Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 82 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
82
Dung lượng
13,41 MB
Nội dung
LIEGE UNIVERSITY -*** - VIETNAM NATIONAL UNIVERSITY, HANOI Institute of Microbiology and Biotechnology -*** - Nguyen Thi Hieu Thu STUDY ON METHANOTROPHS AND THEIR SOME POTENTIAL APPLICATION ASPECTS Specialty: Biotechnology Code: 60 42 02 01 MASTER THESIS SUPERVISOR: Dr DINH THUY HANG Hanoi, 2014 ACKNOWLEDGEMENTS Foremost, I would like to express my deep gratitude to my advisor Dr Dinh Thuy Hang for her patience, motivation, enthusiasm, and immense knowledge Her guidance helped me in all the time of research and writing of this thesis I am indebted to all the lecturers of Vietnam National University, Hanoi (Vietnam) and University of Liege (Belgium) for sharing their valuable scientific knowledge I thank my lab mates in Microbial Ecology Department (Institute of Microbiology and Biotechnology) for the stimulating discussions, for providing guidance, and for all the fun we have had Finally, and most importantly, I would like to thank my family, especial my husband, for unconditional supports that made this thesis possible Hanoi, December 2013 Nguyen Thi Hieu Thu TABLE OF CONTENTS Acknowledgements Table of contents List of figures List of tables Abbreviations Abstract Tóm tắt Preface 10 Chapter Introduction 11 1.1 Methane and global climate change 11 1.2 Methanotrophs 12 1.2.1 Phylogeny of methanotrophs 12 1.2.2 Physical diversity of methanotrophs 15 1.3 Aerobic methane oxidation 17 1.4 Methane monooxygenase 20 1.4.1 The role of MMOs in MOB 20 1.4.2 Soluble methane monooxygenase 21 1.4.3 Particulate methane monooxygenase 23 1.5 Application potential of Methanotrophs 25 1.5.1 Food for animal 25 1.5.2 Bioconversion of methane to methanol 27 1.5.3 Environmental bioengineering 29 1.6 Objectives of this study 35 Chapter Material and Methods 36 2.1 Sampling 36 2.2 Isolation of methanotrophs 36 2.3 DNA extraction and PCR amplification 38 2.4 DGGE 40 2.5 Sequencing and phylogenetic analysis 41 2.6 Morphological and physiological characterization 41 2.7 Chemical analyses 42 Chapter Results and discussion 43 3.1 Enrichment and isolation of MOBs from environmental samples 43 3.1.1 Enrichment of MOBs 43 3.1.2 Isolation of MOBs and preliminary identification 44 3.2 Study the presence of MMO encoding genes in the isolates 46 3.3 Growth of the MOB isolates with methane 48 3.4 Morphology, physiology and phylogeny of strain BG3 49 3.5 Application experiments using Methylomonas sp BG3 as model organism 52 3.5.1 Study on bacterial meal production 52 3.5.2 Study on reduction of methane emission from organic wastes 55 Conclusion and Prospective works 58 References 59 Appendix 74 LIST OF FIGURES Figure Title Figure 1.1 Phylogenetic relationships between known methanotrophs based on 16S rRNA gene sequences using MEGA4………………… 15 Pathways for the oxidation of methane and assimilation of formaldehyde in MOBs………………………………………… 18 RuMP pathway for HCHO assimilation in Type I methanotrophs…………………………………………………… 19 Serine pathway for the assimilation of formaldehyde in Type II methanotrophs…………………………………………………… 19 Figure 1.5 Orientation of soluble mono-oxygenase gene cluster…………… 22 Figure 1.6 The crystal structure of hydroxylase dimer…………………… 22 Figure 1.7 Particulate methane monooxygenase gene clusters of methaneoxidizingbacteria………………………………………………… 23 Figure 1.8 Crystal structure of a single promoter of pMMO……………… 24 Figure 1.9 The schematic bench scale plant for treatment of diluted landfill gas in biofilters………………………………………………… 30 Figure 1.2 Figure 1.3 Figure 1.4 Figure 1.10 The schematic biofilter ………………………………………… Figure 1.11 Horizontal injection and extraction of methane, air, and nutrient used in in-situ bioremediation of TCE ………………………… Figure 3.1 Page 31 33 Methane consumption in enriched cultures of MOBs after days of cultivation …………………………………………… 43 The increase in culture turbidity through three steps of enrichment of sample PS ……………………………………… 44 Isolation of MOB via liquid dilution series in the wells of 96well plates ……………………………………………………… 45 Figure 3.4 DGGE analysis of PCR-amplified 16S rDNA fragments of the isolates obtained from the MOB-enrichment cultures ………… 46 Figure 3.5 PCR products of pmoA gene fragments (508 bp) ……………… 47 Figure 3.2 Figure 3.3 Figure 3.6 Agarose gel electrophoresis of the mmoX gene PCR products yielded from genome of the isolates (800 bp) ………………… 48 Figure 3.7 Growth of the MOB isolates with methane as shown by optical density of the liquid cultures after days cultivation ………… 49 Figure 3.8 Phase – contrast micrographs of the MOB isolates grown in liquid cultures with methane (viewed at 1000× magnifications) 49 Figure 3.9 Phylogenetic tree based on the 16S rRNA gene sequences showing the relationship of strains BG3 and other known methanotrophs ………………………………………………… 50 Figure 3.10 Phylogenetic analysis of partial amino acid sequences encoded by the pmoA gene from the three MOB isolates ……………… 51 Figure 3.11 Cultivation condition-dependent growth of strain BG3 ……… Figure 3.12 Cultivation of BG3 with methane ……………………………… 52 Figure 3.13 Experimental generation of methane from organic wastes …… Figure 3.14 Control of methane emission from organic wastes in laboratory model using strain BG3 ……………………………………… 55 53 56 LIST OF TABLES Table Title Page Table 1.1 Characteristics of methanotrophs 14 Table 1.2 Chemical and amino acid composition of BPM, fishmeal and soybean meal (SBM) 26 Table 2.1 Fresh water mineral medium 36 Table 2.2 Metal mix and vitamin mix 36 Table 3.1 Bacterial strains isolated from MOB-enrichment samples by using liquid serial dilution method 45 Table 3.2 Crude protein content in biomass of MOB and other bacterial species 54 ABBREVIATIONS 16S rDNA Gene coding for small subunit of ribosomal deoxyribonucleic acid Bp Base pair BSA Bovin serum albumin CI Chloroform-isoamyl alcohol DGGE Denaturing gradient gel electrophoresis DNA Deoxyribonucleic acid dNTP Deoxyribonucleotide triphosphate EDTA Ethylenediaminetetraacetic acid EPS Extracellular/exo- polymeric substance ICM Intracytoplasmic membrane MOB Methane oxidizing bacteria MQ Mili-Q OD Optical density PCR Polymerase chain reaction pMMO Particulate methane mono-oxygenase pmoA Gene for alpha subunit of the pMMO SDS Sodium dodecyl sulfate sMMO Soluble methane mono-oxygenase TAE Tris-Acetic-EDTA Taq Thermus aquaticus DNA polymerase BPM Bacterial protein meal ABSTRACT From environmental samples of different locations, three freshwater strains of methane oxidizing bacteria (MOBs), i.e BG3, PS1 and W1, were isolated by using serial dilution method in liquid mineral medium with methane as the only carbon and energy sources These three isolates contained genes encoding for the particulate methane-mono-oxygenase (pMMO) but not the soluble one (sMMO), indicating that they would not be expected to growth on a broad range of organic substrates Of the three isolates, strain BG3 showed the highest growth with methane and thus was selected and used as model organisms in further experiments on application aspects Optimal cultivation conditions for this strain were also determined, i.e pH 68, temperature 25-40 oC, salinity of 1-15 g L-1 NaCl Based on phylogenetic analyses of the 16S rDNA partial gene sequences, strain BG3 was identified as a member of the Methylomonas genus (type I methanotroph), the most closely related species was Methylomonas methanica (95% homology) This strain was designated with the name Methylomonas sp BG3 and its 16S rDNA partial sequence was deposited at the GenBank under accession number of KJ081955 In addition, pmoA gene has also been detected in this strain and a gene sequence fragment (508 bp) was deposited the GenBank under accession number of KJ081956 Studies on the application aspects of MOBs were conducted with the use of strain BG3 as the model organism It has been shown that methane-fed culture of strain BG3 could yield 1.26 g⋅l cell dry weight (CDW), accordingly produce 68.69 g crude − protein per 100 g CDW and the efficiency of methane consumption in this respect was 2.85 m3 per kg CDW In the study on control of methane emission by MOB, strain BG3 showed the capability of reducing 77.46 % of total volume of methane emitted from anaerobically decomposing organic wastes Key words: methanotroph, Methylomonas, pmoA, biomass production, methane emission TĨM TẮT Từ mẫu mơi trường thu thập từ địa điểm khác nhau, ba chủng vi khuẩn oxy hóa metan gồm BG3, PS1 W1 phân lập nhờ phương pháp pha lỗng mơi trường khoáng dịch thể sử dụng metan làm nguồn cacbon lượng Ba chủng nói chứa gen mã hóa cho enzyme methane monooxygenase dạng hạt khơng chứa gen mã hóa cho enzyme dạng hịa tan, chứng tỏ ba chủng khơng có khả sinh trưởng đa dạng loại chất hữu khác Trong ba chủng phân lập được, chủng BG3 có khả sinh trưởng tốt điều kiện có metan chủng lựa chọn sử dụng vi sinh vật mô hình thí nghiệm tiềm ứng dụng Các điều kiện nuôi cấy tối ưu chủng xác định bao gồm: pH 6-8, nhiệt độ 25-40oC, nồng độ muối 1-15g⋅L-1 NaCl Dựa phân tích trình tự đoạn gen 16S rDNA, chủng BG3 xác định thành viên chi Methylomonas (vi khuẩn sử dụng metan tuýp I) với chủng gần gũi Methylomonas methanica (độ tương đồng 95%) Chủng đặt tên Methylomonas sp BG3 trình tự đoạn gen 16S rDNA gửi vào ngân hàng gen mã số KJ081955 Ngoài ra, gen pmoA xác định có mặt chủng với đoạn gen dài 508 bp gửi GenBank với mã số KJ081956 Một số hướng ứng dụng vi khuẩn oxy hóa metan tiến hành nghiên cứu với vi sinh vật mơ hình chủng BG3 Nuôi cấy chủng BG3 với metan tạo sinh khối có trọng lượng khơ tế bào 1,26 g/l, hàm lượng protein thô 69,69g/100 g CDW hiệu suất sử dụng metan 2,85 m3 metan/kg CDW Trong điều kiện thí nghiệm chủng BG3 có khả loại bỏ 77,46 % thể tích metan sinh q trình phân hủy kỵ khí rác hữu Từ khóa: vi khuẩn oxy hóa metan, Methylomonas, pmoA, tạo sinh khối, phát thải metan 10 72 Medigan MT, Martinko JM, Parker J (2003) Brock Biology of microorganisms Upper Saddle River, NJ: Pearson Education 73 Mehta P (1991) Methanol biosynthesis by covalently immobilized cells of Methylosinus trichosporium: batch and continuous studied Biotech Bioeng 37:551556 74 Merkx M, Lippard SJ (2002) Why OrfY? Characterization of mmoD, a long overlooked component of the soluble methane monooxygenase from Methylococcus capsulatus (Bath) J Biol Chem 277: 5858-5865 75 Murray AE, Hollibaugh JT, Orrego C (1996) Phylogenetic compositions of bacterioplankton from two California estuaries compared by denaturing gradient gel electrophoresis of 16S rDNA fragments Appl Envi- ron Microbiol 62:2676–2680 76 Murrell JC, Gilbert B, Mcdonald IR (2000) Molecular Biology And Regulation Of Methane Monooxygenase Arch Microbiol 173: 325–332 77 Murrell JC, McDonald IR, Gilbert B (2000) Regulation of the expression of methane monooxygenases by copper ions Trends in Microbiology 8, 221-225 78 Nakamura T, Hoaki T, Hanada S, Maruyama A, Kamagata Y, Fuse H (2007) Soluble and particulate methane monooxygenase gene clusters in the marine methanotroph Methylomicrobium sp strain NI FEMS Microbiol Lett 277:157-164 79 Nikiema J, Brzezinski R, Heitz M (2007) Elimination of methane generated from landfills by biofiltration: a review, Rev Environ Sci Biotechnol 6:261–284 80 Omelchenko MV, Vasilyeva LV, Zavarzin GA (1993) Psychrophilic methanotroph from tundra soil Curr Microbiol 27: 255-259 81 Øverland M, Kjos NP, Olsen E, Skrede A (2005) Changes in fatty acid composition and improved sensory quality of back fat and meat of pigs fed bacterial protein meal Meat Sci.71:719–729 68 82 Øverland M, Romarheim OH, Ahlstrøm Ø, Storebakken T, Skrede A (2006) Technical quality of dog food and salmon feed containing different bacterial protein sources and processed by different extrusion conditions Anim Feed Sci Technol 134:124–139 83 Øverland M, Skrede A, Matre T (2001) Bacterial protein grown on natural gas as feed for pigs Acta Agr Scand A-AN 51:97–106 84 Øverland M, Tauson AH, Shearer K, Skrede K (2010) Evaluation of methane-utilising bacteria products as feed ingredients for monogastric animals Archives of Animal Nutrition 64(3): 171–189 85 Pfiffner SM, Palumbo AV, Phelps TJ, Hazen TC (1997) Effects of nutrient dosing on subsurface methanotrophic populations and trichloroethylene degradation, J Ind Microbiol Biotechnol 18:204–212 86 Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MSM, Op den Camp HJM (2007) Methanotrophy below pH by a new Verrucomicrobia species Nature 450: 874-878 87 Rahalkar M, Bussmann I, Schink B (2007) Methylosoma difficile gen nov., sp nov., a novel methanotroph enriched by gradient cultivation from littoral sediment of Lake Constance Int J Syst Evol Microbiol 57:1073–1080 88 Ramanathan V, Cicerone J, Singh HB, Kiehl JT (1985) Trace gas trends and their role in climate changes Journal of Geophysical Research 90, 5547-5566 89 Ramsay B, Karamanev D, Pierre S, Lafontaine C, Sakamoto T, Ramsay J (2001) Efficient TCE mineralization in a novel methanotrophic bioreactor system International In Situ and On-site Bioremediation Symposium, 6th, San Diego, CA, United States, pp 171–178 90 Reeburgh WS, Whalen SC, Alpern MJ (1993) The role of methylotrophy in the global methane budget, in: J.C Murrell, D.P Kelly (Eds.) Microbial Growth on C1 Compounds, Intercept Press, Andover, UK 69 91 Rehm HJ, Reed G, Puhler A, Stadler P (1993) Biotechnology VCH Verlagsgesellschaft mbH, Germany 92 Reshetnikov AS, Mustakhimov II, Khmelenina VN, Trotsenko YA (2005) Cloning, purification, and characterization of diaminobutyrate acetyltransferase from the halotolerant methanotroph Methylomicrobium alcaliphilum 20Z Biochem- Moscow 70: 878-883 93 Rumsey GL, Hughes SG, Smith RR, Kinsella JE, Shetty KJ (1991) Digestibility and energy values of intact disrupted and extracts from brewers dried yeast fed to rainbow trout (Oncorhynchus mykiss) Animal Feed Science and Technology 33: 185–193 94 Saitou N, Nei M (1987) “The neighbor – joining method: a new method for reconstructing phylogenetic trees”, Mol Biol Evol, 4, pp.406 – 425 95 Schøyen HF (2007a) Bacterial protein meal from natural gas as protein source in feed for monogastric animal PhD thesis Norwegian University of Life Sciences, As, Norway 96 Schøyen HF, Frøyland JRK, Sahlstrøm S, Knutsen SH, Skrede A (2005) Effects of autolysis and hydrolysis of bacterial protein meal grown on natural gas on chemical characterization and amino acid digestibility Aquaculture 248: 27–33 97 Schøyen HF, Hetland H, Rouvinen-Watt K (2007b) Growth performance and ileal and total tract amino acid digestibility in broiler chickens fed diets containing bacterial protein produced on natural gas Poult Sci 86: 87–93 98 Schøyen HF, Svihus M, Storebakken T, Skrede A (2007c) Bacterial protein meal produced on natural gas replacing soybean meal and fishmeal in broiler chicken diets Archives of Animal Nutrition 61:276-291 99 Semrau JD, Chistoservdov A, Lebron J (1995) Particulate methane monooxygenase genes in methanotrophs J Bacteriol 177, 3071-3079 100 Semrau JD, DiSpirito AA, Vuileumier S (2011) Facultative methanotrophy: false leads, true result, and suggestion for future research FEMS Microbiol Lett 323:1-12 70 101 Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper FEMS Microbiol Rev 34:496-531 102 Senko O, Makhlis T, Bihovsky M, Podmasterev V, Efremenko E, Razumovsky S, Varfolomeyev S (2007) Methanol production in the flow system with immobiblized cells Methylosinus sporium XVth International Workshop on Bioencapsulation, Vienna, Au P2-16 103 Singh A, Abidi AB, Agrawal AK, Darmwal NS (1991) Single cell proteinproduction by Aspergillus niger and its evaluation Zentralbl Mikrobiol 146(3):181-184 104 Şişman T, Gür Ö, Doğan N, Özdal, Algur ÖF, Ergon T (2013) Single-cell protein as an alternative food for zebrafish, Danio rerio: a toxicological assessment Toxicol Ind Health 29:792-799 105 Skrede A, Ahlstrøm Ø (2002) Bacterial protein produced on natural gas: a new potential feed ingredient for dogs evaluated using the blue fox as a model J Nutr 132:1668-1669 106 Skrede A, Berge GM, Storebakken T, Herstad O, Aarstad KG, Sundstøl F (1998) Digestibility of bacterial protein grown on natural gas in mink, pigs, chicken and Atlantic salmon Anim Feed Sci Tech 76:103– 116 107 Skrede A, Schøyen HF, Svihus B, Storebakken T (2003) The effect of bacterial protein grown on natural gas on growth performance and sensory quality of broiler chickens Can J Anim Sci 83:229–237 108 Sly L, Bryant L, Cox J, Anderson J (1993) Development of a biofilter for the removal of methane from coalmine ventilation atmospheres Appl Microbiol Biotechnol 39:400–404 109 Smith KS, Costello AM, Lidstrom ME (1997) Methane and trichloroethylene oxidation by an estuarine methanotroph Methylobacter sp Strain BB5.1 Appl Environ Microbiol 63:4617-4620 71 110 Smith LH, McCarty PL (1997) Laboratory evaluation of a two-stage treatment system for TCE cometabolism by a methane-oxidizing mixed culture, Biotechnol Bioeng 55:650–659 111 Sorokin DY, Jones BE, Kuenen JG (2000) An obligate methylotrophic, methaneoxidizing Methylomicrobium species from a highly alkaline environment Extremophiles 4: 145-155 112 Stoecker K, Bendinger B, Schoning B, Nielsen PH, Nielsen JL, Baranyi C, Toenshoff ER, Daims H, Wagner M (2006) Cohn’s Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase Proc Natl Acad Sci USA 103: 2363-2367 113 Stolyar S, Costello AM, Peeples TL, Lidstrom ME (1999) Role of multiple gene copies in particulate methane monooxygenase activity in the methane oxidising bacterium Methylococcus capsulatus (Bath) Microbiology 145: 1235-1244 114 Streese J, Stegmann R (2005) Potentials And Limitations Of Biofilters For Methane Oxidation Proceedings Sardinia 2005, Tenth International Waste Management And Landfill Symposium S Margherita Di Pula, Cagliari, Italyiniew 115 Sugimori D, Takeguchi M, Okura I (1995) Biocatalytic methanol production from methane with Methylosinus trichosporium Ob3B—an approach to improve methanol accumulation Bio- technol Lett 17:783–784 116 Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0 Mol Biol Evol 24: 1596–1599 117 Trotsenko YA, Khmelenina VN (2002) Biology of extremophilic and extremotolerant methanotrophs Arch Microbiol 177: 123-131 118 Tsubota J, Eshinimaev B, Khmelenina VN, Trotsenko YA (2005) Methylothermus thermalis gen nov., sp nov., a novel moderately thermophilic obligate methanotroph from a hot spring in Japan Int J Syst Evol Microbiol 55:1877–1884 72 119 Vhile SG, Skrede A, Ahlstrøm Ø, Szymeczko R, Hove K (2005) Ideal and total tract nutrient digestibility in blue foxes (Alopex lagopus) fed extruded diets containing different protein sources Arch Anim Nutr, 59: 61–72 120 Viet Nam Standard 4328:2001 Animal feeding stuffs – Determination of nitrogen content and calculation of crude protein content- Kjeldahl method 121 Vigliotta G (2007) Clonothrix fusca Roze 1896, a filamentous, sheathed, methanotrophic gamma-proteobacterium Appl Environ Microbiol 73:3556–3565 122 Wartiainen I, Hestnes AG, McDonald IR, Svenning MM (2006) Methylobacter tundripaludum sp nov., a methane-oxidizing bacterium from Arctic wetland soil on the Svalbard islands, Norway (78° N) Int J Syst Evol Microbiol 56: 109-113 123 Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study J Bacteriol 173: 697-703 124 Whittenbury R, Phillips KC, Wilkinson JF (1970) Enrichment, isolation and some properties of methane-utilizing bacteria J Gen Microbiol 61, 205-218 125 Wise MG, McArthur J, Shimkets LJ (2001) Methylosarcina fibrata gen nov., sp nov andMethylosarcina quisquiliarum sp nov., novel type I methanotrophs Int J Syst Evol Microbiol 51: 611-621 126 Wise MG, McArthur JV, Shimkets LJ (1999) Methanotroph diversity in landfill soil: isolation of novel types I and type II methanotrophs whose presence was suggested by culture-independent 16S ribosomal DNA analysis Appl Environm Microbiol 65: 4887-4897 127 Xin JY (2004) Production of methanol from methane by methanotrophic bacteria Biocatal Biotransfor 22 (3): 225-229 128 Yoon S (2010) Towards practical application of methanotrophic metabolism in chlorinated hydrocarbon degradation, greenhouse gas removal, and immobilization of heavy metals PhD Thesis The University of Michigan USA 73 129 Yoon S, Im J, Bandow N, DiSpirito AA, Semrau JD (2011) Constitutive expression of pMMO by Methylocystis strain SB2 when grown on multi-carbon substrates: implications for biodegradation of chlorinated ethenes Environ Microbiol Rep 3:182-188 Webs: 130 Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007: the physical science basis: contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change; technical summary URL http://www.ipcc.ch/pdf/assessment- report/ar4/wg1/ar4-wg1-ts.pdf 131 Johnson D (2012) Global Methanol Market Review URL http://www.ptq.pemex.com/productosyservicios/eventosdescargas/Documents/Foro%2 0PEMEX%20Petroqu%C3%ADmica/2012/PEMEX_DJohnson.pdf 132 Methanol Institute Methanol:TheClearAlternativeforTransportation URLhttp://www.methanol.org 133 United State National Oceanic and Atmospheric Administration Trends in Atmospheric Carbon Dioxide URLhttp://www.esrl.noaa.gov/gmd/ccgg/trends/global.html Vietnamese 134 Ministry of Agriculture and Rural Development, Department of Livestock Husbandry (2012) Livestock Newsletter URL http://www.cucchannuoi.gov.vn/WebContent/bantinchannuoi/index.aspx?index=detail News&num=15&TabID=1&NewsID=94 135 Ministry of Natural Resources and Environment (2012) National Environment Report 2011 74 APPENDIX I 16S rDNA sequences BG3 - contig (1413bp) CGTAGATTGAACGCTGGCGGTATGCTTAACACTTGCAAGTTTCAACGCTGA AGGGTGCTTGCACCTGGATGAGTGGCGGACGGGTGAGTAATGCATAGGAA TCTGCCTATTAGTGGGGGATAACGTGGGGAAACTCACGCTAATACCGCATA CGCTCTACGGAGGAAAGCCGGGGACCTTCGGGCCTGGCGCTAATAGATGA GCCTATGTCGGATTAGCTAGTTGGTGGGGTAAAGGCCTACCAAGGCGACG ATCCGTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACG GCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGCGC AAGCCTGATCCAGCAATACCGCGTGTGTGAAGAAGGCCTGAGGGTTGTAA AGCACTTTCAATGGGAAGGAACACCTATCGGTTAATACCCGGTAGACTGAC ATTACCCATACAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAA TACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGTGCGTA GGCGGTTTTTTAAGTCAGATGTGAAAGCCCTGGGCTTAACCTGGGAACTGC ATTTGATACTGGGGAACTAGAGTTGAGTAGAGGAGAGTGGAATTTCAGGT GTAGCGGTGAAATGCGTAGAGATCTGAAGGAACACCAGTGGCGAAGGCGG CTCTCTGGACTCAAACTGACGCTGAGGTACGAAAGCGTGGGTAGCAAACA GGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCAACTAACCGTTG GGTTCTTAAAGAACTTAGTGGTGGAGCTAACGTATTAAGTTGACCGCCTGG GGAGTACGGCCGCAAGGCTAAAACTCAAATGAATTGACGGGGGCCCGCAC AAGCGGTGGAGCATGGGGGTTTAATTCGATGCAACGCGAAGAACCTTACC TACCCTTGACATCCTCGGAACTTGTCAGAGATGACTTGGTGCCTTCGGGAA CCGAGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGAAGGTT TGGGTTAAGTCCCGTAACGAGCGCAACCCTTATCCTTAGTTGCCAGCGCGT CATGGCGGGAACTCTAGGGAGACTGCCGGTGATAAACCGGAGGAAAGTGG GGACGACGTCAAGTCATCATGGCCCTTATGGGTAGGGCTACACACGTGCTA 75 CAATGGTCGGTACAGAGGGTTGCGAACTCGCGAGAGCCAGCCAATCCCAA AAAGCCGATCCTAGTCCGGATTGCAGTCTGCAACTCGACTGCATGAAGTCG GAATCGCTAGTAATCGCGGATCAGAATGCCGCGGTGAATACGTTCCCGGG CCTTGTACACACCGCCCGTCACACCATGGGAGTGGGTTGCAAAAGAAGTA GG PS1 - contig (1367bp) GCTCAGAACGAACGCTGGCGGCAGGCTTAACACATGCAAGTCGAACGCCC CGCAAGGGGAGTGGCAGACGGGTGAGTAACACGTGGGGATCTGCCCAATG GTACGGAATAATTCCGGGAAACTGGGACTAATACCGTATGTGCCCGCAAG GGGAAAGATTTATCGCCATTGGATGAACCCGCGTCGGATTAGCTAGTTGGT GAGGTAAAGGCTCACCAAGGCGACGATCCGTAGCTGGTCTGAGAGGATGA TCAGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCA GTGGGGAATATTGGACAATGGGCGCAAGCCTGATCCAGCCATGCCGCGTGAGTGATGAAGGCCTTAGGGTTGTAAAGCTCTTTCGCCG ACGAAGATAATGACGGTAGTCGGAGAAGAAGCCCCGGCTAACTTCGTGCC AGCAGCCGCGGTAATACGAAGGGGGCTAGCGTTGTTCGGAATCACTGGGC GTAAAGCGCACGTAGGCGGACATTTAAGTCAGGGGTGAAAGCCTGGAGCT CAACTCCAGAACTGCCCTTGATACTGGGTGTCTCGAGTCCGGAAGAGGTAA GTGGAACTGCGAGTGTAGAGGTGAAATTCGTAGATATTCGCAAGAACACC AGTGGCGAAGGCGGCTTACTGGTCCGGTACTGACGCTGAGGTGCGAAAGC GTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGAT GGAGGCTAGCCGTTGGTGAGCATGCTCATCAGTGGCGCAGCTAACGCATTA AGCCTCCCGCCTGGGGAGTACGGTCGCAAGATTAAAACTCAAAGGAATTG ACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGC GCAGAACCTTACCAGCCTTTGACATGTCCCGGACGGTTACCAGAAGATGGT TTCTTCTCTTCGGAGCCGGGAACACAGGTGCTGCATGGCTGTCGTCAGCTC GTGTCGTGAGATGTTTGGGGTTAAGTCCCGCAACGAGCGCAACCCTCGCCC 76 TTAGTTGCCATCATTCAGTTGGGCACTCTTAGGGGGACTGCCGGTGATAAG CCGAGAGGAAGGTGGGGATGACGTCAAGTCCTCATGGCCCTTACGGGCTG GGCTACACACGTGCTACAATGGCGGTGACAGTGGGAAGCGAACCCGCGAG GGTAAGCAAATCTCCAAAAGCCGTCTCAGTTCGGATTGCACTCTGCAACTC GAGTGCATGAAGTTGGAATCGCTAGTAATCGTGGATCAGCATGCCACGGT GAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGGAGTTGG TTTTACCCGAAGGCGCTGCT W1 – contig (1272bp) ATCTGCCCAATGGTACGGAATAATTCCGGGAAACTGGGACTAATACCGTAT GTGCCCGCAAGGGGAAAGATTTATCGCCATTGGATGAACCCGCGTCGGATT AGCTAGTTGGTGAGGTAAAGGCTCACCAAGGCGACGATCCGTAGCTGGTC TGAGAGGATGATCAGCCACACTGGGACTGAGACACGGCCCAGACTCATAC GGGAGGCAGCAGTGGGGAATATTGGACAATGGGCGCAAGCCTGATCCAGC CATGCCGCCTGAGTGATGAAGGCCTTAGGGTTGTAAAGCTCTTTCGCCGAC GAAGATAATGACGGTAGTCGGAGAAGAAGCCCCGGCTAACTTCGTGCCAG CAGCCGCGGTAATACGAAGGGGGCTAGCGTTGTTCGGAATCACTGGGCGT AAAGCGCACGTAGGCGGACATTTAAGTCAGGGGTGAAAGCCTGGAGCTCA ACTCCAGAACTGCCCTTGATACTGGGTGTCTCGAGTCCGGAAGAGGTAAGT GGAACTGCGAGTGTAGAGGTGAAATTCGTAGATATTCGCAAGAACACCAG TGGCGAAGGCGGCTTACTGGTCCGGTACTGACGCTGAGGTGCGAAAGCGT GGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGG AGGCTAGCCGTTGGTGAGCATGCTCATCAGTGGCGCAGCTAACGCATTAAG CCTCCCGCCTGGGGAGTACGGTCGCAAGATTAAAACTCAAAGGAATTGAC GGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGC AGAACCTTACCAGCCTTTGACATGTCCCGGACGGTTACCAGAGATGGTTTC TTCTCTTCGGAGCCGGGAACACAGGTGCTGCATGGCTGTCGTCAGCTCGTG TCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGCCCTTAGT 77 TGCCATCATTCAGTTGGGCACTCTAGGGGGACTGCCGGTGATAAGCCGAGA GGAAGGTGGGGATGACGTCAAGTCCTCATGGCCCTTACGGGCTGGGCTAC ACACGTGCTACAATGGCGGTGACAGTGGGAAGCGAACCCGCGAGGGTAAG CAAATCTCCAAAAGCCGTCTCAGTTCGGATTGCACTCTGCAACTCGAGTGC ATGAAGTTGGAATCGCTAGTAATCGTGGATCAGCATGCCACGGTGAATAC GTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGGAGTTGGTTTTAC CCGAAGGCGCT pmoA sequences BG3 (415bp) GCGGCTGTTAAAGCTTGCTCGTGGTGGAGATACCGTTTGCCCATCGGCGCA ACCATTTCAGTTGTTGCTCTGATGATCGGTGAGTGGATCAACAGATATTTG AACTTCTGGGGTTGGACATACTTCCCAGTTAACATCTGCTTCCCATCAAACT TGCTGCCAGGCGCTATCGTTCTGGACGTAATCCTGATGTTGGGTAACAGCA TGACCCTGACCGCTATTGTTGGTGGTTTGGCTTATGGTTTGTTGTTCTACCC AGGCAACTGGCCAATCATTGCTCCTCTGCACGTTCCTGTTGAATACGACGG CATGATTATGACTCTGGCTGACTTGCAAGGTTACCACTATGTTCTTACCGGT ACACCTGATTACATCCGTATGGTATAGAAAGGTACATTGAGAACTTTCTGT ATAG PS1 (406bp) TACAAGCTACCCTGCGGTATCGTTTCCGTCTGCCTTTTGGCGCTGTAATTTC TGTTTTAGGTCTACTCTTGGGTGAATGGGTTAACAGATATATGAACTTCTG GGGATGGACATATTTCCCTGTGAACTTCGTATTTCCTTCAAACCTGATGCCA GGTGCTATTGTTCTTGATGTTATCCTGATGTTGTCGAACAGCATGACATTAA CAGCGGTTGTTGGTGGTATGGCATGGGGTCTGTTGTTCTATCCTGGCAACT GGCCAATCATTGCGCCACTGCATATTCCTGTTGAATACAATGGCATGATGT 78 ... GenBank với mã số KJ081956 Một số hướng ứng dụng vi khuẩn oxy hóa metan tiến hành nghiên cứu với vi sinh vật mơ hình chủng BG3 Ni cấy chủng BG3 với metan tạo sinh khối có trọng lượng khô tế bào 1,26... sử dụng metan 2,85 m3 metan/ kg CDW Trong điều kiện thí nghiệm chủng BG3 có khả loại bỏ 77,46 % thể tích metan sinh q trình phân hủy kỵ khí rác hữu Từ khóa: vi khuẩn oxy hóa metan, Methylomonas,... Methylomonas sp BG3 as model organism 52 3.5.1 Study on bacterial meal production 52 3.5.2 Study on reduction of methane emission from organic wastes 55 Conclusion and Prospective