Tìm m để hàm số có cực đại, cực tiểu và các điểm cực trị của đồ thị cùng với gốc toạ độ tạo thành một tam giác vuông tại O.. Giải phương trình: 1+sin2xcosx+1+cos2xsinx=1+sin2x.[r]
(1)A - 2002 Câu I: (2,5điểm) Cho hàm số y=-x3+3mx2+3(1-m2)x+m3-m2 Khảo sát biến thiên và vẽ đồ thị (C) hàm số m=1 Tìm k để phương trình –x3+3x2+k3-3k2=0 có nghiệm phân biệt Viết phương trình đường thẳng qua cực trị đồ thị (C) Câu II: (1,5điểm) Cho phương trình log 32 x log 32 x 2m Giải phương trình m=2 Tìm m để phương trình có ít nghiệm thuộc đoạn 1;3 Câu III: (2điểm) Tìm nghiệm thuộc trên khoảng 0; 2 phương trình: cos3x+sin3x s inx+ cos2x+3 sin x Tính diện tích hình phẳng giới hạn các đường : y x x và y=x+3 Câu IV: (2điểm) Cho hình chóp tam giác S.ABC đỉnh S độ dài cạnh đáy a.Gọi M và N là trung điểm các cạnh SB và SC Tính theo a diện tích tam giác AMN biết mặt phẳng (AMN) vuông góc với mặt phẳng (SBC) Trong không gian với hệ trục toạ độ Oxyz cho hai đường thẳng d x 1 t x y z và d’ có p.trình d : và d ' : y 2t x y 2z z 2t 1.1 Viết p.trình mặt phẳng (P) chứa d và song song với d’ 1.2 Cho M(2;1;4) Tìm toạ độ điểm H thuộc d’ cho độ dài đoạn MH có độ dài nhỏ Câu V: (2điểm) Trong mặt phẳng với hệ trục toạ độ đêcác vuông góc Oxy Xét tam giác ABC vuông A Phương trình đường thẳng BC là: x y Các đỉnh A và B thuộc trục hoành và bán kính đường tròn nội tiếp tam giác ABC Tìm toạ độ trọng tâm G tam giác ABC Cho khai triển nhị thức: n n n 1 n 1 n x x x 1 x 1 x 1 x21 3x 3x 0 1 n 1 n Cn Cn Cn Cn (n nguyên dương) biết khai triển đó Cn 5Cn và số hạng thứ 20n Tìm n và x Lop12.net (2) A - 2003 Câu I: Cho hàm số y mx x m x 1 1 Khảo sát biến thiên và vẽ đồ thị hàm số (1) m=1 Tìm m để hàm số trên cắt trục hoành điểm phân biết và hai điểm đó có hoành độ dương Câu II: cos2x sin x sin x 1+tgx 1 x y x y Giải hệ phương trình: 2 y x Giải phương trình: c otgx-1= Câu III: Cho hình lập phương ABCD.A’B’C’D’ Tính số đo góc nhị diện B; A ' C; D Trong không gian với hệ trục toạ độ đềcác vuông góc Oxyz cho hình hộp chữ nhật ABCDA’B’C’D’ có A trùng với gốc toạ độ và B(a;0;0) D(0;a;0) A’(0;0;b) (a>0 và b>0) Gọi M là trung điểm cạnh CC’ a) Tính thể tích khối tứ diện BDA’M theo a và b b) Xác định tỷ số a để hai mặt phẳng (A’BD) và b (MBD) vuông góc với Câu IV: Tìm hệ số x8 khai triển nhị thức Newton n n 1 n x x biết Cn Cn 3 n 3 Tính tích phân I dx x x2 Câu V: Cho x , y và z là ba số dương và z+y+z Chứng minh : x2 1 y z 82 x y z Lop12.net (3) A - 2004 Câu I: Cho hàm số y x 3x x 1 1 Khảo sát hàm số (1) Tìm m để đường thẳng y=m cắt đồ thị trên điểm A và B cho AB=1 Câu II: x 16 Giải bất phương trình x 3 x 3 7 x x 3 log y x log y 4 Giải hệ phương trình x y 25 Câu III: Trong mặt phẳng toạ độ Oxy cho hai điểm A(0;2) và B 3; 1 Tìm toạ độ trực tâm và tâm đường tròn ngoại tiếp tam giác OAB Trong k.gian với hệ trục toạ độ Oxyz cho hình chóp S.ABCD có đáy ABCD là hình thoi AC cắt BD gốc toạ độ O Biết A(2;0;0) B(0;1;0) S 0;0;2 Gọi M là trung điểm SC a) Tính góc và khoảng cách hai đường AS và BM b) Giả sử mặt phẳng (ABM) cắt đường thẳng SD N Tính thể tích khối chóp S.ABMN Câu IV: Tính tích phân I x 1 x 1 dx Tìm hệ số x5 khai triển thành đa thức của: 1 x 1 x Câu V: Cho tam giác ABC không tù thoả điều cos2A+2 2cosB+2 2cosC=3 Tính góc tam giác ABC Lop12.net kiện: (4) A - 2005 Câu I: Cho hàm số y=mx+ x (Cm) Khảo sát hàm số m= Tìm m để hàm số (Cm) có cực trị và khoảng cách từ điểm cực tiểu (Cm) đến tiệm cận xiên (Cm) Câu II: Giải bất phương trình x x x Giải phương trình: cos23x.cos2x-cos2x=0 Câu III: Trong mặt phẳng với hệ trục toạ độ Oxy cho hai đường thẳng d1:x-y=0 và d2:2x+y-1=0 Tìm toạ độ các đỉnh hình vuông ABCD biết đỉnh A thuộc d1, C thuộc d2 và các đỉnh B và D thuộc trục hoành Trong không gian với hệ trục toạ độ Oxyz cho đường thẳng d: x 1 y z và mặt phẳng (P):2x+y-2z+9=0 1 a) Tìm toạ độ điểm I thuộc đường thẳng d cho khoảng cách từ I đến mặt phẳng (P) b) Tìm toạ độ giao điểm A đường thẳng d và mặt phẳng (P) Viết p.trình tham số đường thẳng nằm mặt phẳng (P) biết qua A và vuông góc với d Câu IV: Tính tích phân I sin x s inx 3cosx dx Tìm số nguyên dương n cho n 1 C 2.2C22n 1 3.22 C23n 1 4.23 C24n 1 2n 1 22 n C22nn11 2005 Câu V: Cho x y và z là các số nguyên dương thoả Chứng minh rằng: 1 1 x y z x y z x y 2z Lop12.net 1 4 x y z (5) A - 2006 PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH Câu I: (2điểm) Khảo sát biến thiên và vẽ đồ thị hàm số y=2x3-9x2+12x-4 Tìm m để phương trình sau có nghiệm phân biệt: x x 12 x m Câu II: (2điểm) Giải phương trình: sin x cos x s inx.cosx 2s inx 0 x y xy Giải hệ phương trình x 1 y 1 Câu III: (2điểm) Trong không gian với hệ trục toạ độ Oxyz cho hình lập phương ABCD.A’B’C’D’ với A(0;0;0) B(1;0;0) D(0;1;0) A’(0;0;1) GọI M và N là trung điểm AB và CD Tính khoảng cách hai đường thẳng A’C và MN Viết phương trình mặt phẳng chứa AC’ và tạo với mặt phẳng Oxy góc biết cos = Câu IV: (2điểm) Tính tích phân I sin x dx cos x 4sin x Cho số thực x, y ( ) thoả mãn (x+y)xy=x2+y2-xy Tính giá 1 trị lớn và nhỏ biểu thức: A x y PHẦN RIÊNG (Thí sinh chọn hai câu sau) Câu Va: Trong mp Oxy, cho d1:x+y+3=0 ; d2:x-y-4=0 và d3: x-2y=0 Tìm toạ độ điểm M trên d3 cho khoảng cách từ M đến d1 lần khoảng cách từ M đến d2 Tìm hệ số x26 khai triển nhị thức Newton : n 1 n 20 7 x biết C2 n 1 C2 n 1 C2 n 1 x Câu VIa: Giải phương trình: 3.8x+4.12x-18x-2.27x=0 Cho hình trụ có đáy là hai đường tròn tâm O và O’ Bán kính đáy chiều cao và a Trên đường tròn tâm O lấy điểm A trên đường tròn tâm O’ lấy điểm B cho AB=2a Tính thể tích khối tứ diện OO’AB Lop12.net (6) A - 2007 PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH Câu I: (2điểm) Cho hàm số y x m 1 x m 4m x2 Khảo sát biến thiên và vẽ đồ thị hàm số m=-1 Tìm m để hàm số có cực đại, cực tiểu và các điểm cực trị đồ thị cùng với gốc toạ độ tạo thành tam giác vuông O Câu II: (2điểm) Giải phương trình: (1+sin2x)cosx+(1+cos2x)sinx=1+sin2x Tìm m để p.trình sau có nghiệm thực : x 1 m x x2 1 Câu III: (2điểm) Trong không gian với hệ trục toạ độ Oxyz cho hai x 1 2t x y 1 z đường thẳng d1 : và d : y 1 t 1 z Chứng minh hai đường thẳng trên chéo Viết phương trình đường thẳng d vuông góc với mặt phẳng (P): 7x+y-4z=0 và cắt hai đường thẳng d1 và d2 Câu IV: (2điểm) Tính diện tích hình phẳng giới hạn bởi: y=(e+1)x và y=(1+ex)x Cho x , y và z là các số thực dương thoã mãn điều kiện xyz=1 Tính giá trị nhỏ biểu thức: P x2 y z y y 2z z y2 z x z z 2x x z2 x y x x 2y y PHẦN RIÊNG (Thí sinh chọn hai câu sau) Câu Va: (2điểm) Trong mp Oxy cho tam giác ABC có A(0;2) B(-2;-2); C(4;-2) Gọi H là chân đường cao kẻ từ B; M và N là trung điểm AB và BC Viết p.t đường tròn qua các điểm M N và H C/ m rằng: 1 22 n C2 n C2 n C2 n C22nn 1 2n 2n Câu Vb: 2điểm x 3 x 3 log 1 Giải bất phương trình: log 3 Cho hình chóp S.ABCD có đáy là hình vuông cạnh a Mặt bên (SAD) là tam giác và nằm mặt phẳng vuông góc với đáy Gọi M,N và P là trung điểm các cạnh SB, BC và CD Chứng minh AM BP và tính thể tích khối tứ diện CMNP Lop12.net (7) A - 2008 PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH mx 3m x Câu I: (2điểm) Cho hàm số y (1) x 3m Khảo sát biến thiên và vẽ đồ thị hàm số (1) m=1 Tìm m để góc hai tiệm cận hàm số 450 7 Câu II: (2điểm) Giải p.trình: 4sin x 3 s inx sin x x y x y xy xy Giải hệ phương trình: x y xy 1 x Câu III: (2điểm) Trong không gian với hệ trục toạ độ Oxyz cho điểm x 1 y z A(2;5;3) và đường thẳng d : 2 Tìm toạ độ hình chiếu vuông góc A lên d Viết pt mp(P) chứa d cho khoảng cách từ A đến (P) lớn Câu IV: (2điểm) Tính tích phân I tg x 0 cos2 x dx Tìm m để phương trình sau có đúng hai nghiệm thực: 2x 2x x x m m R PHẦN RIÊNG (Thí sinh chọn hai câu sau) Câu Va: Trong mp Oxy hãy viết pt chính tắc Elip biết tâm sai elip và hình chữ nhật sở elip có chu vi 20 Cho khai triển 1 x a0 a1 x a2 x a3 x an x n n a a1 a2 nn =4096 2 Tìm số lớn các số a0 ; a1 ; a2 ; ; an thoả mãn hệ thức a0 Câu Vb: Giải p.trình log x 1 x x log x 1 x 1 2 Cho lăng trụ ABC.A’B’C’ có độ dài cạnh bên 2a, đáy là tam giác vuông A AB=a; AC= a và hình chiếu đỉnh A’ trên mặt phẳng ABC là trung điểm cạnh BC Tính theo a thể tích khối chóp A’.ABC và tính cosin AA' , B ' C ' Lop12.net (8) A - 2009 PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH Câu I: (2điểm) Cho hàm số y x x mx (m là tham số) Khảo sát biển thiên và vẽ đồ thị hàm số trên Tìm m để hàm số đã cho nghịch biến trên khoảng 0; Câu II: (2điểm) Giải p.t: 2cos x cosx 2cosx sin x Giải phương trình log x log x log 2 Câu III: (1điểm) Tính diện tích hình phẳng giới hạn đồ thị hàm số y e x , trục hoành và đường thẳng x=ln3 và x=ln8 Câu IV: (1điểm) Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, SA=SB=a, mặt phẳng SAB vuông góc với mặt phẳng ABCD Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCD Câu V: (1điểm) Cho x, y, z dương thỏa mãn x+y+z=1 Tìm GTNN biểu thức : P x2 y z yz y2 z x zx z2 x y xy PHẦN RIÊNG (Thí sinh chọn hai câu sau) A Theo chương trình chuẩn Câu VIa: 2điểm Trong mp Oxy, cho đường tròn (C) có p.trình x2+y2-6x+5=0 Tìm điểm M thuộc trục tung cho qua điểm M kẻ tiếp tuyến với đường tròn mà góc tiếp tuyến đó 600 x 2t Trong k.gian Oxyz cho M(2;1;0) và đ.thẳng d: y 1 t z t Viết phương trình đường thẳng qua M cắt và vuông góc với d Câu VIIa: (1điểm ) Tìm hệ số x2 khai triển P x x B Theo chương trình nâng cao Câu VIb: 2điểm Trong mp Oxy, cho đường tròn (C): x2+y2-6x+5=0 Tìm điểm M thuộc trục tung cho qua điểm M kẻ tiếp tuyến với đường tròn mà góc tiếp tuyến đó 600 x 1 y 1 x Trong kgian Oxyz cho M(2;1;0) và đthẳng d 1 Viết ptrình chính tắc đthẳng qua M cắt và vuông góc với d Câu VIIb: (1điểm) Tìm hệ số x3 khai triển: P x x Lop12.net (9) A - 2009 Câu I: (2 điểm) Cho hàm số y x2 (1) 2x Khảo sát biến thiên và vẽ đồ thị hàm số (1) Viết pttt với đồ thị hàm số (1) biết tiếp tuyến đó cắt trục hoành và trục tung A, B và OAB cân gốc tọa độ O 1 sin x cosx Câu II: (2 điểm) Giải phương trình: 1 sin x 1 sin x Giải phương trình: 3 x x x Câu III: (1 điểm) Tính tích phân: I cos3 x cos xdx Câu IV: (1 điểm) Cho hình chóp S.ABCD có đáy là hình thang vuông A và D, AB=AD=2a, CD=a Góc hai mp(SBC) và (ABCD) 600 Gọi I là trung điểm AD Biết hai mp (SBI) và (SCI) cùng vuông góc với mặt phẳng (ABCD) Tính thể tích khối chóp S.ABCD theo a Câu V: (1 điểm) Cho x, y, z >0 thỏa mãn x x y z yz C/m: x y x z 3 x y x z y z y z PHẦN RIÊNG Câu VIa: Cho hình chữ nhật ABCD có I(6;2) là giao điểm AC và BD M(1;5) thuộc đường thẳng AB và trung điểm E cạnh CD thuộc đường thẳng : x y Viết phương trình đường thẳng AB 2 2 Cho S : x y z x y z 11 ,(P):2x-2y-z-4=0 C/m (P) cắt (S) theo đường tròn Xác định tâm và bán kính đường tròn đó Câu VIIa: Gọi z1 và z2 là hai nghiệm phức phương trình: z z 10 Tính giá trị biểu thức A z1 z2 2 2 Câu VIb: Cho C : x y x y , : x my 2m Gọi I là tâm đường tròn (C) Tìm m để cắt (C) điểm phân biệt cho diện tích tam giác IAB lớn Cho (P): x-2y+2z-1=0, 1 : x y z , : x y z 1 2 Tìm tọa độ điểm M thuộc 1 cho khoảng cách từ M đến đ.thẳng và khoảng cách từ M đến mphẳng (P) log x y log xy Câu VIIb: Giải hệ: x2 xy y 81 3 Lop12.net (10) A - 2010 Câu I: (2 điểm) Cho hàm số y x x 1 m x m (1) Khảo sát biến thiên và vẽ đồ thị hàm số m=1 Tìm m để đồ thị hàm số (1) cắt trục hoành điểm phân biệt x1 ; x2 ; x3 thỏa mãn điều kiện x12 x22 x32 Câu II (2 điểm) Giải pt: 1 sin x cos2 x sin x Giải bất phương trình: 4 tan x x x cosx 1 x x 1 x x Câu III (1 điểm) Tính tích phân I x e 2x x e dx 2e Câu IV (1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a Gọi M và N là trung điểm các cạnh AB và AD H là giao điểm CN và DM Biết SH vuông góc với mặt phẳng (ABCD) và SH= a Tính VS CDNM và tính d(DM,SC) theo a x 1 x y 3 y Câu V (1 điểm) Giải hệ phương trình 2 4 x y y Câu VI.a Cho d : x y , d ' : x y (T) là đường tròn tiếp xúc ngoài với d A, cắt d’ B và C cho ABC vuông B Viết ptrình (T) biết S ABC và A có hoành độ dương x 1 y z 1 Trong kgian Oxyz cho d : , (P): x-2y+z=0 Gọi 2 C d (P ) , M d Tính khoảng cách từ M đến (P) biết MC Câu VIIa Tìm phần ảo số phức z biết z i 1 2i Câu VIb (2 điểm) Trong mp Oxy cho ABC cân đỉnh A(6;6), đthẳng qua trung điểm các cạnh AB và AC có ptrình x+y-4=0 Tìm tọa độ đỉnh B và C biết điểm E(1;-3) nằm trên đường cao qua đỉnh C tam giác đã cho Cho điểm A(0;0;-2) và d : x y z Tính d A, d và viết ptrình mặt cầu tâm A, cắt d hai điểm B và C cho BC=8 1 Câu VIIb Cho số phức z thỏa mãn z 3i 1 i Lop12.net Tìm z iz (11) A - 2011 Câu I (2,0 điểm) Cho hàm số y x 1 2x 1 Khảo sát biến thiên và vẽ đồ thị (C) hàm số đã cho CMR với m đthẳng y = x + m luôn cắt đồ thị (C) hai điểm phân biệt A và B Gọi k1, k2 là hệ số góc các tiếp tuyến với (C) A và B Tìm m để tổng k1 + k2 đạt GTLN Câu II (2,0 điểm) sin x cos x Giải phương trình sin x sin x cot x 5 x y xy y 2( x y ) Giải hệ phương trình 2 xy ( x y ) ( x y ) x sin x ( x 1) cos x dx x sin x cos x Câu IV (1,0 điểm) Cho hình chóp S ABC có đáy ABC là tam giác vuông cân B, AB=BC=2a; hai mặt phẳng (SAB) và (SAC) cùng vuông góc với mặt phẳng (ABC) Gọi M là trung điểm AB; mặt phẳng qua SM và song song với BC, cắt AC N Biết góc hai mặt phẳng (SBC) và (ABC) 600 Tính thể tích khối chóp S BCNM và khoảng cách hai đường thẳng AB và SN theo a Câu V (1,0 điểm) Cho x, y, z là ba số thực thuộc đoạn [1; 4] và x y, x y z xz Tìm giá trị nhỏ biểu thức P = 2x 3y y z z x Câu VI.a (2,0 điểm) Trong mp Oxy, cho : x + y + = và (C): x2 + y2 – 4x – 2y = Gọi I là tâm (C), M thuộc Qua M kẻ các tiếp tuyến MA và MB đến (C) (A, B là các tiếp điểm) Tìm M, biết tứ giác MAIB có diện tích 10 Trong kgian Oxyz, cho A (2; 0; 1), B (0; -2; 3), (P): 2x – y – z + = Tìm tọa độ điểm M thuộc (P) cho MA = MB = Câu VII.a (1,0 điểm) Tìm tất các số phức z, biết z2 = z z Câu III (1,0 điểm) Tính tích phân I = B Theo chương trình Nâng cao Câu VI.b (2,0 điểm) 2 Trong mp Oxy, cho elip (E) : x y Tìm A và B thuộc (E), có hoành độ dương cho OAB cân O và có diện tích lớn Trong kgian Oxyz, cho mặt cầu (S) : x2 + y2 + z2–4x–4y– 4z=0 và điểm A (4; 4; 0) Viết ptrình mp(OAB), biết B thuộc (S) và OAB Câu VII.b (1,0 điểm) Tính môđun số phức z, biết: (2z – 1)(1 + i) + ( z +1)(1 – i) = – 2i Lop12.net (12) B - 2002 Câu I:(2điểm) Cho hàm số y mx m x 10 (1) m là tham số Khảo sát biến thiên và vẽ đồ thị hàm số m=1 Tìm m để hàm số trên có cực trị Câu II:(3điểm) Giải phương trình sin x cos2 x sin x cos2 x Giải bất phương trình log x 72 log3 x 1 x y x y Giải hệ phương trình sau: x y x y Câu III:(3điểm) Trong mặt phẳng toạ độ Oxy cho hình chữ nhật ABCD có tâm 1 I ;0 Phương trình đường thẳng AB lã-2y+2=0 và 2 AB=2AD Tìm toạ độ các đỉnh hình chữ nhật này biết điểm A có hoành độ âm Cho hình lập phương ABCD.A’B’C’D’ có cạnh a 1.1 Tính khoảng cách hai đường A’B và B’D theo a 1.2 Gọi M,N và P là trung điểm các cạnh BB’,CD và A’D’ Tính góc hai đường MP và C’N Câu IV: Cho đa giác A1 A2 A3 A2 n (n và n là số nguyên dương) nội tiếp đường tròn tâm O Biết số tam giác có các đỉnh là 2n điểm đa giác trên nhiều gấp 20 lần số hình chữ nhật có các đỉnh là 2n điểm đa giác trên Tìm n Câu V: Tính diện tích hình phẳng giới hạn các đường: y 4 x2 x2 và y 4 B - 2003 Câu I:(2điểm) Cho hàm số y x x m (1) m là tham số Tìm m để đồ thị hàm số có hai điểm đối xứng với qua gốc toạ độ Khảo sát biến thiên và vẽ đồ thị hàm số m=2 Câu II: (2điểm) Lop12.net (13) Giải phương trình cotgx-tgx+4sin2x= sin 2x y2 y x2 Giải hệ phương trình 3 x x y2 Câu III:(3điểm) Trong mặt phẳng với hệ toạ độ Oxy cho tam giác ABC có AB=AC, và góc BAC là góc vuông Biết M(1;-1) là trung điểm cạnh BC và G ( ;0) là trọng tâm tam giác ABC Tìm toạ độ các đỉnh tam giác ABC Cho hình lăng trụ đứng ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a góc BAD=600 Gọi M là trung điểm cạnh AA’ và N là trung điểm cạnh CC’ Chứng minh bốn điểm B’,M,D và N cùng thuộc mặt phẳng Hãy tính độ dài cạnh AA’ theo a để tứ giác B’MDN là hình vuông Trong không gian với hệ toạ độ ĐÊCÁC vuông góc Oxyz cho hai điểm A(2;0;0),B(0;0;8) và điểm C cho AC 0;6;0 Tính khoảng cách từ điểm A đến trung điểm I BC đến đường OA Câu IV: (2điểm) Tính giá trị lớn và nhỏ hàm số: I x x2 Tính tích phân I sin x 0 sin x dx Câu V: Cho n là số nguyên dương Tính tổng Cn0 2 1 23 2 n 1 n Cn Cn Cn n 1 B - 2004 Câu I: Cho hàm số y x x x (C) Khảo sát hàm số trên Viết phương trình tiếp tuyến với đồ thị trên điểm uốn Chứng minh tiếp tuyến điểm uốn có hệ số góc nhỏ Câu II: Lop12.net (14) Giải phương trình: 5sinx-2=3(1-sinx)tg2x Tìm giá trị lớn và nhỏ hàm số: y= ln x x víi x 1;e3 Câu III: Trong mặt phẳng toạ độ Oxy cho hai điểm A(1;1) và B(4;-3) Tìm toạ độ điểm C thuộc đường thẳng x-2y-1=0 cho khoảng cách từ C đến đưòng thẳng AB Cho hình chóp tứ giác có cạnh đáy a Góc 0< <900 Tính cạnh bên và đáy tg góc hai mặt phẳng (SAB) và (ABCD) theo Tính thể tích khối chóp SABCD theo a và Trong không gian với hệ trục toạ độ Oxyz cho x 3 2t điểm A(-4;-2;4) và đưòng thẳng d: y t z 1 4t Viết phương trình đường thẳng qua A cắt và vuông góc với d Câu IV: e Tính tích phân I= 1 3ln x ln x dx x Trong môn học thầy giáo có 30 câu hỏi khác gồm câu hỏi khó,10 câu hỏi trung bình và 15 câu hỏi dê Từ 30 câu hỏi trên có thể thành lập bao nhiêu đề kiểm tra,mỗi đề gồm câu hỏi khác nhau,sao cho đề thiết phải có đủ loại câu hỏi (khó,dễ và trung bình) và số câu hỏi dễ không ít Câu V: Xác định m để phương trình sau có nghiệm: m x2 x2 x4 x2 x2 B - 2005 x m 1 x m Câu I: Cho hàm số y x 1 (Cm ) Khảo sát biến thiên và vẽ đồ thị hàm số trên m=1 Lop12.net (15) Chứng minh với m đồ thị Cm luôn có điểm cực đại và điểm cực tiểu và khoảng cách hai điểm đó 20 Câu II: x y 1 Giải hệ phương trình: x log y 3 3log Giải phương trình 1+sinx+cosx+sin2x+cos2x=0 Câu III: Trong mặt phẳng với hệ trục toạ độ Oxy cho hai điểm A(2;0) và B(6;4) Viết phương trình đường tròn (C) tiếp xúc với trục hoành A và khoảng cách từ tâm (C) đến điểm B Trong không gian với hệ trục toạ độ Oxyz cho hình lăng trụ đứng ABC.A’B’C’ với A(0;-3;0);B(4;0;0);C(0;3;0) và B’(4;0;4) 1.1 Tìm toạ độ các đỉnh A’ và C’ Viết phương trình mặt cầu có tâm là A và tiếp xúc với mặt phẳng (BCC’B’) 1.2 Gọi M là trung điểm A’B’ Viết phương trình mặt phẳng qua hai điểm A,M và song song với BC’ Mặt phẳng này cắt đường A’C’ điểm N Tính độ dài đoạn MN Câu IV: Tính tích phân I sin x.cosx dx cosx Một đội niên tình nguyện có 15 người gồm 12 nam và nữ hỏi có bao nhiêu cách phân công đội niên đó giúp đỡ tỉnh miền núi tỉnh có nam và nữ Câu V: chứng minh với x thuộc ta có: x x x 12 15 20 x x x 4 5 Khi nào đẳng thức xảy ra? B - 2006 PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH Câu I: 2điểm Cho hàm số y x2 x 1 C x2 Khảo sát biến thiên và vẽ đồ thị hàm số trên Viết phương trình tiếp tuyến với đồ thị trên biết tiếp tuyến đó vuông góc với tiệm cận xiên Lop12.net (16) Câu II: 2điểm Giải phương trình: cotgx+sinx(1+tgx.tg x )=4 2 Tìm m để phương trình sau có nghiệm thực phân biệt: x mx x Câu III: 2điểm Trong không gian với hệ trục toạ độ Oxyz cho A(0;1;2) và hai đường x 1 t x y 1 z 1 thẳng d1 : và d : y 1 2t 1 z t Viết phương trình mặt phẳng (P) qua A đồng thời song song với d1 và d2 Tìm toạ độ các điểm M trên d1, N trên d2 cho các điểm A M và N thẳng hàng Câu IV: 2điểm ln Tính tích phân I e x ln dx 2e x Cho x và y là các số thực thay đổi Tìm giá trị nhỏ biểu thưc: A x 1 y2 x 1 y2 y PHẦN RIÊNG (Thí sinh chọn hai câu sau) Câu Va: Trong mặt phẳng Oxy cho đường tròn (T) x2+y2-2x-6y+6=0 và điểm M(-3;1) gọI T1 và T2 là các tiếp điểm các tiếp tuyến kẻ từ M đến (T) Viết phương trình đường thẳng T1T2 Cho tập A gồm n phần tử n Biết số tập gồm phần tử A 20 lần số tập gồm phần tử A tìm k 1; 2;3 ; n cho số tập gồm k phẩn tử A là lớn Câu Vb: 4 x 144 2 x2 1 Giải bất phương trình: log log 52 log Cho hình chóp S.ABCD có đáy là hình chữ nhật vớI AB=a, AD= a ,SA=a và SA vuông góc với mặt phẳng (ABCD) Gọi M và N là trung điểm AD và SC Gọi I là giao điểm BM và AC Chứng minh (SAC) vuông góc với (SMB) Tính thể tích khối tứ diện ANIB Lop12.net (17) B - 2007 PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH Câu I: 2điểm Cho hàm số y=-x3+3x2+3(m2-1)x-3m2-1 (1) Khảo sát biến thiên và vẽ đồ thị hàm số m=-1 (C) Tìm m để hàm số (1) có cực đại và cực tiểu và các điểm cực trị hàm số cách gốc toạ độ Câu II: 2điểm Giải phương trình: 2sin22x+sin7x-1=sinx Chứng minh vọi giá trị dương tham số m thì phương trình sau có nghiệm thực phân biệt: x2+2x-8= m x 2 Câu III: 2điểm Trong không gian với hệ trục toạ độ Oxyz chomặt cầu (S):x2+y2+z22x+4y+2z-3=0 và mặt phẳng (P): 2x-y+2z-14=0 Viết phương trình mặt phẳng (Q) chứa trục Ox, cắt (S) theo đường tròn có bán kính Tìm toạ độ điểm M thuộc mặt cầu cho khoảng cách từ M đến mặt phăng (P) là lớn Câu IV: 2điểm Cho hình phẳng H giới hạn các đường y=xlnx; y=0; x=e Tính thể tích khối tròn xoay tạo thành cho H quay xung quanh trục Ox Cho x, y, z là các số thực dương thay đổi Tính giá trị nhỏ x y z y z xz xy yz biểu thức: P x PHẦN RIÊNG (Thí sinh chọn hai câu sau) Câu Va: 2điểm Tìm số hạng chứa x10 khai triển nhị thức: (2+x)n biết 3n Cn0 3n 1 Cn1 3n Cn2 (1) n Cnn 2048 Trong mặt phẳng toạ độ Oxy cho điểm A(2;2) và các đường thẳng d1:x+y-2=0 và d2:x+y-8=0 Tìm toạ độ các đỉnh B và C thuộc d1 và d2 cho tam giác ABC vuông cân A Câu Vb: 2điểm Giải phương trình: x 1 x 1 2 Cho hình chóp tứ giác S.ABCD có đáy là hình vuông cạnh a Gọi E là điểm đối xứng D qua trung điểm SA M là trung điểm AE N là trung điểm BC Chứng minh MN vuông góc với BD và tính theo a khoảng cách hai đường thẳng MN và AC Lop12.net (18) B - 2008 PHẦN CHUNG CHO TẤT CẢ THÍ SINH Câu I (2 điểm) Cho hàm số y = 4x3 - 6x2 + (1) Khảo sát biến thiên và vẽ đồ thị hàm số (1) Viết phương trình tiếp tuyến đồ thị hàm số (1), biết tiếp tuyến đó qua điểm M(-1;-9) Câu II (2 điểm) Giải phương trình sin x cos3 x sin x cos x sin x cos x x 2x y x y 2x Giải hệ phương trình (x, y ) x 2xy 6x Câu III (2 điểm) Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(0;1;2), B(2;-2;1), C(-2;0;1) Viết phương trình mặt phẳng qua ba điểm A, B, C Tìm toạ độ điểm M thuộc mặt phẳng 2x+2y+z- 3= cho MA=MB=MC Câu IV (2 điểm) sin x dx 4 Tính tích phân I s in2x+2(1+sinx+cosx) Cho hai số thực x, y thay đổi và thoả mãn hệ thức x2 + y2 = Tìm giá trị lớn và giá trị nhỏ biểu thức P 2(x 6xy) 2xy 2y PHẦN RIÊNG Thí sinh làm câu : V.a V.b Câu V.a Theo chương trình KHÔNG phân ban (2 điểm) Chứng minh n 1 1 k k 1 k (n, k là các số n Cn 1 Cn 1 Cn nguyên dương, k ≤ n, C kn là số tổ hợp chập k n phần tử) Trong mặt phẳng với hệ toạ độ Oxy, hãy xác định toạ độ đỉnh C tam giác ABC biết hình chiếu vuông góc C trên đường thẳng AB là điểm H(-1;-1), đường phân giác góc A có phương trình x-y + = và đường cao kẻ từ B có phương trình x + 3y - = Câu V.b Theo chương trình phân ban (2 điểm) Lop12.net (19) Giải bất phương trình log 0,7 log x2 x <0 x4 Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, SA=a, SB = a và mặt phẳng (SAB) vuông góc với mặt phẳng đáy Gọi M, N là trung điểm các cạnh AB, BC Tính theo a thể tích khối chóp S.BMDN và tính cosin góc hai đường thẳng SM, DN B - 2009 PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH: điểm Câu I: điểm Cho hàm số y x x (1) Khảo sát biến thiên và vẽ đồ thị hàm số (1) Với giá trị nào m, phương trình x x m có đúng nghiệm phân biệt Câu II: điểm Giải phương trình: sin x cos x sin x 3cos3 x cos4 x sin x xy x y Giải hệ phương trình: 2 x y xy 13 y x, y Câu III: điểm Tính tích phân: I ln x x 1 dx Câu IV: điểm Cho hình lăng trụ tam giác ABC.A’B’C’ có BB’=a, góc BB’ và mặt 600 Hình phẳng (ABC) 600, tam giác ABC vuông C và BAC chiếu vuông góc B’ lên mặt phẳng (ABC) trùng với trọng tâm tam giác ABC Tính thể tích khối tứ diện A’ABC theo a Câu V: điểm Cho các số thực x, y thay đổi và thỏa mãn x y xy Tìm giá trị nhỏ biểu thức A x y x y x y PHẦN RIÊNG: điểm Thí sinh chọn hai phần (Phần A B) A Theo chương trình chuẩn Câu VIa: điểm Lop12.net (20) Trong mặt phẳng với hệ trục tọa độ Oxy cho đường tròn (C): x 2 y2 và hai đường thẳng 1 :x-y=0 và :x-7y=0 Xác định tọa độ tâm K và tính bán kính đường tròn (C’) biết đường tròn (C’) tiếp xúc với các đường thẳng 1 , và tâm K thuộc (C) Trong không gian với hệ trục tọa độ Oxyz cho tứ diện ABCD có các đỉnh A(1;2;1) B(-2;1;3) C(2;-1;1) và D(0;3;1) Viết phương trình mặt phẳng (P) qua A, B cho khoảng cách từ C đến (P) khoảng cách từ D đến (P) Câu VIIa: điểm z i 10 Tìm số phức z thỏa mãn z.z 25 B Theo chương trình nâng cao Câu VIb: điểm Trong mặt phẳng với hệ trục tọa độ Oxy cho tam giác ABC cân A có đỉnh A(-1;4) và các đỉnh B, C thuộc đường thẳng (d): xy-4=0 Xác định tọa độ các điểm B và C biết diện tích tam giác ABC 18 Trong không gian với hệ trục tọa độ Oxyz cho mặt phẳng (P): x2y+2z-5=0 và hai điểm A(-3;0;1) B(1;-1;3) Trong các đường thẳng qua A và song song với (P), hãy viết phương trình đường thẳng mà khoảng cách từ B đến đường thảng đó là nhỏ Câu VIIb: điểm Tìm giá trị tham số m để đường thẳng y=-x+m cắt đồ thị hàm số y x2 1 hai điểm phân biệt A, B cho AB=4 x B - 2010 PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm) Câu I (2 điểm) Cho hàm số y 2x 1 x 1 Khảo sát biến thiên và vẽ đồ thị (C) hàm số đã cho Tìm m để đường thẳng y=-2x+m cắt (C) hai điểm phân biệt A và B cho tam giác OAB có diện tích (O là gốc tọa độ) Câu II (2 điểm) Giải phương trình sin x cos2 x cosx 2cos2 x sin x Lop12.net (21)