1. Trang chủ
  2. » Luận Văn - Báo Cáo

(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera

68 32 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 68
Dung lượng 2,74 MB

Nội dung

(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera(Luận văn thạc sĩ) Hệ thống nhận diện khuôn mặt qua camera

HỌC VIỆN CƠNG NGHỆ BƯU CHÍNH VIỄN THƠNG - NGUYỄN QUANG HUY HỆ THỐNG NHẬN DIỆN KHUÔN MẶT QUA CAMERA LUẬN VĂN THẠC SĨ KỸ THUẬT (Theo định hướng ứng dụng) HÀ NỘI - 2020 HỌC VIỆN CƠNG NGHỆ BƯU CHÍNH VIỄN THÔNG - NGUYỄN QUANG HUY HỆ THỐNG NHẬN DIỆN KHN MẶT QUA CAMERA CHUN NGÀNH: KHOA HỌC MÁY TÍNH MÃ SỐ: 8.48.01.01 LUẬN VĂN THẠC SĨ KỸ THUẬT (Theo định hướng ứng dụng) NGƯỜI HƯỚNG DẪN KHOA HỌC: TS NGUYỄN ĐÌNH HĨA HÀ NỘI - 2020 LỜI CAM ĐOAN Tôi xin cam đoan luận văn công trình nghiên cứu cá nhân tơi, thực sở nghiên cứu lý thuyết, thực tế hướng dẫn TS Nguyễn Đình Hóa Các số liệu, kết nêu luận văn trung thực chưa công bố cơng trình khác Hà Nội, ngày 16 tháng 11 năm 2020 Học Viên Thực Hiện Nguyễn Quang Huy LỜI CẢM ƠN Em xin chân thành cảm ơn TS Nguyễn Đình Hóa tận tình dạy hướng dẫn cho em việc lựa chọn đề tài, thực đề tài viết báo cáo luận văn, giúp em hoàn thành tốt luận văn Em xin cám ơn thầy cô giáo trường Học viện Công nghệ Bưu Viễn thơng tận tình dạy dỗ bảo em suốt năm học Cuối em xin cám ơn gia đình, bạn bè, đồng nghiệp, người bên cạnh động viên em lúc khó khăn giúp đỡ em suốt thời gian học tập làm luận văn, tạo điều kiện tốt cho em để hồn thành tốt luận văn Mặc dù cố gắng hoàn thành nghiên cứu phạm vi khả cho phép chắn không tránh khỏi thiếu sót Em kính mong nhận góp ý, thông cảm thầy cô bạn Em xin chân thành cảm ơn! Hà Nội, ngày 12 tháng 11 năm 2020 Sinh viên NGUYỄN QUANG HUY MỤC LỤC DANH MỤC TỪ VIẾT TẮT Tên viết tắt Tiếng Anh Tiếng Việt DT Decision Tree Cây định ID3 Iterative Dichotomiser Thuật toán ID3 RF Random Forest Rừng ngẫu nhiên MLP Multi layer perceptron Mạng nơ-ron truyền thẳng nhiều lớp CNN Convolutional Neural Network Mạng nơ-ron tích chập PCA Principal Components Analysis Phân tích thành phần LDA Linear Discriminant Analysis Phân tích khác biệt tuyến tính MLP Multilayer perceptron Mạng nơron truyền thẳng nhiều lớp ANN Artificial Neural network Mạng nơron nhân tạo DANH MỤC CÁC BẢNG Bảng 2.1 Bảng đánh giá độ xác mơ hình DANH MỤC CÁC HÌNH MỞ ĐẦU Công nghệ thông tin ngày phát triển thành phần thiếu hầu hết lĩnh vực giới Những người máy thơng minh người tạo có khả phân tích xử lý cơng việc người cách tự động đem lại lợi ích kinh tế lớn Trong thời gian gần đây, toán nghiên cứu, ứng dụng nhiều vào sống toán nhận diện Tuy xuất chưa lâu quan tâm tính ứng dụng thực tế toán nhận dạng chữ viết, nhận dạng giọng nói, nhận dạng hình dáng, nhận diện khn mặt Trong đó, tốn nhận diện khn mặt chủ đề nhiều nhà đầu tư, doanh nghiệp quan tâm đến Dù nghiên cứu từ lâu toán nhận diện khuôn mặt gặp phải nhiều thách thức chưa có phương pháp cụ thể giải hết vấn đề toán Bài tốn nhận diện khn mặt chủ đề quan tâm nhiều Ứng dụng từ toán áp dụng nhiều lĩnh vực khác Các ứng dụng liên quan đến nhận diện khn mặt kể như: tra cứu thông tin tội phạm, phát tội phạm nơi cơng cộng, tìm người lạc, điểm danh học sinh Từ phân tích khảo sát trên, em nhận thấy hệ thống nhận diện khuôn mặt có ý nghĩa thực tiễn sống em xin chọn đề tài nghiên cứu “Hệ thống nhận diện khuôn mặt qua camera” Kết luận văn hướng tới việc xây hệ thống nhận diện khuôn mặt có khả mở khả mở rộng cao, dễ dàng tích hợp Nội dung luận văn trình bày ba chương với nội dung sau: Chương Tổng quan nhận diện khuôn Chương trình bày số nội dung tảng tốn nhận diện khn mặt, ứng dụng tương tác người máy liên quan đến nhận diện khuôn mặt, số kỹ thuật hay sử dụng tốn nhận diện khn mặt Nội dung 10 chương bao gồm ba phần Phần giới thiệu tổng quan tốn nhận diện khn mặt với ứng dụng thực tế Phần thứ hai giới thiệu số phương pháp nhận diện khuôn mặt thường áp dụng thực tế nghiên cứu Phần cuối giới thiệu số mạng tích chập thường sử dụng toán nhận diện khuôn mặt Chương Hệ thống nhận diện khuôn mặt dựa mạng nơ ron tích chập Các kỹ thuật sử dụng để xây dựng hệ thống nhận diện khn mặt luận văn trình bày chương Nội dung chương trình bày phương pháp trích chọn đặc trưng phục vụ trình nhận diện khn mặt, phương pháp định danh khn mặt mơ hình học máy sử dụng để phân loại liệu nhận diện khuôn mặt Chương bao gồm thơng tin mơ hình, kiến trúc mạng nơ ron tích chập Inception-ResNet sử dụng cho việc trích chọn đặc trưng khn mặt luận văn Chương Thử nghiệm đánh giá Chương mô tả chi tiết liệu sử dụng, kịch kết trình huấn luyện mơ hình Các kết thực nghiệm kèm theo đánh giá mơ hình sau huấn luyện trình bày chương Nội dung luận văn kết thúc phần Kết luận, trình bày tóm lược nội dung kết đạt luận văn, từ đề xuất hướng phát triển tương lại 54 Ý tưởng Random Forest đơn giản Thuật toán sinh số định (thường vài trăm) sử dụng chúng [12] câu hỏi định câu hỏi thuộc tính Ví dụ: “Cánh hoa có dài 1.7cm hay không?” Câu giá trị nút lớp (class) Sử dụng hàng trăm định bất khả thi với người, máy tính làm việc tương đối dễ dàng Những thực đào tạo phần khác tập huấn luyện Về mặt kỹ thuật, riêng lẻ trồng sâu có xu hướng học hỏi từ mẫu khó đốn Loại tạo vấn đề mức huấn luyện Hơn nữa, độ lệch thấp làm cho trình phân loại có hiệu suất thấp chất lượng liệu bạn tốt mặt tính 2.1.3 Q trình bootstrapping Rừng ngẫu nhiên sử dụng hàng trăm hàng ngàn định tất dựng theo cách, chúng cho câu trả lời giống Như chẳng khác sử dụng định Từ đó, Rừng ngẫu nhiên sử dụng bootstrapping để giải vấn đề Quá trình bootstrapping rừng ngẫu nhiên sử dụng thuật toán chọn ngẫu nhiên quan sát (observations) để đảm bảo tất định cho câu trả lời Cụ thể rừng ngẫu nhiên thực xoá số quan sát lặp lại số khác cách ngẫu nhiên khiến định có thay đổi riêng 2.1.4 Quá trình attribute sampling Để chắn định tạo hoàn toàn khác nhau, rừng ngẫu nhiên sử dụng thêm kỹ thuật lấy mẫu thuộc tính (attribute sampling) Rừng ngẫu nhiên thực trình attribute sampling cách loại bỏ ngẫu nhiên số câu hỏi xây dựng định Điều giúp tạo nên tính ngẫu nhiên cho thuật tốn Trường hợp câu hỏi tốt bị loại bỏ câu hỏi khác thay từ định hoàn toàn xây dựng 55 2.1.5 Kết dự đoán Random Forest thuật tốn thuộc lớp mơ hình kết hợp (ensemble model) Kết thuật toán dựa bầu cư đa số từ nhiều định Do mơ hình có độ tin cậy cao độ xác tốt so với mơ hình phân loại tuyến tính đơn giản logistic linear regression 2.1.6 Tham số Random Forest Các tham số thường sử dụng huấn luyện random forest n_estimators, max_depth, min_samples_split, max_features, max_features, class_weight, min_impurity_split Trong n_estimators số lượng trees định Tham số max_depth độ sâu lớn định Tham số min_samples_split số lượng mẫu tối thiểu cần thiết để phân chia internal node Nếu kích thước mẫu internal node nhỏ ngưỡng ta không rẽ nhánh internal node Tham số max_features số lượng đặc trưng xem xét tìm kiếm phương án phân chia tốt Mặc định toàn đặc trưng đầu vào Tham số class_weight trọng số tương ứng với lớp Mặc định None, lớp có mức độ quan trọng Tham số min_impurity_split ngưỡng để dừng sớm (early stopping) trình phát triển định Nó tiếp tục phân chia độ vẩn đục (impurity) lớn ngưỡng, trái lại node leaf 2.1.7 Sử dụng random forest để phân loại, định danh cho khn mặt Đối với tốn nhận diện khuôn mặt nhiều nghiên cứu cho thấy Random forest đem lại kết tốt hai việc trích chọn đặc trưng phân loại khn mặt [13] Trong khuôn khổ luận này, random forest áp dụng cho việc phân loại khuôn mặt Dữ liệu ảnh sau qua mơ hình tích chập InceptionResNet trả cho kết vectơ đặc trưng Ta sử dụng random forest để huấn luyện vectơ đặc trưng với nhãn tương ứng Sau kết thúc huấn luyện ta thu mơ hình phân loại Mơ hình phân loại sử dụng thực với liệu đầu vào vectơ đặc trưng trả lại nhãn 56 với xác suất tương ứng với vectơ đặc trưng đầu vào Từ ta xác định khuôn mặt đầu vào giống với 2.4 Kết luận Chương trình bày sơ đồ thiết kế hệ thống nhận diện khuôn mặt, mạng trích chọn đặc trưng kỹ thuật phân loại rừng ngẫu nhiên Trong đó, nội dung chương có sâu mạng học sâu googlenet, resnet từ đưa ưu nhược điểm kết hợp hai mạng thành mạng inception resnet Chương trình bày kết thu sử dụng mạng inception resnet kết hợp với rừng ngẫu nhiên cho tốn nhận diện khn mặt 57 CHƯƠNG THỬ NGHIỆM VÀ ĐÁNH GIÁ 3.1 Bộ liệu đầu vào Bộ liệu sử dụng luận văn hai liệu faces94 [10] CASIA-WebFace [20] Trong liệu faces94 thu thập từ trung tâm nghiên cứu Center for Machine Perception thuộc đại học kỹ thuật Séc liệu CASIA-WebFace sưu tầm từ viện tự động hóa học viện khoa học Trung Quốc(CASIA) Luận văn sử dụng hai liệu vào mục đích khác Bộ liệu faces94 chứa khoảng 1300 ảnh 153 người Đây liệu nhỏ dùng để thử nghiệm đánh giá hiệu kiến trúc mạng trước sử dụng liệu để huấn luyện Bộ liệu CASIA-WebFace chứa khoảng 500.000 ảnh thu thập từ 10.000 người Trước đưa vào huấn luyện cho mơ hình trích chọn đặc trưng ảnh duyệt qua mơ hình mtcnn để xác định vị trí tọa độ khuôn mặt người tập liệu 3.2 Q trình huấn luyện Sau có liệu đầu vào khuôn mặt Ta tiến hành huấn luyện mạng Inception-ResNet với hàm tối ưu sử dụng adagrad Vì adagrad hàm tối ưu tự điều chỉnh tốc độ học Với người kinh nghiệm toán việc lựa chọn mơ hình kèm với phương pháp tối ưu cần truyền vào tốc độ học khó khăn tốn thời gian, cơng sức để đánh giá nên em định sử dụng adagrad Adagrad coi tốc độ học tham số điều chỉnh tốc độ học cho learning nhỏ mà liệu khác biệt tốc độ học liệu nhiều khác biệt Việc tự điều chỉnh tốc độ học hàm tối ưu giúp mô hình ta dễ dàng sử dụng Hàm mục tiêu sử dụng nghiên cứu cross-entropy-loss Để cho mơ hình học tốt ta tiến hành sử dụng phương pháp tăng cường liệu qua tham số random_rotate, random_flip, random_crop 58 Hình 3.1 Một số phương pháp tăng cường liệu Trong random_crop cắt ngẫu nhiên phần ảnh giúp mơ hình tránh việc học khớp Tham số random_flip lật ảnh Bức ảnh lật ngẫu nhiên sang trái phải Tham số random_rotate tăng cường liệu ảnh xoay từ ảnh gốc với thiết lập góc 10 độ sang trái phải Một mơ hình trích chọn đặc trưng tốt liệu đủ lớn đa dạng để việc học hạn chế rơi vào tình trạng khớp Các phương pháp tăng cường liệu áp dụng hai liệu faces94 CASIA-WebFace trình huấn luyện Quá trình huấn luyện áp dụng số kiến trúc mạng với tập liệu faces94 để đánh giá hiệu trước huấn luyện thật liệu CASIA-WebFace Các liệu đưa qua mơ hình mtcnn để xác định vị trí khn mặt trước đưa vào huấn luyện Kiến trúc áp dụng để huấn luyện với faces94 Inception-Resnet nguyên Inception-Resnet sau cắt bỏ hai tầng Inception-C Dữ liệu faces94 tách làm hai phần huấn luyện kiểm thử với tỉ lệ 7:3 Thời gian huấn luyện cho lần duyệt(epoch) khoảng 15 phút với liệu faces94 tăng sau khoảng 35 epoch hai mạng hội tụ độ xác khơng cịn tăng lỗi khơng giảm tiếp tục huấn luyện Kết đánh giá tập test cho thấy với mạng Inception-Resnet nguyên độ xác 99.87% mạng Inception-Resnet sau cắt bỏ hai tầng 59 Inception-C 97.68% Thử nghiệm cho thấy kết mạng Inception-Resnet nguyên hiệu Ta thấy mạng không đủ độ sâu mạng InceptionResnet sau điều chỉnh khả học bị rõ rệt độ xác có 97,68% tập liệu nhỏ, đơn giản khó để huấn luyện mơ hình tốt với liệu lớn Từ đánh giá trên, kiến trúc mạng Inception-Resnet nguyên sử dụng để huấn luyện mô hình trích chọn đặc trưng Dữ liệu sử dụng cho việc huấn luyện CASIA-WebFace Đây tập liệu khuôn mặt lớn thu thập từ học viện khoa học Trung Quốc Để có mơ hình trích chọn đặc trưng thật tốt số lượng liệu khn mặt phải đủ lớn, đủ độ đa dạng vè hình dáng, kích thước màu sắc Thời gian diễn khoảng 350 với 90 lần duyệt Sau có mơ hình trích chọn đặc trưng tùy vào tốn ta tiến hành trích chọn đặc trưng nhãn đầu vào để mơ hình phân loại thuật tốn random forest học đặc tính 3.3 Thử nghiệm chạy hệ thống nhận diện khuôn mặt nhận diện khách hàng VIP khách sạn Máy chủ sử dụng cho việc thực nghiệm sử dụng vi xử lý Intel Core i58400 với xung nhịp 2.8GHz Dung lượng nhớ 16 GB xử lý đồ họa sử dụng GTX 1070 Ti 8G GDDR5 Hệ thống nhận diện khách hàng VIP phát triển tảng Ubuntu ngơn ngữ lập trình sử dụng python version 3.6 với thư viện opencv, keras, tensorflow để phục vụ cho toán xử lý ảnh Mơ hình thử nghiệm huấn luyện với tập liệu khoảng 200 khách hàng, vị khách có khoảng 10-30 ảnh khuôn mặt sở liệu Trong trình phân loại em chọn ngưỡng 40% để xác định khuôn mặt Ngưỡng sử dụng sử dụng để tránh việc xác suất khuôn mặt trả thấp gây việc nhận nhầm thông tin Sau thiết lập địa luồng phát video trực tiếp ta khởi động hệ thống Sau số hình ảnh hệ thống hoạt động : 60 Hình 3.2 Hệ thống nhận diện khn bình thường 61 Hình 3.3 Hệ thống nhận diện khn mặt có đeo kính Với khách hàng có danh sách sau xuất lưu lại 10 giây để dễ dàng quan sát Hệ thống nhận diện khn mặt cách bình thường người đeo kính Từ thấy mơ hình trích rút đặc trưng mơ hình phân loại hoạt động tốt thực tế Hệ thống nhận diện khách hàng giây xử lý khung hình với độ phân giải fullhd 3.4 Đánh giá Để đánh phân loại ta thực lấy vectơ đặc trưng từ mơ hình trích chọn đặc trưng đưa vào randomforest để huấn luyện Thiết lập random forest 62 em 100 Các tập liệu sử dụng để đánh giá luận văn Faces94 [14], Faces95[15], Faces96[16], Grimace[17] Tập liệu dùng 75% cho việc huấn luyện 25% lại cho việc kiểm thử mơ hình phân loại Sau ta so sánh kết mơ hình vừa huấn luyện với kết số phương pháp sử dụng tron nghiên cứu [18] [19] LDA, PCA, LBP, SVM based on LDA MLP kết hợp với PCA DCT Bảng 2.1 Bảng đánh giá độ xác mơ hình Faces94 Faces95 Faces96 Grimace dataset 99.1% dataset 99.5% dataset 98.2% dataset 99.95 Multilayer perceptron + PCA + 100% - - 100% DCT SVM based on LDA (RBF 97.4% - 95.1% 100 % kernel) LBP PCA LDA 85.93% 72.1% 79.39% 80.47% 69.87% 76.61% 84.145 70.95% 78.34% 86.45% 74.79% 81.93% Inception Resnet V1+ Random forest Sự kết hợp hai mơ hình Inception Resnet V1 Random forest cho lại kết cao với tập liệu Sự khác biệt lớn phương pháp việc trích chọn đặc trưng Mạng Inception Resnet V1 học đặc trưng khuôn mặt tốt hẳn so với phương pháp học máy truyền thống Kiến trúc mạng tích chập có khả học đặc trưng tốt trích rút đặc trưng khn mặt trường hợp thiếu sáng, khuôn mặt không đầy đủ hay người đeo kính Dựa kết ta thấy phương pháp học máy SVM đem lại kết ấn tượng kết cao lại Inception Resnet V1 + Random forest MLP + PCA + DCT Chúng ta đánh giá chi tiết ưu nhược điểm hai phương pháp Dựa vào kết ta thấy việc kết hợp 63 nhiều phương pháp MLP, PCA DCT đem đến hiệu tốt với mức độ xác ln Inception Resnet V1 Random forest từ 0.1-1% Hình 3.4 Luồng xử lý hệ thống sử dụng phương pháp PCA DCT Đánh giá qua mơ hình ta thấy hai phương pháp kết hợp học máy học sâu Trong hai thiết kế, thiết kế sử dụng học máy để trích chọn đặc trưng dùng phương pháp học sâu để phân loại, thiết kế sử dụng học sâu để trích chọn đặc trưng dùng phương pháp học máy để phân loại Cả hai thiết kế dù đem lại kết nhận diện tốt thiết kế sử dụng MLP, PCA, DCT ta thấy thiết kế phức tạp mơ hình phân loại sử dụng mạng lan truyền ngược lớn Thời gian tối thiểu để nhận diện khuôn mặt rơi vào khoảng 20 giây Đó khoảng thời gian q lớn phương pháp sử dụng nhiều kỹ thuật 64 Hình 3.5 Luồng xử lý hệ thống Inception Resnet Random forest Còn lại với Inception Resnet V1 kết hợp với Random forest cho ta độ xác thấp khoảng 1% so với phương pháp thời gian để nhận diện khuôn mặt rơi vào khoảng 0.2 giây Từ ta thấy phương pháp sử dụng mạng Inception Resnet V1 kết hợp với Random forest dễ dàng triển khai thực tế dù độ xác từ phương pháp đem lại thấp PCA kết hợp với DCT chút 3.5 Kết luận Chương trình bày trình huấn luyện, kiểm thử, đánh giá chất lượng mơ hình trích chọn đặc trưng inception resnet thử nghiệm chạy hệ thống nhận diện khách hàng VIP khách sạn Kết hệ thống tốt với thời gian xử lý khoảng 0.2 giây khung hình với khả nhận diện khn mặt từ nhiều góc độ, sắc thái, điều kiện khác nhau, điều mà mơ hình học máy truyền thống chưa xử lý tốt 65 KẾT LUẬN Bài tốn nhận diện khn mặt khơng cịn vấn đề nhận diện khuôn mặt dựa mạng học sâu quan tâm Trên sở tìm hiểu nghiên cứu phương pháp nhận diện khuôn mặt áp dụng vào hệ thống nhận diện khuôn mặt qua camera, luận văn đạt kết sau Đó tìm hiểu, thực nghiệm mơ hình mạng học sâu, học máy nơ-ron tích chập rừng ngẫu nhiên để xử lý tốn nhận diện Phân tích kết thu tìm mơ hình mạng học sâu thích hợp cho tốn nhận diện khn mặt Xây dựng thành cơng hệ thống nhận diện khn mặt qua camera có chức phát khuôn mặt trực tiếp qua video Hệ thống sau phát triển cho thấy việc mơ hình mạng trích chọn đặc trưng đem tới kết tốt nhiên xuất số mặt hạn chế Đó mơ hình phân loại không phù hợp với tập liệu lớn Điều kết phân loại mà thời gian huấn luyện lại mô hình phân loại lâu Qua kết hạn chế ứng dụng cho thấy việc xây dựng hệ thống nhận diện khn mặt cịn địi hỏi phải thực hiện, nghiên cứu áp dụng thêm nhiều phương pháp Về hướng pháp triển tương lại, luận văn đề xuất nghiên cứu thêm số hướng Hướng thứ tiến hành nghiên cứu, áp dụng đánh giá mơ hình phân loại áp dụng vào toán thay rừng ngẫu nhiên Sparse Representation-based classification, Support Vector Machine, Linear Classifier Hướng nghiên cứu số phương pháp sử dụng khoảng cách huấn luyện với triplet loss Phương pháp cần dung lượng nhớ lớn không cần huấn luyện sử dụng mơ hình phân loại Do thời gian thực luận văn không nhiều nên chắn luận văn tránh khỏi hạn chế thiếu sót Em mong nhận ý kiến đóng góp 66 DANH MỤC CÁC TÀI LIỆU THAM KHẢO [1] Abdulrahman Alkandari, Soha Jaber Aljaber (2015), “Principle Component Analysis algorithm (PCA) for image recognition”, ICCTIM, pp 76-80 [2] Liton Chandra Paul, Abdulla Al Sumam (2012), “Face Recognition Using Principal Component Analysis Method” International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) 1, pp 135-139 [3] LDA Juwei Lu, Kostantinos N Plataniotis, and Anastasios N Venetsanopoulos (2003), "Face Recognition Using LDA-Based Algorithms", IEEE TRANSACTIONS ON NEURAL NETWORKS, pp 195-200 [4] Alaa Eleyan, Hasan Demirel (2006), “PCA and LDA Based Face Recognition Using Feedforward Neural Network Classifier” Conference: Multimedia Content Representation, pp 200-206 [5] Philip H Swain, Hans Hauska (1977), “The decision tree classifier: Design and potential” IEEE Transactions on Geoscience Electronics 15, pp 142-147 [6] Georgios Karalis (2020), “Decision Trees and Applications” Advances in Experimental Medicine and Biology 1194, pp 239-242 [7] Manish Mishra, Monika Srivastava (2014), “A view of Artificial Neural Network”, IEEE ICAETR - 2014, pp 1-3 [8] Saad Albawi, Tareq Abed Mohammed (2017), “Understanding of a Convolutional Neural Network”, International Conference on Engineering and Technology (ICET) [9] Yushi Chen, Hanlu Jiang, Chunyang Li, Xiuping Jia, Pedram Ghamisi (2016), “Deep Feature Extraction and Classification of Hyperspectral Images 67 Based on Convolutional Neural Networks” IEEE Transactions on Geoscience and Remote Sensing 54, pp 6232 – 6251 [10] Musab Coşkun, Ayşegül Uỗar, ệzal Yildirim, Yakup Demir (2017), Face recognition based on convolutional neural network” 2017 International Conference on Modern Electrical and Energy Systems (MEES), pp 376-379 [11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun (2016), “Deep Residual Learning for Image Recognition” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 770-778 [12] Jehad Ali, Rehanullah Khan, Nasir Ahmad (2012), “Random Forests and Decision Trees” JCSI International Journal of Computer Science Issues 9, pp 272276 [13] Haiyan Guan, Jonathan Li (2012), “RANDOM FORESTS-BASED FEATURE SELECTION FOR LAND-USE CLASSIFICATION USING LIDAR DATA AND ORTHOIMAGERY” ISPRS - International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, pp 203-208 68 [14] Faces94, http://cmp.felk.cvut.cz/~spacelib/faces/faces94.html Truy cập ngày 01/11/2020 [15] Faces95, http://cmp.felk.cvut.cz/~spacelib/faces/faces95.html Truy cập ngày 01/11/2020 [16] Faces96, http://cmp.felk.cvut.cz/~spacelib/faces/faces96.html Truy cập ngày 01/11/2020 [17] Grimace, http://cmp.felk.cvut.cz/~spacelib/faces/grimace.html Truy cập ngày 01/11/2020 [18] A Vinay, Abhijay Gupta, Aprameya Bharadwaj, Arvind Srinivasan, K N Balasubramanya Murthy, S Natarajan (2018),"Deep Learning on Binary Patterns for Face Recognition", International Conference on Computational Intelligence and Data Science, pp 77-83 [19] Nawaf Hazim (2016), "Face Recognition using PCA-BPNN with DCT Implemented on Face94 and Grimace Databases", International Journal of Computer Applications, pp 8-13 [20] CASIA-WebFace, https://pgram.com/dataset/casia-webface/ Truy cập ngày 01/11/2020 ... thống nhận diện khn mặt có ý nghĩa thực tiễn sống em xin chọn đề tài nghiên cứu ? ?Hệ thống nhận diện khuôn mặt qua camera? ?? Kết luận văn hướng tới việc xây hệ thống nhận diện khn mặt có khả mở khả... sáng tối, sáng, mờ hay ảnh chứa phần khuôn mặt 1.4 Kết luận Chương giới thiệu tổng quan nhận diện khuôn mặt, kiến trúc hệ thống nhận diện khuôn mặt ứng dụng hệ thống thực tế Bên cạnh nội dung chương... đồ hoạt động hệ thống nhận diện khuôn mặt 40 Trong hệ thống có ba bước xử lý để nhận diện khn mặt Đó xác định vị trí khn mặt, trích chọn đặc trưng khn mặt phân loại xác định khuôn mặt Các bước

Ngày đăng: 18/03/2021, 19:42

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1] Abdulrahman Alkandari, Soha Jaber Aljaber (2015), “Principle Component Analysis algorithm (PCA) for image recognition”, ICCTIM, pp. 76-80 Sách, tạp chí
Tiêu đề: PrincipleComponent Analysis algorithm (PCA) for image recognition
Tác giả: Abdulrahman Alkandari, Soha Jaber Aljaber
Năm: 2015
[2] Liton Chandra Paul, Abdulla Al Sumam (2012), “Face Recognition Using Principal Component Analysis Method” International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) 1, pp. 135-139 Sách, tạp chí
Tiêu đề: Face RecognitionUsing Principal Component Analysis Method
Tác giả: Liton Chandra Paul, Abdulla Al Sumam
Năm: 2012
[4] Alaa Eleyan, Hasan Demirel (2006), “PCA and LDA Based Face Recognition Using Feedforward Neural Network Classifier” Conference:Multimedia Content Representation, pp. 200-206 Sách, tạp chí
Tiêu đề: PCA and LDA Based FaceRecognition Using Feedforward Neural Network Classifier
Tác giả: Alaa Eleyan, Hasan Demirel
Năm: 2006
[5] Philip H. Swain, Hans Hauska (1977), “The decision tree classifier:Design and potential” IEEE Transactions on Geoscience Electronics 15, pp. 142-147 Sách, tạp chí
Tiêu đề: The decision tree classifier:"Design and potential
Tác giả: Philip H. Swain, Hans Hauska
Năm: 1977
[6] Georgios Karalis (2020), “Decision Trees and Applications” Advances in Experimental Medicine and Biology 1194, pp. 239-242 Sách, tạp chí
Tiêu đề: Decision Trees and Applications”
Tác giả: Georgios Karalis
Năm: 2020
[7] Manish Mishra, Monika Srivastava (2014), “A view of Artificial Neural Network”, IEEE ICAETR - 2014, pp. 1-3 Sách, tạp chí
Tiêu đề: A view of Artificial NeuralNetwork
Tác giả: Manish Mishra, Monika Srivastava
Năm: 2014
[8] Saad Albawi, Tareq Abed Mohammed (2017), “Understanding of a Convolutional Neural Network”, International Conference on Engineering and Technology (ICET) Sách, tạp chí
Tiêu đề: Understanding of aConvolutional Neural Network
Tác giả: Saad Albawi, Tareq Abed Mohammed
Năm: 2017
[9] Yushi Chen, Hanlu Jiang, Chunyang Li, Xiuping Jia, Pedram Ghamisi (2016), “Deep Feature Extraction and Classification of Hyperspectral Images Sách, tạp chí
Tiêu đề: [9] Yushi Chen, Hanlu Jiang, Chunyang Li, Xiuping Jia, Pedram Ghamisi (2016), “Deep Feature Extraction and Classification of Hyperspectral Images
Tác giả: Yushi Chen, Hanlu Jiang, Chunyang Li, Xiuping Jia, Pedram Ghamisi
Năm: 2016
[10] Musab Coşkun, Ayşegỹl Uỗar, ệzal Yildirim, Yakup Demir (2017),“Face recognition based on convolutional neural network” 2017 International Conference on Modern Electrical and Energy Systems (MEES), pp. 376-379 Sách, tạp chí
Tiêu đề: Face recognition based on convolutional neural network
Tác giả: Musab Coşkun, Ayşegỹl Uỗar, ệzal Yildirim, Yakup Demir
Năm: 2017
[12] Jehad Ali, Rehanullah Khan, Nasir Ahmad (2012), “Random Forests and Decision Trees” JCSI International Journal of Computer Science Issues 9, pp. 272- 276 Sách, tạp chí
Tiêu đề: Random Forests andDecision Trees
Tác giả: Jehad Ali, Rehanullah Khan, Nasir Ahmad
Năm: 2012
[13] Haiyan Guan, Jonathan Li (2012), “RANDOM FORESTS-BASED FEATURE SELECTION FOR LAND-USE CLASSIFICATION USING LIDAR DATA AND ORTHOIMAGERY” ISPRS - International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, pp. 203-208 Sách, tạp chí
Tiêu đề: RANDOM FORESTS-BASEDFEATURE SELECTION FOR LAND-USE CLASSIFICATION USING LIDARDATA AND ORTHOIMAGERY
Tác giả: Haiyan Guan, Jonathan Li
Năm: 2012

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w