1. Trang chủ
  2. » Giáo án - Bài giảng

Lecture Mechanics of materials (Third edition) - Chapter 9: Deflection of beams

10 6 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 593,3 KB

Nội dung

• An equation for the beam shape or elastic curve is required to determine maximum deflection.[r]

(1)

MECHANICS OF MATERIALS

Ferdinand P Beer

E Russell Johnston, Jr. John T DeWolf

Lecture Notes: J Walt Oler

Texas Tech University

CHAPTER

(2)

Deflection of Beams

Deformation of a Beam Under Transverse Loading

Equation of the Elastic Curve

Direct Determination of the Elastic Curve From the Load Di

Statically Indeterminate Beams Sample Problem 9.1

Sample Problem 9.3 Method of Superposition Sample Problem 9.7

Application of Superposition to Statically Indeterminate

Sample Problem 9.8 Moment-Area Theorems

Application to Cantilever Beams and Beams With Symmetric

Bending Moment Diagrams by Parts Sample Problem 9.11

Application of Moment-Area Theorems to Beams With Unsymme

Maximum Deflection

(3)

Deformation of a Beam Under Transverse Loading

• Relationship between bending moment and curvature for pure bending remains valid for general transverse loadings

EI x M( ) =

ρ

• Cantilever beam subjected to concentrated load at the free end,

EI Px

− =

ρ

1

• Curvature varies linearly with x • At the free end A, = A = ∞

A

ρ ρ 0,

(4)

Deformation of a Beam Under Transverse Loading • Overhanging beam

• Reactions at A and C

• Bending moment diagram

• Curvature is zero at points where the bending moment is zero, i.e., at each end and at E

EI x M( ) =

ρ

• Beam is concave upwards where the bending moment is positive and concave downwards where it is negative

• Maximum curvature occurs where the moment magnitude is a maximum

(5)

Equation of the Elastic Curve

• From elementary calculus, simplified for beam parameters, 2 2 1 dx y d dx dy dx y d ≈ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + = ρ

• Substituting and integrating, ( )

(6)

Equation of the Elastic Curve

( ) 1 2

0

C x C dx x M dx y

EI

x x

+ +

= ∫ ∫

• Constants are determined from boundary conditions

• Three cases for statically determinant beams, – Simply supported beam

0 ,

0 =

= B

A y

y

– Overhanging beam ,

0 =

= B

A y

y

– Cantilever beam ,

0 =

= A

A

y θ

(7)

Direct Determination of the Elastic Curve From the Load Distribution

• For a beam subjected to a distributed load, ( ) w( )x

dx dV dx M d x V dx

dM = = = −

2

• Equation for beam displacement becomes ( )x

w dx y d EI dx M

d = = −

4 2 ( ) ( ) 2

1C x C x C x C

dx x w dx dx dx x y EI + + + + − = ∫ ∫ ∫ ∫

(8)

Statically Indeterminate Beams

• Consider beam with fixed support at A and roller support at B

• From free-body diagram, note that there are four unknown reaction components

• Conditions for static equilibrium yield

0

0 ∑ = ∑ =

=

Fx Fy MA

The beam is statically indeterminate

( ) 1 2

0

C x C dx x M dx y

EI

x x

+ +

= ∫ ∫

• Also have the beam deflection equation,

which introduces two unknowns but provides three additional equations from the boundary conditions:

0 ,

At

0 ,

0

(9)

Sample Problem 9.1

ft ft

15 kips

50

psi 10 29 in

723 68

14

= =

=

× =

= ×

a L

P

E I

W

For portion AB of the overhanging beam, (a) derive the equation for the elastic curve, (b) determine the maximum deflection,

(c) evaluate ymax

SOLUTION:

• Develop an expression for M(x) and derive differential equation for elastic curve

• Integrate differential equation twice and apply boundary conditions to obtain elastic curve

• Locate point of zero slope or point of maximum deflection

(10)

Sample Problem 9.1

SOLUTION:

• Develop an expression for M(x) and derive differential equation for elastic curve

- Reactions:

↑ ⎟ ⎠ ⎞ ⎜

⎝ ⎛ + =

↓ =

L a P

R L

Pa

RA B

- From the free-body diagram for section AD, ( x L)

x L a P

M = − 0< <

x a P y

d

EI = −

2

Ngày đăng: 30/03/2021, 07:44

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w