giải HĐ2: Bài tập áp dụng HĐTP1: Bài tập về tìm số hạng thứ k trong khai triển nhị thức GV nêu đề và ghi lên bảng và cho HS các nhóm thỏa luận tìm lời giải, gọi HS đại diện nhóm có kết q[r]
(1)Chủ đề PHƯƠNG TRÌNH LƯỢNG GIÁC ( 5tiết ) I.Mục tiêu: Qua chủ đề này HS cần: 1)Về Kiến thức: Làm cho HS hiểu sâu sắc kiến thức phương trình lượng giác và bước đầu hiểu số kiến thức phương trình lượng giác chương trình nâng cao chưa đề cập chương trình chuẩn 2)Về kỹ năng: Tăng cường rèn luyện kỹ giải toán phương trình lượng giác Thông qua việc rèn luyện giải toán HS củng cố số kiến thức đã học chương trình chuẩn và tìm hiểu số kiến thức chương trình nâng cao 3)Về tư và thái độ: Tích cực hoạt động, trả lời câu hỏi Biết quan sát và phán đoán chính xác Làm cho HS hứng thú học tập môn Toán II.Chuẩn bị củaGV và HS: -GV: Giáo án, các bài tập và phiếu học tập,… -HS: Ôn tập liến thức cũ, làm bài tập trước đến lớp III.Các tiết dạy: Tiết 1: Ôn tập kiến thức phương trình lượng giác và bài tập áp dụng Tiết 2: Ôn tập kiến thức phương trình bậc nhất, bậc hai và phương trình bậc môt số lượng giác Tiết 3: Bài tập phương trình bậc sinx và cosx và phương trình đưa phương trình bậc sinx và cosx (chủ yếu là phương trình bậc hai sinx và cosx) - -TCĐ1: Tiết *Tiến trình dạy: -Ổn định lớp, chia lớp thành nhóm -Kiểm tra bài cũ: Đan xen với các hoạt động nhóm +Ôn tập kiến thức ( ): Ôn tập kiến thức cũ các đưa hệ thống câu hỏi sau: -Nêu các phương trình lượng giác sinx = a, cosx = a, tanx = a va cotx = a và công thức nghiệm tương ứng -Dạng phương trình bậc hàm số lượng giác và cách giải -Phương trình bậc hai hàm số lượng giác -Phương trình bậc sinx và cosx và cách giải (phương trình a.sinx + b.cosx = c) +Bài mới: Hoạt động GV Hoạt động HS Nội dung HĐ1( ): (Bài tập phương Bài tập 1: Giải các phương trình sau: trình lượng giác bản) GV nêu đề bài tập 14 HS thảo luận để tìm lời giải… SGK nâng cao GV phân công nhiệm vụ cho nhóm và HS nhận xét, bổ sung và ghi yêu cầu HS thảo luận tìm lời chép sửa chữa… giải và báo cáo GV gọi HS nhận xét, bổ sung (nếu cần) GV nêu lời giải đúng và cho Phạm Ngọc Khôi Nguyên Lop12.net C (2) điểm các nhóm HS trao đổi và cho kết quả: a) x k , x k ; 20 11 29 b) x k10, x k10 6 c) x 2 k 4; d ) x k 2, víi cos= 18 HĐ2( ): (Bài tập tìm nghiệm phương trình trên khoảng đã ra) HS xem nội dung bài tập 2, thảo luận, suy nghĩ và tìm lời GV nêu đề bài tập và viết lên bảng giải… GV cho HS thảo luận và tìm HS nhận xét, bổ sung và ghi lời giải sau đó gọi HS đại chép sửa chữa… diện hai nhóm còn lại lên bảng HS trao đổi và rút kết quả: a)-1500, -600, 300; trình bày lời giải GV gọi HS nhận xét, bổ sung 4 b) ; (nếu cần) 9 GV nêu lời giải đúng… *Củng cố ( ) *Hướng dẫn học nhà ( ): -Xem lại nội dung đã học và lời giải các bài tập đã sửa -Làm them bài tập sau: *Giải các phương trình: 3 a) tan x tan ; b) tan( x 150 ) 5; 2 x c) cot 20 3; d ) cot x tan 4 a)sin x sin ; x b)sin ; x c)cos cos 2; d )cos x 18 Bài tập 2: tìm nghiệm các phương trình sau trên khoảng đã cho: a)tan(2x – 150) =1 với -1800<x<900; b)cot3x = víi - x - -TCĐ2:Tiết *Tiến trình dạy: -Ổn định lớp, chia lớp thành nhóm -Kiểm tra bài cũ: Đan xen với các hoạt động nhóm +Bài mới: (Một số phương trình lượng giác thường gặp) Hoạt động GV Hoạt động HS HĐ1( ): (Bài tập phương trình bậc hai hàm số lượng giác) GV để giải phương trình HS suy nghĩ và trả lời… bậc hai hàm số lượng giác ta tiến hành nào? HS chú ý theo dõi GV nhắc lại các bước giải GV nêu đề bài tập 1, phân HS thảo luận theo nhóm để Phạm Ngọc Khôi Nguyên Lop12.net Nội dung Bài tập 1: Giải các phương trình sau: a)2cos2x-3cosx+1=0; b)sin2x + sinx +1=0; c) tan x t anx+1=0 C (3) công nhiệm vụ cho các nhóm, cho các nhóm thảo luận để tìm lời giải GV gọi HS đại diện các nhóm trình bày lời giải Gọi HS nhận xét, bổ sung (nếu cần) GV nêu lời giải đúng… HĐ2 ( ): (Bài tập phương trình bậc sinx và cosx) Phương trình bậc sinx và cosx có dạng nào? -Nêu cách giải phương trình bậc sinx và cosx GV nêu đề bài tập và yêu cầu HS thảo luận tìm lời giải Gọi HS nhận xét, bổ sung (nếu cần) GV nêu lời giải đúng… tìm lời giải và cử đại diện báo cáo HS nhận xét, bổ sung và sửa chữa, ghi chép HS trao đổi và cho kết quả: a)x=k2 ;x= k b)x= k ; c) x k , x k HS suy nghĩ và trả lời… Bài tập 2: Giải các phương trình sau: a)3cosx + 4sinx= -5; b)2sin2x – 2cos2x = ; c)5sin2x – 6cos2x = 13 HS nêu cách giải phương trình bậc sinx và cosx… HS thảo luận theo nhóm và cử đại diện báo cáo HS nhận xét, bổ sung và sửa chữa ghi chép HS trao đổi và rút kết quả: a) (2k 1), víi cos= vµ sin= 5 5 13 b) x k , x ; 24 24 c)V« nghiÖm *Củng cố ( ): Củng cố lại các phương pháp giải các dạng toán *Hướng dẫn học nhà( ): -Xem lại các bài tập đã giải -Làm thêm các bài tập sau: Bài tập 1: a)tan(2x+1)tan(5x-1)=1; b)cotx + cot(x + )=1 Bài tập 2: a)2cos2x + sin4x = 0; b)2cot2x + 3cotx +1 =0 - Phạm Ngọc Khôi Nguyên Lop12.net C (4) TCĐ3:Tiết *Tiến trình dạy: -Ổn định lớp, chia lớp thành nhóm -Kiểm tra bài cũ: Đan xen với các hoạt động nhóm +Bài mới: (Một số phương trình lượng giác thường gặp) Hoạt động GV Hoạt động HS HĐ1(Phương trình bậc sinx và cosx; phương trình đưa phương trình bậc sinx và cosx) HĐTP 1( ): (phương trình bậc HS các nhóm thảo luận và tìm lời sinx và cosx) giải sau đó cử đại biện trình bày kết nhóm GV nêu đề bài tập và ghi lên bảng HS các nhóm nhận xét, bổ sung GV cho HS các nhóm thảo luận và sửa chữa ghi chép tìm lời giải GV gọi đại diện các nhóm trình bày kết nhóm và gọi HS nhận xét, bổ sung (nếu cần) GV hướng dẫn và nêu lời giải đúng HĐTP 2( ): Phương trình đưa HS các nhóm xem nội dung các phương trình bậc câu hỏi và giải bài tập theo phân sinx và cosx) công các nhóm, các nhóm GV nêu đề bài tập và cho HS thảo luận, trao đổi để tìm lời giải các nhóm thảo luận tìm lời giải GV gọi HS trình bày lời giải và Các nhóm cử đại diện lên bảng nhận xét (nếu cần) trình bày GV phân tích hướng dẫn (nếu HS HS nhận xét, bổ sung và sửa chữa nêu lời giải không đúng) và nêu ghi chép HS chú ý theo dõi trên bảng… lời giải chính xác Nội dung Bài tập 1: Giải các phương trình sau: a)3sinx + 4cosx = 5; b)2sinx – 2cosx = ; c)sin2x +sin2x = d)5cos2x -12sin2x =13 Bài tập 2: Giải các phương trình sau: a)3sin2x +8sinx.cosx+ cos2x = 0; b)4sin2x + 3 sin2x-2cos2x=4 c)sin2x+sin2x-2cos2x = ; d)2sin2x+ sinx.cssx + Các phương trình bài tập còn cos2x = -1 gọi là phương trình bậc hai sinx và cosx GV: Ngoài cách giải cách đưa phương trình bậc sinx và cosx ta còn có các cách giải khác HS chú ý theo dõi trên bảng… GV nêu cách giải phương trình bậc hai sinx và cosx: a.sin2x+bsinx.cosx+c.cos2x=0 *HĐ3( ): Củng cố: Hướng dẫn học nhà: Xem lại và nắm các dạng toán đã giải, các công thức nghiệm các phương trình lượng giác bản,… - Phạm Ngọc Khôi Nguyên Lop12.net C (5) TCĐ4:Tiết 4: *Tiến trình dạy: -Ổn định lớp, chia lớp thành nhóm -Kiểm tra bài cũ: Đan xen với các hoạt động nhóm +Bài mới: (Một số phương trình lượng giác thường gặp) Hoạt động GV Hoạt động HS Nội dung HĐ1( ):(Phương trình bậc Bài tập1: Giải các phương sinx và cosx và phương trình: HS các nhóm thỏa luận để tìm lời trình đưa phương trình bậc giải các câu phân công sau a) cos x sin x 2; sinx và cosx) đó cử đại diện báo cáo b)cos3 x sin x 1; GV cho HS các nhóm thảo luận để HS nhận xét, bổ sung và sửa chữa tìm lời giải sau đó cử đại diện báo ghi chép c)4sin x 3cos x 4(1 tan x ) cáo HS trao đổi và rút kết quả: cos x 5 a) x k , k GV gọi HS nhận xét, bổ sung (nếu b)cos 3x cos 4 cần) x k , k 4 Vây… c)(cosx 1)(4 s inx 3cosx 1) GV nêu lời giải đúng … cosx s inx 3cosx x 2k 4 s inx cosx 5 5 x arccos k x arccos k Vậy … HĐ2( ): (Các phương trình HS các nhóm thỏa luận để tìm lời Bài tập Giải các phương dạng khác) giải các câu phân công sau trình sau: đó cử đại diện báo cáo GV nêu đề bài và ghi lên bảng a)cos2x – sinx-1 = 0; GV cho HS các nhóm thảo luận HS nhận xét, bổ sung và sửa chữa b)cosxcos2x = 1+sinxsin2x; tìm lời giải ghi chép c)sinx+2sin3x = -sin5x; GV gọi HS đại diện các nhóm lên d)tanx= 3cotx bảng trình bày lời giải GV phân tích và nêu lời giải đúng… HĐ3( ) *Củng cố: *Hướng dẫn học nhà: -Xem lại các bài tập đã giải và làm thêm các bài tập 3.2, 3.3 và 3.5 SBT trang 34,35 - -Phạm Ngọc Khôi Nguyên Lop12.net C (6) TCĐ5:Tiết 5: *Tiến trình dạy: -Ổn định lớp, chia lớp thành nhóm -Kiểm tra bài cũ: Đan xen với các hoạt động nhóm +Bài mới: (Một số phương trình lượng giác thường gặp) Hoạt động GV Hoạt động HS HĐ1: HS các nhóm thảo luận đẻ tìm lời giải GV nêu các bài tập và ghi các bài tập phân công lên bảng, hướng dẫn giải HS đại diện các nhóm trình bày lời sau đó cho HS các nhóm giải (có giải thích) thảo luận và gọi HS đại HS nhận xét, bổ sung và sửa chữa ghi chép diện các nhóm lên bảng HS trao đổi và rút kết quả: trình bày lời giải a)cos2 x sin x GV gọi HS các nhóm khác nhận xét và bổ sung s inx(2 s inx 1) (nếu cần) s inx s inx b)tanx = 3.cotx ĐK: cosx và sinx GV nêu lời giải đúng Ta có: )tanx = 3.cotx HS không trình bày đúng t anx tan x lời giải t anx t anx x Nội dung Bài tập: 1)Giải các phương trình sau: a)cos2x – sinx – = b)tanx = 3.cotx c)sinx.sin2x.sin3x = sin x k , k Vậy… c) HS suy nghĩ và giải … HĐ2: GV nêu đề số bài tập và ghi đề lên bảng sau đó phân công nhiệm vụ cho các nhóm GV cho các nhóma thảo luận và gọi HS đại diện lên bảng trình bày lời giải GV gọi HS nhận xét, bổ sung (nếu cần) GV nhận xét và nêu lời giải chính xác (nếu HS không trình bày đúng lời giải) Phạm Ngọc Khôi Nguyên HS các nhóm thảo luận để tìm lời giải và đại diện lên bảng trình bày lời giải (có giải thích) HS nhận xét, bổ sung và sửa chữa ghi chép HS trao đổi và rút kết quả: a)ĐK: sinx≠0 và cosx≠0 cos x cos2 x s inx 1 s inx sin x cos x 2cos2 x cos2 x sin x sin x Bài tập: Giải các phương trình sau: a) c otx cot x t anx b)cos2 x 3sin x c) cos x.tan x sin x 2(cos2 x sin x ) cos2 x sin x cos2 x sin x tan x b) Ta thấy với cosx = không thỏa mãn phương trình với cosx≠0 chia hai vế phương trình với cos2x ta Lop12.net C (7) được: 1=6tanx+3(1+tan2x) 3tan2x+6tanx+2 = 3 t anx c) cos x.tan x sin x 1 sin x sin x sin x sin x 2 sin x sin x x k , k x k , k 12 HĐ3: Củng cố và hướng dẫn học nhà: *Củng cố: -Nêu lại công thức nghiệm các phương trình lượng giác bản, các phương trình lượng giác thường gặp và cách giải các phương trình lượng giác thường gặp *Hướng dẫn học nhà: -Xem lại các bài tập đã giải và các cách giải các phương trình luợng giác và thường gặp -Làm thêm các bài tập phần ôn tập chương sách bài tập - -Chủ đề TỔ HỢP VÀ XÁC SUẤT ( 5tiết ) I.Mục tiêu: Qua chủ đề này HS cần: 1)Về Kiến thức: Làm cho HS hiểu sâu sắc kiến thức tổ hợp và xác suất và bước đầu hiểu số kiến thức tổ hợp và xác suất chưa đề cập chương trình chuẩn 2)Về kỹ năng: Tăng cường rèn luyện kỹ giải toán tổ hợp và xác suất Thông qua việc rèn luyện giải toán HS củng cố số kiến thức đã học chương trình chuẩn và tìm hiểu số kiến thức chương trình nâng cao 3)Về tư và thái độ: Tích cực hoạt động, trả lời câu hỏi Biết quan sát và phán đoán chính xác Làm cho HS hứng thú học tập môn Toán II.Chuẩn bị củaGV và HS: -GV: Giáo án, các bài tập và phiếu học tập,… -HS: Ôn tập liến thức cũ, làm bài tập trước đến lớp III.Các tiết dạy: TCĐ6: *Tiết Ôn tập kiến thức chủ đề: Quy tắc cộng, quy tắc nhân, hoán vị, chỉnh hợp, tổ hợp *Ổn định lớp, chia lớp thành nhóm +Bài mới: (Một số phương trình lượng giác thường gặp) Hoạt động GV Hoạt động HS Nội dung HĐ1(Ôn tập kiến thức cũ I Ôn tập: quy tắc cộng, quy tắc nhân, Phạm Ngọc Khôi Nguyên Lop12.net C (8) hoán vị, chỉnh hợp, tổ hợp và rèn luyện kỹ nămg giải toán) HĐTP1: (Ôn tập kiến thức cũ) GV gọi HS nêu lại quy tắc cộng, quy tắc nhân, hoán vị, chỉnh hợp, tổ hợp và công thức nhị thức Niu-tơn HĐTP2: (Bài tập áp dụng) GV nêu đề bài tập và cho HS các nhóm thảo luận tìm lời giải Gọi HS đại diện lên bảng trình bày lời giải Gọi HS nhận xét, bổ sung (nếu cần) GV nhận xét và nêu lời giải chính xác (nếu HS không trình bày đúng lời giải) HĐTP3: (Bài tập áp dụng quy tắc nhân) GV nêu đề bài tập và cho HS các nhóm thảo luận để tìm lời giải Gọi HS đại diện trình bày lời giải GV gọi HS nhận xét, bổ sung (nếu cần) GV nhận xét và nêu lời giải chính xác (nếu HS không trình bày đúng) HS nêu lại lý thuyết đã học… HS các nhóm thảo luận và ghi lời giải vào bảng phụ Đại diện lên bảng trình bày lời giải HS nhận xét, bổ sung, sửa chữa và ghi chép HS trao đổi và rút kết quả: Ký hiệu A, B, C là các tập hợp các cách từ M đến N qua I, E, H Theo quy tắc nhân ta có: n(A) =1 x x =3 n(B) = 1x x x = n(C) = x = Vì A, B, C đôi không giao nên theo quy tắc cộng ta có số cách từ M đến N là: n(A∪B∪C)=n(A) +n(B) +n(C) =3+6+8=17 HS các nhóm thảo luận để tìm lời giải HS đại diện lên bảng trình bày lời giải HS nhận xét, bổ sung, sửa chữa và ghi chép HS trao đổi và rút kết quả: a) Có cách chọn hệ số a vì a≠0 Có cách chọn hệ số b, cách chọn hệ số c, cách chọn hệ số d Vậy có: 4x5x5x5 =500 đa thức b) Có cách chọn hệ số a (a≠0) -Khi đã chọn a, có cách chọn b -Khi đã chọn a và b, có cách chọn c -Khi đã chọn a, b và c, có cách chọn d Theo quy tắc nhân ta có: 4x4x3x2=96 đa thức HS thảo luận và cử đại diện lên bảng trình bày lời giải (có giải Phạm Ngọc Khôi Nguyên Lop12.net II.Bài tập áp dụng: Bài tập1: Cho mạng giao thông hình vẽ: I M D E F G N H Bài tập 2: Hỏi có bao nhiêu đa thức bậc ba: P(x) =ax3+bx2+cx+d mà ác hệ số a, b, c, d thuộc tập {-3,-2,0,2,3} Biết rằng: a) Các hệ số tùy ý; b) Các hệ số khác Bài tập Để tạo tín hiệu, người ta dùng lá cờ màu khác cắm thành hàng ngang Mỗi tín hiệu xác định số lá cờ và thứ tự xếp Hỏi có có thể tạo bao nhiêu tín hiệu nếu: a) Cả lá cờ dùng; b) Ít lá cờ dùng C (9) HĐTP4: (Bài tập áp dụng công thức số các hoán vị, số các chỉnh hợp) GV nêu đề bài tập (hoặc phát phiếu HT), cho HS các nhóm thảo luận và gọi đại diện lên bảng trình bày lời giải Gọi HS nhận xét, bổ sung (nếu cần) GV nhận xét và nêu lời giải chính xác thích) HS nhận xét, bổ sung, sửa chữa và ghi chép HS trao đổi và cho kết quả: a)Nếu dùng lá cờ thì tín hiệu chính là hoán vị lá cờ Vậy có 5! =120 tín hiệu tạo b)Mỗi tín hiệu tạo k lá cờ là chỉnh hợp chập k phần tử Theo quy tắc cộng, có tất cả: A51 A52 A53 A54 A55 325 tín hiệu HĐ2 (Củng cố và hướng dẫn học nhà): Củng cố: Hướng dẫn học nhà: -Xem lại các bài tập đã giải, ôn tập lại kiến thức: Phép thử và biến cố, xác suất biến cố… - -TCĐ7: Tiết 2: Ôn tập lại kiến thức nhị thức Niu-tơn, phép thử và biến cố, xác suất cảu biến cố Rèn luyện kỹ giải toán Tiến trình bài học: *Ổn định lớp, chia lớp thành nhóm *Kiểm tra bài cũ: Kết hợp với điều khiển hoạt động nhóm *Bài mới: Hoạt động GV Hoạt động HS Nội dung HĐ1: (Ôn tập kiến thức và bài I.Ôn tập: tập áp dụng) HĐTP: (Ôn tập lại kiến thức tổ hợp và công thức nhị thức Niu-tơn, tam giác Pascal, xác suất biến cố…) GV gọi HS nêu lại lý thuyết tổ HS nêu lại lý thuyết đã học… hợp, viết công thức tính số các tổ Viết các công thức tính số các tổ hợp, viết công thức nhị thức Niu- hợp, công thức nhị thức Niutơn, tam giác Pascal tơn,… GV gọi HS nhận xét, bổ sung Xác suất biến cố… (nếu cần) HS nhận xét, bổ sung … HĐ2: (Bài tập áp dụng công thức tổ hợp và chỉnh hợp) II Bài tập áp dụng: HĐTP1: GV nêu đề và phát phiếu HT (Bài Bài tập 1: Từ tổ gồm bạn tập 1) và cho HS thảo luận tìm lời nam và bạn nữ, chọn ngẫu giải nhiên bạn xếp vào bàn đầu HS các nhóm thảo luận và tìm theo thứ tự khác Gọi HS đại diện lên bảng trình lời giải ghi vào bảng phụ bày lời giải HS đại diện nhóm lên bảng trình Tính xác suất cho cách Gọi HS nhận xét, bổ sung (nếu xếp trên có đúng bạn nam bày lời giải Phạm Ngọc Khôi Nguyên Lop12.net C (10) cần) GV nhận xét, và nêu lời giải chính xác (nếu HS không trình bày đúng lời giải) HĐTP2: (Bài tập tính xác suất biến cố) GV nêu đề và phát phiếu HT và yêu cầu HS các nhóm thảo luận tìm lời giải Gọi HS đại diện các nhóm lên bảng trình bày kết nhóm HS nhận xét, bổ sung, sửa chữa và ghi chép HS trao đổi và rút kết quả; Mỗi xếp chỗ ngồi cho bạn là chỉnh hợp chập 11 bạn Vậy không gian mẫu gồm A115 (phần tử) Ký hiệu A là biến cố: “Trong cách xếp trên có đúng bạn nam” Để tính n(A) ta lí luâậnnhư sau: -Chọn nam từ nam, có C63 cách Chọn nữ từ nữ, có C52 cách -Xếp bạn đã chọn vào bàn đầu theo thứ tự khác nhau, có 5! Cách Từ đó thưo quy tắc nhan ta có: n(A)= C63 C52 5! Vì lựa chọn và xếp là ngẫu nhiên nên các kết đồng khả Do đó: C C 5! P( A) 55 0,433 A11 HS các nhóm thảo luận và ghi lời giải vào bảng phụ, cử đại diện lên bảng trình bày lời giải (có giải thích) HS nhận xét, bổ sung, sửa chữa và ghi chép Gọi HS nhận xét, bổ sung (nếu HS trao đổi và rút kết quả: cần) Kết lựa chọn là nhóm người tức là tổ hợp GV nhận xét và nêu lời giải chính chập 12 Vì không xác (nếu HS không trình bày đúng gian mẫu gồm: C125 792 phần tử lời giải) Gọi A là biến cố cần tìm xác suất, B là biến cố chọn hội đồng gồm thầy, cô đó có thầy P không có cô Q C là biến cố chọn hội đông gồm thầy, cô đó có cô Q không có thầy P Như vậy: A=B∪ C và n(A)=n(B)+ n(C) Bài tập2: Một tổ chuyên môn gồm thầy và cô giáo, đó thầy P và cô Q là vợ chồng Chọn ngẫu nhiên người để lập hội đồng chấm thi vấn đáp Tính xác suất để cho hội đồng có thầy, cô và thiết phải có thầy P cô Q không có hai Phạm Ngọc Khôi Nguyên Lop12.net CĐTC1 (11) Tính n(B): -Chọn thầy P, có cách -Chọn thầy từ thầy còn lại, có C62 cách -Chọn cô từ cô, có C42 cách Theo quy tắc nhân: n(B)=1 C62 C42 =90 Tương tự: n(C)= 1.C63 C41 80 Vậy n(A) = 80+90=170 và: n( A) 170 P ( A) n() 792 HĐ3( Củng cố và hướng dẫn học nhà) *Củng cố: *Hướng dẫn học nhà: - Xem lại các bài tập đã giải, ôn tập lại lý thuyết -Làm bài tập: Bài tập: Sáu bạn, đó có bạn H và K, xếp ngẫu nhiên thành hàng dọc Tính xác suất cho: a) Hai bạn H và K đúng liền nhau; b) Hai bạn H và K không đúng liền - -TCĐ8: Tiết 3: Ôn tập lý thuyết xác suất biến cố Rèn luyện kỹ giải toán Tiến trình bài học: *Ổn định lớp, chia lớp thành nhóm *Kiểm tra bài cũ: Kết hợp với điều khiển hoạt động nhóm *Bài mới: Hoạt động GV Hoạt động HS Nội dung HĐ1: (Ôn tập lại lý thuyết xác suất) HĐTP1: Gọi HS nhắc lại: -Công thức tính xác suất; -Các tính chất xác suất; -Hai biến cố độc lập? -Quy tắc nhân xác suất; … HĐTP2: (Bài tập áp dụng) GV nêu đề bài tập và ghi lên bảng: Nêu câu hỏi: -Để tính xác suất cảu biến cố ta phải làm gì? -Không gian mẫu, số phần tử Bài tập 1: HS suy nghĩ và trả lời các câu hỏi… Lấy ngẫu nhiên thẻ từ HS các nhóm thảo luận để tìm lời giải hộp chứa 20 thẻ đánh số và ghi vào bảng phụ từ tới 20 Tìm xác suất để Hs đại diện lên bảng trình bày lời giải thẻ lấy ghi số: HS trao đổi và rút kết quả: a)Chẵn; Không gian mẫu: b)Chia hết cho 3; Phạm Ngọc Khôi Nguyên Lop12.net CĐTC1 (12) không gian mẫu bài tập GV cho HS các nhó thảo luận và gọi HS đại diện lên bảng trình bày lời giải Gọi HS nhận xét, bổ sung … GV nhận xét và nêu lời giải đúng 1,2, ,20 n 20 Gọi A, B, C là các biến cố tương ứng câu a), b), c) Ta có: a) A 2,4,6, ,20 n A 10 10 20 b)B 3,6,9,12,5,18 n B P A P B 0,3 20 10 c)C 3,9,15 P(C ) HĐTP3: Nếu hai biến cố A và B xung khắc cùng liên quan đến phép thử thì ta có điều gì? Vậy hai biến cố A và B cùng liên quan đến phép thử thì ta có công thức tính xác suất P A B ? HĐTP4: (Bài tập áp dụng) GV nêu đề bài tập và cho HS các nhóm thảo luận tìm lời giải Gọi Hs đại diện trình bày lời giải, gọi HS nhận xét, bổ sung và nêu lời giải đúng c)Lẻ và chia hết cho 3 0,15 20 HS suy nghĩ trả lời: P A B P A P B P A B P A P B P A B HS các nhóm thảo luận và tìm lời giải… Bài tập 2: Một lớp học có 45 HS đó 35 HS học tiếng Anh, 25 HS học tiếng Pháp và 15 HS học Anh và Pháp Chọn ngẫu nhiên HS Tính xác suất các biến cố sau: a)A: “HS chọn học tiếng Anh” b)B: “HS chọn học tiếng Pháp” c)C: “HS chọn học Anh lẫn Pháp” d)D: “HS chọn không học tiếng Anh và tiếng Pháp” HĐ2( Củng cố và hướng dẫn học nhà) *Củng cố: -Nêu công thức tính xác suất biến cố phép thử -Nêu lại nào là hai biến cố xung khắc -Áp dụng giải bài tập sau: Gieo súc sắc cân đối đồng chất hai lần Tính xác suất cho tổng số chấm hai lần gieo là số chẵn GV: Cho HS các nhóm thảo luận và cử đại diện lên bảng trình bày lời giải Phạm Ngọc Khôi Nguyên Lop12.net CĐTC1 (13) GV gọi HS nhận xét, bổ sung (nếu cần) và GV nêu lời giải chính xác… *Hướng dẫn học nhà: - Xem lại các bài tập đã giải, ôn tập lại lý thuyết -Làm bài tập: Một tổ có nam và nữ Chọn ngẫu nhiên hai người Tìm xác suất cho hai người đó: a)Cả hai người đó là nữ; b)Không có nữ nào; c)Ít người là nữ; d)Có đúng người là nữ - -TCĐ9: Tiết 4: Ôn tập lý thuyết nhị thức Niu-tơn Rèn luyện kỹ giải toán Tiến trình bài học: *Ổn định lớp, chia lớp thành nhóm *Kiểm tra bài cũ: Kết hợp với điều khiển hoạt động nhóm *Bài mới: Hoạt động GV Hoạt động HS Nội dung HĐ1: (Ôn tập) Bài tập1: GV gọi HS nêu lại công thức HS suy nghĩ và trả lời… Khai triển (x – a)5 thành tổng nhị thức Niu-tơn, công thức các đơn thức tam giác Pascal… HĐTP1: (Bài tập áp dụng) HS các nhóm thảo luận và cử đại diện GV nêu các bài tập và ghi lên lên bảng trình bày lời giải (có giải thích) bảng GV phân công nhiệm vụ cho HS đại diện các nhóm lên bảng trình các nhóm và cho các nhóm bày lời giải thảo luận để tìm lời giải, gọi HS nhận xét, bổ sung và sửa chữa ghi HS đại diện các nhóm lên chép… HS trao đổi và rút kết quả: abngr trình bày lời giải GV gọi HS nhận xét, bổ sung Theo công thức nhị thức Niu-tơn ta và sửa chữa ghi chép có: 5 GV nhận xét và nêu lời giải x a x a chính xác(nếu HS không trình bày đúng lời giải ) x x a 10 x a 10 x a HĐTP2: (Bài tập tìm số hạng khai triển nhị thức Niu-tơn) GV nêu đề và ghi lên bảng GV cho HS các nhóm thảo luận để tìm lời giải và gọi HS đại diện lên bảng trình bày lời giải GV gọi HS nhận xét, bổ sung (nếu cần) GV nêu lời giải chính xác (nếu HS không trình bày dúng lời x x a 10 x a2 10 x a3 xa a5 HS các nhóm thảo luận để tìm lời giải HS đại diện nhóm lên bảng trình bày lời giải (có giải thích) HS trao đổi và rút kết quả: Số hạng tổng quát khai triển là: k 6k k C6 x x Bài tập 2: Tìm số hạng không chứa x khai triễn: 2x x C6k k 1 x 3 k k Phạm Ngọc Khôi Nguyên Lop12.net CĐTC1 (14) giải) HĐ2: (Bài tập áp dụng) HĐTP1: (Bài tập tìm số hạng thứ k khai triển nhị thức) GV nêu đề và ghi lên bảng và cho HS các nhóm thỏa luận tìm lời giải, gọi HS đại diện nhóm có kết nhanh lên bảng trình bày lời giải Gọi HS nhận xét, bổ sung (nếu cần) GV nêu lời giải chính xác (nếu HS không trình bày đúng lời giải ) Ta phải tìm k cho: – 3k = 0, nhận k = Vậy số hạng cần tìm là … 240 HS các nhóm xem đề và thảo luận tìm lời giải HS đại diện các nhóm lên bảng trình bày lời giải (có giải thích) HS nhận xét, bổ sung và sửa chữa ghi chép HS trao đổi và rút kết quả: Số hạng thứ k + khai triễn là: k 2 tk 1 C10k x 10 k x t5 C x 10 HĐTP2: (Tìm n khai triễn nhị thức Niu-tơn) GV nêu đề và ghi lên bảng, cho HS các nhóm thảo luận tìm lời giải Gọi HS đại diện nhóm trình bày lời giải và gọi HS nhận xét, bổ sung (nếu cần) GV nhận xét, nêu lời giải chính xác (nếu HS không trình bày dúng lời giải) Bài tập3: Tìm số hạng thứ khai 10 2 triễn x , mà khai x triễn đó số mũ x giảm dần 10 2 x 3360 x VËy t5 3360 x HS các nhóm thảo luận để tìm lời giải và cử đại diện lên bảng trình bày lời giải HS nhận xét, bổ sung và sửa chữa ghi chép HS trao đổi và rút kết quả: Số hạng thứ k + cảu khai triễn là: k tk 1 Cnk x Vậy số hạng chứa x2 Bài tập4: Biết hệ số khia n triễn 1 x là 90 Hãy tìm n là: t3 Cn2 x Cn2 x 2 Theo bài ta có: Cn2 =90 n HĐ3( Củng cố và hướng dẫn học nhà) *Củng cố: - Nắm công thức nhị thức Niu-tơn, công thức tam giác Pascal - Biết cách khai triễn nhị thức thi biết vài yếu tố nó - Ôn tập lại các tìm n, tình số hạng thứ n khai triễn nhị thức, *Hướng dẫn học nhà: - Xem lại các bài tập đã giải, làm các bài tập 3.2, 3.4, 3.5 SBT/65 - Phạm Ngọc Khôi Nguyên Lop12.net CĐTC1 (15) TCĐ10: Tiết 5: Ôn tập lý thuyết nhị thức Niu-tơn Rèn luyện kỹ giải toán Tiến trình bài học: *Ổn định lớp, chia lớp thành nhóm *Kiểm tra bài cũ: Kết hợp với điều khiển hoạt động nhóm Hoạt động GV Hoạt động HS Nội dung HĐTP1: HS các nhóm thảo luận để tìm lời giải Bài tập1: và cử đại diện lên bảng trinhf bày lời GV nêu đề bài tập và ghi lên Trong khai triển (1+ax)n ta bảng và cho HS các nhóm có số hạng đầu là 1, số hạng giải thảo luận tìm lời giải HS đại diện lên bảng trình bày lời giải thứ hai là 24x, số hạng thứ ba là 252x2 Hãy tìm a và n GV gọi HS đại diện nhóm lên có giải thích abảng trình bày lời giải HS nhận xét, bổ sung và sửa chữa ghi Gọi HS nhận xét, bổ sung (nếu chép cần) HS trao đổi và rút kết quả: GV nhận xét, bổ sung và nêu Ta có n lời giải đúng (nếu HS không 1 ax Cn1ax Cn2 a2 x trình bày đúng ) Theo bài ta có: na 24 Cn1a 24 n n 1 a 2 252 Cn a 252 a HĐTP2: n GV nêu đề bài tập và cho HS các nhóm thảo luận và cử đại diện Bài tập 2: HS các nhóm thảo luận để tìm lên bảng trình bày lời giải (có giải lời giải Trong khai triển thích) Gọi HS đại diện các nhóm lên HS nhận xét, bổ sung và sửa chữa ghi x a 3 x b 6 , hệ số x7 là -9 bảng trình bày lời giải chép và không có số hạng chứa x8 Gọi HS nhận xét, bổ sung (nếu HS trao đổi và rút kết quả: Tìm a và b cần) Số hạng chứa x7 là C C b C aC b C a C x 6 2 Số hạng chứa x8 là: C30C61 b C31aC60 x Theo bài ta có: Phạm Ngọc Khôi Nguyên Lop12.net CĐTC1 (16) GV nhận xét, bổ sung và nêu lời giải đúng (nếu HS không trình bày đúng lời giải) GV thêm bài tập tương tự và hướng dẫn giải sau đó rọi HS các nhóm lên bảng trình bày lời giải 15b 18ab 3a 9 a b 6 b 3a b a b a 2 b 1 *Củng cố và hướng dẫn học nhà: -Xem lại các bài tập đã giải, ôn tập lại kiến thức chương và làm các bài taậptương tự SBT - Xem lại cách tính tổ hợp, xác suất máy tính cầm tay, … - Chủ đề DÃY SỐ CẤP SỐ CỘNG CẤP SỐ NHÂN I.Mục tiêu: Qua chủ đề này HS cần: 1)Về Kiến thức: Làm cho HS hiểu sâu sắc kiến thức dãy số, cấp số cộng, cấp số nhân và bước đầu hiểu số kiến thức dãy số, cấp số cộng, cấp số nhân chưa đề cập chương trình chuẩn 2)Về kỹ năng: Tăng cường rèn luyện kỹ giải toán dãy số, cấp số cộng, cấp số nhân Thông qua việc rèn luyện giải toán HS củng cố số kiến thức đã học chương trình chuẩn và tìm hiểu số kiến thức chương trình nâng cao 3)Về tư và thái độ: Tích cực hoạt động, trả lời câu hỏi Biết quan sát và phán đoán chính xác Làm cho HS hứng thú học tập môn Toán II.Chuẩn bị củaGV và HS: -GV: Giáo án, các bài tập và phiếu học tập,… -HS: Ôn tập liến thức cũ, làm bài tập trước đến lớp III.Các tiết dạy: Tiết 1: Ôn tập kiến thức dãy số và bài tập áp dụng Tiết 2: Ôn tập kiến thức cấp số cộng và bài tập áp dụng Tiết 3: Ôn tập kiến thức cấp số nhân và bài tập áp dụng - TCĐ11: Tiết ÔN TẬP KIẾN THỨC VỀ DÃY SỐ VÀ BÀI TẬP ÁP DỤNG *Tiến trình dạy: -Ổn định lớp, chia lớp thành nhóm -Kiểm tra bài cũ: Đan xen với các hoạt động nhóm +Ôn tập kiến thức Ôn tập kiến thức cũ các đưa hệ thống câu hỏi sau: +Nêu phương pháp quy nạp toán học +Nêu định nghĩa dãy số, dãy số tăng, giảm, dãy số bị chặn trên, bị chặn và bị chặn,… Phạm Ngọc Khôi Nguyên Lop12.net CĐTC1 (17) +Bài mới: Hoạt động GV HĐ1: Phương pháp quy nạp toán học HĐTP1: (Ôn tập lại pp quy nạp toán học) GV gọi HS nêu lại các bước chứng minh pp quy nạp toán học Áp dụng pp chứng minh quy nạp để giải các bài tập sau GV nêu đề và ghi lên bảng và cho HS các nhóm thảo luận để tìm lời giải Gọi HS đại diện nhóm lên bảng trình bày lời giải Gọi HS nhận xét, bổ sung (nếu cần) GV nhận xét, bổ sung và nêu lời giải chính xác (nếu HS không trình bày đúng lời giải) Hoạt động HS HS nêu các bước chứng minh bài toán pp quy nạp Nội dung Bài tập: Chứng minh rằng: 1.2 +2.5+3.8+ …+n(3n-1)=n2(n+1) với n * (1) HS thảo luận để tìm lời giải và cử đại diện lên bảng trình bày lời giải có giải thích HS nhận xét, bổ sung và sửa hữa ghi chép HS trao đổi và rút kết quả: Với n = 1, VT = 1.2 = VP = 12(1+1) = Do đó đẳng thức (1) đúng với n=1 Đặt VT = Sn Giả sử đẳng thức(1) đúng với n = k, k 1, tức là: Sk = 1.2 +2.5+3.8+ …+k(3k1)=k2(k+1) Ta phải chứng minh (1) ccũng đúng với n = k +1, tức là: Sk+1= (k+1)2(k+2) Thật vậy, theo giả thiết quy nạp ta có: Sk+1=Sk+(k+1)[3(k+1)-1]= k2(k+1)+(k+1)(3k+2)= =(k+1)(k2+3k+2)=(k+1)2(k+2) Vậy đẳng thức (1) đúng với n * HS thảo luận để tìm lời giải… HĐTP2: HS nhận xét, bổ sung và sửa chữa GV nêu đề bài tập và cho ghi chép… HS các nhóm thảo luận tìm lời giải GV gọi HS đại diện nhóm lên bảng trình bày lời giải Gọi HS nhận xét, bổ sung HS chú ý theo dõi trên bảng… (nếu cần) GV nhận xét, hướng dẫn và phân tích tìm lời giải HS không trình bày đúng lời giải Bài tập 2: Chứng minh rằng: n7 – n chia hết cho với n * Phạm Ngọc Khôi Nguyên Lop12.net CĐTC1 (18) HĐ2: Ôn tập dãy số và bài tập áp dụng HĐTP1: GV gọi HS nhắc lại khái niệm dãy số và dãy số hữu hạn Cho biết nào thì dãy số tăng, giảm, bị chặn trên, và bị chặn GV nêu đề bài tập và ghi lên bảng, cho HS các nhóm thảo luận tìm lời giải đã phân công Gọi HS đại diện lên bảng trình bày lời giải gọi HS nhận xét, bổ sung (nếu cần) GV nhận xét và nêu lời giải đúng (nếu HS không trình bày đúng lời giải) HS nhắc lại khía niệm dãy số và nêu khía niệm dãy số tăng, giảm, bị chặn,áyH các nhóm thảo luận để tìm lời giải HS đại diện các nhóm lên bảng trình bày lời giải (có giải thích) HS nhận xét, bổ sung và sửa chữa ghi chép HS thảo luận và nêu kết quả: a)Ta có: un 1 n 1 n un , n Vậy un là dãy tăng b)un= n Ta có: un 1 un 1 n 1 n 1 n 1 n Bài tập 3: Xét tính tăng, giảm hay bị chặn các dãy số xác dịnh số hạng tổng quát sau: a) un = n2; b) un= n , c) un ; d) un cos2 n ; n2 n2 e) un n 1 1 n 1 n 0 un 1 un Vậy dãy (un) là dãy giảm c) un n2 1 Ta có: < un < < , n n2 Dãy số (un) bị chặn trên bị chặn Vậy (un) bị chặn … HĐ3: Củng cố và hướng dẫn học nhà: *Củng cố: -Nêu lại các bước chứng minh quy nạp, các định nghĩa dãy số, tăng, giảm, bị chặn,… -Áp dụng giải bài tập: Chứng minh dãy số xác định số hạng tổng quát sau là dãy tăng: 2n un 3n *Hướng dẫn học nhà: -Xem lại các bài tập đã giải, ôn tập lại kiến thức cấp số cộng, cấp số nhân và nắm chắn các công thức tính số hạng tổng quát, tính n số hạng đầu tiên cấp số cộng - TCĐ12: Phạm Ngọc Khôi Nguyên Lop12.net CĐTC1 (19) Tiết ÔN TẬP KIẾN THỨC VỀ CẤP SỐ CỘNG VÀ BÀI TẬP ÁP DỤNG *Tiến trình dạy: -Ổn định lớp, chia lớp thành nhóm -Kiểm tra bài cũ: Đan xen với các hoạt động nhóm +Ôn tập kiến thức Ôn tập kiến thức cũ các đưa hệ thống câu hỏi sau: +Nêu định nghĩa cấp số cộng +Viết công thức tính số hạng tổng quát biết số hạng đầu và công sai +Nêu tính chất cấp số cộng +Viết các công thức tính tổng n số hạng đầu cấp số cộng +Bài mới: Hoạt động GV Hoạt động HS Nội dung HĐ1: Bài tập1: HĐTP1:(Tìm n và công HS các nhóm thảo luận để tìm lời Một cấp số cộng có số hạng thứ sai cấp số cộng) giải là 5, số hạng cuối là 45 và tổng số là 400 Tìm n và công sai GV nêu đề và ghi lên HS đại diện lên bảng trình bày lời bảng, cho HS các nhóm giải (có giải thích) thảo luận tìm lời giải, gọi HS nhận xét, bổ sung và sả chữa ghi HS đại diện lên bảng trình chép bày lời giải HS trao đổi và nêu kết quả: GV gọi HS nhận xét, bổ n u1 un Sn Sn n u1 un sung (nếu cần) GV nhận xét, bổ sung và nêu lời giải đúng (nếu HS không trình bày đúng lời giải) HĐTP2: (Bài tập tìm số hạng uk) GV nêu đề và ghi lên bảng Cho HS các nhóm thảo luận và tìm lời giải Gọi HS đại diện lên bảng trình bày lời giải Gọi HS nhận xét, bổ sung (nếu cần) GV nhận xét và nêu lời giải chính xác (nếu HS không trình bày đúng) n Sn 2.400 16 u1 un 45 un u1 n 1 HS thảo luận để tìm lời giải và cử đại diện lên bảng trình bày lời giải (có giải thích) HS nhận xét, bổ sung và sửa chữa ghi chép HS trao đổi và rút kết quả: un u1 n 1 d un u1 n 1 d d Bài tập 2: Một cấp số cộng có số hạng thứ 54 và thứ là -61 và 64 Tìm số hạng thứ 23 u54 u1 53d (1) u4 u1 3d (2) Giải hệ phương trình (1), (2) ta : 143 u1 ,d 2 33 u23 u1 22 d HĐ2: HĐTP1:(Tìm các số hạng HS các nhóm thảo luận để tìm lời còn lại cấp số giải cộng biết số hạng đầu HS đại diện nhóm lên bảng trình bày Bài tập 3: Chèn 20 số vào số và 67, biết dãy số đó là cấp số cộng Phạm Ngọc Khôi Nguyên Lop12.net CĐTC1 (20) và số hạng cuối…) GV nêu đề bài tập và ghi lên bảng, cho HS thảo luận tìm lời giải Gọi HS đại diện nhóm lên bảng trình bày lời giải Gọi HS nhận xét, bổ sung (nếu cần) GV nêu nhận xét, và trình bày lời giải đúng (nếu HS không trình bày đúng lời giải) lời giải (có giải thích) HS nhận xét, bổ sung và sửa chữa ghi chép HS trao đổi và rút kết quả: Ta xem số là số hạng đầu và số 67 là số hạng cuối Như cấp số cộng phải tìm có tất 22 số hạng Ta cã : un u1 n 1 d 67 21d d 3 Vậy cấp số cộng tạo thành là: 4, 7, 10, … , 61, 64, 67 và 20 số cần chèn là: 7, 10, 13, …, 58, 61, 64 HĐTP2: (Bài tập tính Bài tập 4: HS thảo luận theo nhóm để tìm lời Tìm tổng cấp số cộng gồm tổng n số hạng đầu giải và cử đại diện lên bảng trình bày các số: cấp số cộng) lời giải (có giải thích) GV nêu đề và ghi lên HS nhận xột, bổ sung và sửa chữa ghi , ,8 đến số hạng thứ 17 bảng, cho HS thảo luận chép tìm lời giải HS trao đổi và rút kết quả: Gọi HS đại diện lên bảng trình bày lời giải n 1 d Ta cã : S n n u1 Gọi HS nhận xét, bổ sung (nếu cần) 17 1 263 GV nhận xét và nêu lời Sn 17 5 giải chính xác (nếu HS 2 4 không trình bày đúng lời giải) HĐ3: Củng cố và hướng dẫn học nhà: *Củng cố: -Nêu lại định nghĩa cấp số cộng, nêu công thứ tính số hạng tổng quát, tính chấp các số cấp số cộng, công thức tính tổng n số hạng đầu cảu cấp số cộng *Áp dụng: Giải bài tập sau: Có bao nhiêu số cấp số cộng -9; -6; -3; … để tổng số các số này là 66 *Hướng dãn học nhà: -Xem lại các bài tập đã giải - Ôn tập lại và ghi nhớ các định nghĩa và công thức đã học cấp số cộng - Ôn tập lại định nghix cấp số nhân và các công thức - TCĐ13: Tiết ÔN TẬP KIẾN THỨC VỀ CẤP SỐ NHÂN VÀ BÀI TẬP ÁP DỤNG *Tiến trình dạy: -Ổn định lớp, chia lớp thành nhóm -Kiểm tra bài cũ: Đan xen với các hoạt động nhóm +Ôn tập kiến thức Ôn tập kiến thức cũ các đưa hệ thống câu hỏi sau: +Nêu định nghĩa cấp số nhân Phạm Ngọc Khôi Nguyên Lop12.net CĐTC1 (21)