mae 101 fpt fall 2019 nguyenvantien0405

32 159 1
mae 101 fpt fall 2019 nguyenvantien0405

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Nhân một dòng (hoặc cột) với một số k  matrix thu được có định thức gấp k lần det của matrix cũ.. Use the fact: if X is an eigenvector of a matrix A corresponding an eigenvalue k, th[r]

(1)

Chapter 3

(2)

OUR GOAL

o How to find the determinant of a square

matrix?

(3)

Determinant of a square matrix

• Determinant of an nxn matrix A are

denoted by det(A) or |A|

• For x matrices:

Or

(4)

• 3 x 3matrices:

det(A) =

+a.det - b.det + c.det

= aei – afh – (bdi – bgf) + cdh – cge

(5)

Example

(6)

The determinant of 3x3 matrix (only)

+ + +

-3 2

-2

2

1 col col3 co

a b c a b

d e f d

col col l

e

g h i g h

(7)

Definition

If A is an mxm matrix then the determinant of A is defined by

detA=ai1ci1(A)+ai2ci2(A)+…+aimcim(A)

• or detA= a1jc1j(A)+a2jc2j(A)+…+amjcmj(A)

1 2 1 5

6 4 0

0 6 4 0

1 7 1 0 68

0 7 1 0

1 8 2

0 1 8 2

  

        

11 12 13

(1,1) (1,2) (1,3)

det

                         cofactor c

a a a

cofactor

ofactor

e f d

a b c

a f d e

A d e f

h i g i g h

g h

c

i

(8)

The determinant of triangular matrices

(9)

Examples

Find det(A), det(B), det(AB), det(A+B)

•  

det(A.B) = det(A).det(B)

(10)

Examples

• Find det(A), det(3A), det(A2) if

•  

o det(cA) = cndet(A)

(11)

Properties

For all nxn matrices A, B:

o det(A.B) = det(A).det(B) o det(kA) = kndet(A)

o det(AT) = det(A)

o det(A-1) = 1/det(A)

(12)

The determinant of triangular matrices

(13)

Examples

o Find the determinants

// from A, interchange row and row

// from A, -2.(row 1)

(14)

Examples

o Find the determinants And

The second matrix is obtained from the first matrix by (2*row1 + row3), they have the same

(15)

Determinants and elementary operators

1 Đổi chỗ dòng (hoặc cột) cho nhau, matrix thu matrix ban đầu có định thức trái dấu // ri  rj

2 Nhân dòng (hoặc cột) với số k  matrix thu có định thức gấp k lần det matrix cũ //kri

3 Nếu nhân c vào dòng ri cộng vào dòng rj (hoặc thực cột)  định thức

(16)

Examples

1 Do yourself: Find

1

-  3

1

4 3

0 1

2 9

3 2 2 2 1

3 4 0

1 1 1

0 8

2

4

2 2.7

0 0 7 0 1

0

1

0 24

2

7 0 24

2                                                   r r

r r r r

r r r rr r

   

3

24

7

1

0

2.7 2.7.1 1 23

0 1

0 0 23

(17)

Next

• det(A) and existence of A-1

o A is invertible  det(A) 

(18)

(i,j)-cofactor

(i,j)-cofactor of a matrix [aij]

is defined by

cij = (-1)i+jdet(Aij),

where Aij is the matrix obtained from A by

deleting row ith and column jth

For example, given A = Then, c23 = (-1)2+3det

= -1.(-1) =

•  

row column

(19)

How to find A-1?

• An nxn matrix A is invertible if and only if

det(A) 0

Furthermore, A-1

(20)

Adjugate matrix

• The adjugate matrix of A is the matrix

• For example,

21 11 12 2 2 n n n n nn c c c c adjA c c c c c             

3 2

3 1

6

adjA              

 1  1

11 12

11 12 13 21 22 23

1

3 1

1 We have c 3, c 3,

0

2

c 3, c 3, c

c 2, c 1, c 4,

A  

                          

31 32 33

(21)

Theorem of Adjugate Formula

If A is any square matrix, then

• A(adjA)=(detA)I

• In particular, if detA≠0 then A is invertible and

• For example,

Note that […]

1

det A

AadjA

1

1 2

0 det and adjA= 1

0 0

2 1 / /

1

0 1 / /

2

0 0

(22)

Diagonal matrices

• An nxn matrix is called diagonal matrix if all its

entries off the main diagonal are zeros

• For example

 

0 0 0

3

2 3, 2,1,4

1

0 0 0

diag                  2

1

0

0

, , , n

(23)

Diagonalization

• Diagonalizing a matrix A is to find an invertible matrix P such

that P-1AP is a diagonal matrix P-1AP=diag(

1, 2,…, n)

For example,

o Given a matrix A,

o Find a matrix P,

o Compute P-1AP, •  

1

0

P AP  

  

(24)

Nếu t≠0 X=(t,t) gọi véc tơ riêng ứng với x=-2

Nếu t≠0 X=(-4t,t) gọi véc tơ riêng (eigenvectors) ứng với giá trị riêng x=3

Các giá trị riêng (eigenvalues) A

Đa thức đặc trưng (characteristic polynomial)

How to find P?

Relationship between eigenvalues and eigenvectors

: eigenvalue (a number)

X: -eigenvector (remember: vector X≠0) (I-A)X=0  AX=X

              2

Find c =det :

1

c

4

x=3: solve the system

4

4

4

4

x=-2: solve the system

0

A

A

x

x xI A x x x x

x

x x x

x y

I A X

x y

y t x

X t

x t y

x y

I A X

x y y t x                                                                 1

4

Choose P=

1

x

X t

t y

P AP

                                  

4 4 4

, , , , are allowed In case P= ,

1 1 1 1 1

P   P    P   P      P AP  

    

(25)

Find the eigenvalues ang eigenvectors and then diagonalize the matrix

The characteristic polynomial of A is

Example 1 1 0              P P AP    

0 : Solve the system 0I-A X=0

1 1 1

2 0 0

3: Solve the system 3I-A X=0

2 1

2 0 0

                                                     x X t x X t 1 2

A  

 

1

( ) ( 1)( 2) ( 3) 0

2

0,3 are eigenvalues

                 A x

c x x x x x x x

(26)

Use the fact: if x1, x2,…, xm are eigenvalues of an nxn matrix , then det(A) = x1.x2…xm

First, det(A) =

We know that det(A) = the product of eigenvalues

(27)

Use the fact: if X is an eigenvector of a matrix A corresponding an eigenvalue k, then

(28)

Theorem

A is diagonalizable iff every eigenvalue  of multiplicity m yields

exactly m basic eigenvectors, that is, iff the general solution of the

system (I-A)X=0 has exactly m parameters

For example,

When is A diagonalizable?

       

 

2

0

is not diagonalizable

1

In fact, c det 2 1

1

1 1

1 (multiplicity 2): solve the system

1 0 0

1

one parameter not diag

1

A

A x

x xI A x x x x x x

x

x I A X

(29)

When is A diagonalizable?

       

 

2

0 1

1 is not diagonalizable 0

1

In fact, c det 1 2

2

1 1 1

1 (multiplicity 2): solve the system 1 1 0 0

2 0

A

A x

x xI A x x x x x x x

x

x I A X

                                                    

one parameter not diagonalizable

 

 

 

(30)

When is A diagonalizable?

       

 

2

0 1

1 is not diagonalizable 0

1

In fact, c det 1 2

2

1 1 1

1 (multiplicity 2): solve the system 1 1 0 0

2 0

A

A x

x xI A x x x x x x x

x

x I A X

                                                    

one parameter not diagonalizable

 

 

 

(31)

SUMMARY

o Determinants of nxn matrices

o Properties:

o det(AB) = det(A)det(B)

o det(cA) = cndet(A)

o det(AT) = det(A)

o det(A-1) = 1/det(A)

o Determinants and elementary operators

o Determinants and inverse of a matrix

o An nxn matrix has an inverse if and only if det(A) 

o A-1 = adj(A)/detA

o Diagonalization

o Characteristic polynomial

o Eigenvalues

(32)

Ngày đăng: 02/04/2021, 15:25

Tài liệu cùng người dùng

Tài liệu liên quan