai đờng chéo AC và BD cắt nhau tại E. Gọi H là hình chiếu vuông góc của E xuống AD và I là trung điểm của DE. Chứng minh rằng: a) Các tứ giác ABEH, DCEH nội tiếp đợc; b) E là tâm đờng tròn nội tiếp tam giác BCH; c) Năm điểm B, C, I, O, H ở trên một đờng tròn. Bài 17.Cho nửa đờng tròn tâm O có đờng kính AB = 2R. Kẻ hai tia tiếp tuyến Ax và By của nửa đờng tròn (Ax, By và nửa đờng tròn cùng thuộc một nửa mặt phẳng bờ AB). Gọi M là điểm tùy ý thuộc nửa đờng tròn (khác A và B). Tiếp tuyến tại M của nửa đờng tròn cắt Ax tại D và cắt By tại E. a) Chứng minh rằng: DOE là tam giác vuông. b) Chứng minh rằng: 2 AD BE = Rì . c) Xác định vị trí của điểm M trên nửa đờng tròn (O) sao cho diện tích của tứ giác ADEB nhỏ nhất. Bài 18. Cho hai đờng tròn (O 1 ) và (O 2 )có bán kính bằng nhau và cắt nhau ở A và B . Vẽ cát tuyến qua B không vuông góc với AB, nó cắt hai đờng tròn ở E và F . (E (O 1 ); F(O 2 )). 1. Chứng minh AE = AF 2. Vẽ cát tuyến CBD vuông góc với AB (C (O 1 ); D(O 2 )).Gọi P là giao điểm của CE và FD . Chứng minh rằng: a. Các tứ giác AEPF và ACPD nội tiếp đợc đờng tròn . b. Gọi I là trung điểm của EF . Chứng minh ba điểm A, I, P thẳng hàng. 3. Khi EF quay quanh B thì I di chuyển trên đờng nào ? Bài 19. Cho nửa đờng tròn tâm O đờng kính AB bằng 2R. M là một điểm tuỳ ý trên nửa đờng tròn (M khác A và B). Kẻ hai tiếp tuyến Ax và By với nửa đờng tròn. Qua M kẻ tiếp tuyến thứ ba cắt hai tiếp tuyến Ax và By tại C và D. a) Chứng minh rằng: COD vuông . b) Chứng minh rằng: AC.BD = R 2 . c) Gọi E là giao của OC và AM; F là giao của OD và BM. Chứng minh rằng: EF = R d) Tìm vị trí M để S ABCD đạt giá trị bé nhất. Bài 20. Cho M là một điểm tuỳ ý trên nửa đờng tròn tâm O, đờng kính AB = 2R(M không trùng với A và B). Vẽ các tiếp tuyến Ax, By, Mz của nửa đờng tròn đó. Đờng Mz cắt Ax và By tại N và P. Đờng thẳng AM cắt By tại C và đờng thẳng BM cắt cắt Ax tại D. CMR: a) Tứ giác AOMN nội tiếp và NP = AN+BP b) N, P là trung điểm của AD và BC c) AD.BC = 4 R 2 d) Xác định vị trí điểm M để S ABCD có giá trị nhỏ nhất 7 . Tuyển tập 102 bài ôn thi hh9 vao 10 Đây là 102 bài hình học ôn thi vào 10 toán 9 ban thân tôi thấy có nhiều bài tơng tự. O' A C B x y a/ Chứng minh KPC = KBC = 90 b/ Chứng minh AIC BCK P K A C B I Tuyển tập 102 bài ôn thi hh9 vao 10 Bài 6. Từ một điểm S ở ngoài đờng tròn

Ngày đăng: 26/11/2013, 01:12

TỪ KHÓA LIÊN QUAN

w