1. Trang chủ
  2. » Giáo án - Bài giảng

Gián án ÔN TẬP HKiI - TÍCH PHÂN ĐỔI BIẾN

18 373 3
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 18
Dung lượng 579 KB

Nội dung

GIẢI TÍCH 12 CHUYÊN ĐỀ : ÔN TẬP ÔN TẬP CUỐI NĂM CUỐI NĂM TIẾT 3 : KIEÁN THÖÙC CAÀN NHÔÙ  ĐỊNH NGHĨA ∫ −== b a b a )a(F)b(F)x(Fdx)x(f  CHÚ Ý ∫ = a a 0dx)x(f b a a b f(x)dx f(x)dx = − ∫ ∫  TÍNH CHẤT ∫ ∫ = b a b a dx)x(fkdx)x(kf TÍNH CHẤT 1 TÍNH CHẤT 2 TÍNH CHẤT 3 ∫ ∫ ∫ ±=± b a b a b a dx)x(gdx)x(fdx)]x(g)x(f[ b c b a a c f (x)dx f (x)dx f (x)dx = + ∫ ∫ ∫ Loại 1 Loại 1 : : I. PHƯƠNG PHÁP ĐỔI BIẾN SỐ Đặt x =ϕ(t)⇒dx=ϕ’(t)dt Đổi cận x=a ⇔ a= ϕ(t)⇒ giátrò t x=b ⇔ b= ϕ(t)⇒ giátrò t Chuyển I từ biến x về biến t và tính tích phân 1/ Hàm số f(x) có chứa đặt x= với t 2/ Hàm số f(x) có chứa đặt x=asint với t 3/ Hàm số f(x) có chứa đặt x=atgt với t đặt x=atgt với t 4/ Hàm số f(x) có chứa 2 2 x a − a sin t ; \{0} 2 2 π π   ∈ −     2 2 a x− ; 2 2 π π   ∈ −     2 2 a x+ ; 2 2 π π   ∈ −  ÷   2 2 1 x a + ; 2 2 π π   ∈ −  ÷   CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN Dấu hiệu Tính các tích phân sau : 1 2 0 1 1) I dx 1 x = + ∫ Đáp số : 1 I 3 = BÀI 1 BÀI 1 BÀI 1 BÀI 1 Đáp số : I 4 π = 1 2 0 2) I 1 x dx = − ∫ Đặt x tan t = x sin t= Đặt Đáp số : I 4 π = 1 2 0 3) I x x 1.dx = + ∫ 2 t x 1 = + Đặt 2 1 dx dt cos t ⇒ = dx costdt⇒ = tdt dx x ⇒ = LG1 LG2 LG3 DẤU HIỆU Loại 2 Loại 2 : : Đặt t = u(x) Đặt t = u(x) ⇒ dt = u’(x).dx dt = u’(x).dx Đổi cận: Đổi cận: x = a x = a ⇒ t = u(a) t = u(a) ⇒ Giá trị t x = b x = b ⇒ t = u(b) t = u(b) ⇒ Giá tr tị Chuyển tích phân I về biến t rồi tính Chuyển tích phân I về biến t rồi tính PHƯƠNG PHÁP ĐỔI BIẾN SỐ Tính các tích phân sau : 1 2 3 0 3x 1) I dx x 1 = + ∫ Đáp số : 2eI −= BÀI 2 BÀI 2 BÀI 2 BÀI 2 Đáp số : I ln 2= Đặt 3 t x 1 = + Đáp số : 1I = e 2 1 ln x 3) I dx x = ∫ 2 1 x 2 0 2) I e .xdx + = ∫ Đặt 2 t x 2 = + Đặt t ln x = LG1 LG2 LG3 DẤU HIỆU BÀI 3 BÀI 3 BÀI 3 BÀI 3 Tính các tích phân sau : 2 2 1 6x 1 1) I dx 3x x 1 + = + − ∫ 2 3 2) I 6cos x 1.sin xdx π π = + ∫ 19 2 3 0 xdx 3) I x 8 = + ∫ Đặt 2 t 3x x 1= + − dt (6x 1)dx ⇒ = + Đặt t 6cos x 1 = + 2 t 6cosx 1 tdt dx 3sin x ⇒ = + ⇒ = − Đặt 2 3 t x 8= + 3 2 2 t x 8 3t dt dx 2x ⇒ = + ⇒ = HD HD HD LG1 LG2 LG3 DẤU HIỆU GIẢI TÍCH 12 GIẢI TÍCH 12  Xem lại phương pháp tính tích phân từng phần  Làm hoàn chỉnh các bài tập ôn thi. Chào tạm biệt quý thầy cô Xin chúc sức khỏe và thành đạt Baứi 1 Baứi 1 Baứi giaỷi Baứi giaỷi : : 1 2 0 1 1) I dx 1 x = + ẹaởt : 2 1 x tan t dx dt cos t = = ẹoồi caọn : x 0 t 0 x 1 t 4 = = = = Vaọy 1 4 4 2 2 2 2 2 0 0 0 4 4 0 0 1 1 dt dt I dx cos t 1 x 1 tan x cos t cos t dt t 4 = = = + + = = = [...]... = cos tdt Đổi cận : x = 0 ⇒ t = 0 π x =1⇒ t = 2 Vậy 1 π 2 π 2 0 0 0 π 2 π 2 I = ∫ 1 − x 2 dx = ∫ 1 −sin 2 t cos tdt = ∫ cos t cos tdt = ∫ cos 2 tdt = 0 = π 2 1 1 1  1 + cos 2t ) dt =  t + sin 2t ÷ ∫( 20 2 2 0 1 π 1 π 1  1  π + sin 2 ÷− 0 + sin 2.0 ÷=  22 2 2 2 2  4 Bàii 1 Bà 1 1 3) I = ∫ x x + 1.dx 2 0 • Bài giải : Đặt : t = x 2 + 1 ⇒ t 2 = x 2 + 1 ⇒ 2tdt = 2xdx ⇒ dx = tdt x Đổi cận :... 1 1 Bàii 2 Bà 2 • Bài giải : 2 3x 1) I = ∫ 3 dx 0 x +1 Đặt : t = x 3 + 1 ⇒ dt = 3x 2dx ⇒ dx = Đổi cận : dt 3x 2 x = 0 ⇒ t =1 x =1⇒ t = 2 Vậy 1 2 2 2 2 2 3x 3x dt dt I = ∫ 3 dx = ∫ = ∫ = ln t 1 = ln 2 2 t 3x 0 x +1 1 1 t 1 Bàii 2 Bà 2 2) I = ∫ e x2 +2 xdx 0 • Bài giải : Đặt : t = x 2 + 2 ⇒ dt = 2xdx ⇒ dx = Đổi cận : dt 2x x =0⇒t =2 x =1⇒ t = 3 Vậy 1 I = ∫e 0 x2 +2 3 3 dt 1 t 1 3 2 xdx = ∫ e x = e =... ) 2x 2 2 2 2 t Bàii 2 Bà 2 e ln 2 x 3) I = ∫ dx x 1 • Bài giải : 1 Đặt : t = ln x ⇒ dt = dx ⇒ dx = xdt x Đổi cận : Vậy x =1⇒ t = 0 x = e ⇒ t =1 e 2 1 2 3 1 ln x t t 1 I=∫ dx = ∫ xdt = = x 30 3 1 0 x Lược Giảii Lược Giả 6x + 1 1) I = ∫ 2 dx 1 3x + x − 1 2 Đặt : t = 3x 2 + x − 1 ⇒ dt = (6x + 1)dx Đổi cận : x = 1 ⇒ t = 3 x = 2 ⇒ t = 13 13 13 6x + 1 6x + 1 dt dt I=∫ 2 dx = ∫ = ∫ = ln t t 6x + 1 3 t 1 3x... 6cos x + 1 ⇒ t 2 = 6cos x + 1 ⇒ 2tdt = −6sin xdx tdt ⇒ dx = − 3sin x Đổi cận : x = π ⇒ t = 2 π 2 I=∫ π 3 =− 3 π x = ⇒ t =1 2 − tdt 11 2 6cos x + 1.sin xdx = ∫ t sin x = − ∫ t dt 3sin x 32 2 1 3 1 1t 1 8 7 =− + = 332 9 9 9 Lược Giảii Lược Giả 3) I = 19 ∫ 0 Đặt t = 3 x 2 + 8 xdx 3 x2 + 8 ⇒ t 3 = x 2 + 8 ⇒ 3t 2dt = 2xdx 3t 2dt ⇒ dx = 2x Đổi cận : x = 0 ⇒ t = 1 x =1⇒ t = 3 19 xdx 3 2 3 2 3 x 3t dt 3 3t I= . PHƯƠNG PHÁP ĐỔI BIẾN SỐ Đặt x =ϕ(t)⇒dx=ϕ’(t)dt Đổi cận x=a ⇔ a= ϕ(t)⇒ giátrò t x=b ⇔ b= ϕ(t)⇒ giátrò t Chuyển I từ biến x về biến t và tính tích phân 1/ Hàm. Chuyển tích phân I về biến t rồi tính Chuyển tích phân I về biến t rồi tính PHƯƠNG PHÁP ĐỔI BIẾN SỐ Tính các tích phân sau : 1 2 3 0 3x 1) I dx x 1 = + ∫ Đáp

Ngày đăng: 25/11/2013, 22:11

TỪ KHÓA LIÊN QUAN

w