Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 23 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
23
Dung lượng
0,91 MB
Nội dung
************Trần Văn Hà************ Chuyênđề số 1: Khảo sát hàm số và ứng dụng Bài 1: Khảo sát hàm số và các câu hỏi phụ Một số kiến thức cần nhớ Phơng pháp khảo sát hàm số Nội dung các bài toán tiếp tuyến, giới thiệu nội dung 3 bài toán tiếp tuyến Bài toán sự tơng giao giữa các đồ thị của hàm số, điều kiện để 2 đờng cong tiếp xúc Các bài toán về cực trị của hàm số: Hàm đa thức, hàm phân thức phơng trình đờng thẳng đi qua các điểm cực trị Xây dựng điều kiện để hàm số đồng biến hay nghịch biến trên một khoảng hay một đoạn Các ví dụ Bài 1: Cho hàm số )1( 3 65 22 + +++ = x mxx y 1) Khảo sát sự biến thiên của đồ thị của hàm số với m = 0 2) Tìm m để hàm số đồng biến trên khoảng (1;+) Bài 2: Cho hàm số )1( 1 22 2 + = x xx y 1) Khảo sát sự biến thiên của đồ thị của hàm số 2) Tìm toạ độ 2 điểm A,B nằm trên (C ) và đối xứng nhau qua đờng thẳng x-y+4=0 Bài 3: Cho hàm số )1( 1 22 2 + = x mxx y 1) Khảo sát sự biến thiên của đồ thị của hàm số khi m=1 2) Tìm m để hàm số (1) có 2 điểm cực trị A,B . CMR khi đó đờng thẳng AB song song với đ- ờng thẳng 2x-y-10=0 Bài 4: Cho hàm số )1(3)( 3 xmxy = 1) Khảo sát sự biến thiên của đồ thị của hàm số khi m=1 2) Tìm m để hàm số đã cho đạt cực tiểu tại điểm có hoành độ x=0 3) Tìm k để hệ sau có nghiêm + < 1)1(log 3 1 log 2 1 031 3 2 2 2 3 xx kxx Bài 5: Cho hàm số )1( 3 1 22 3 1 23 += mxmxxy 1) Cho m =1/2 Khảo sát sự biến thiên của đồ thị của hàm số , Viết phơng trình tiếp tuyến của đồ thị hàm số biết rằng tiếp tuyến đó song song với đờng thẳng D: y=4x+2 2) Tìm m thuộc khoảng (0;5/6) sao cho hình phẳng giới hạn bởi đồ thị hàm số (1) và các đ- ờng thẳng x=0, x=2, y=0 có diện tích bằng 4 Bài 6: Cho hàm số )1( 312 22 mx mmxx y ++ = 1) Khảo sát sự biến thiên của đồ thị của hàm số m=1 2) Tìm m để hàm số có 2 điểm cực trị nằm về 2 phía của trục tung Bài 7: Cho hàm số )1( 1 )2( 2 + ++ = x mxmx y 1) Khảo sát sự biến thiên của đồ thị của hàm số m=-1 2) Tìm m để đờng thẳng y=-x-4 cắt đồ thị hàm số (1) tại 2 điểm đối xứng nhau qua đờng thẳng y=x Bài 8: Cho hàm số )1( 1 1 + = x x y 1) Khảo sát sự biến thiên của đồ thị của hàm 2) Tìm m để đờng thẳng D:y=2x+m cắt (C ) tại 2 điểm phân biệt A,B sao cho tiếp tuyến của (C ) tại A, B song song với nhau 3) Tìm tất cả các điểm M thuộc (C ) sao cho khoảng cách từ M đến giao điểm 2 đờng tiệm cận là ngắn nhất Bài 9: Cho hàm số )1( 1 12 = x x y 1) Khảo sát sự biến thiên của đồ thị của hàm số 2) Gọi I là giao điểm 2 đờng tiệm cận ủa (C ) Tìm điểm M thuộc (C) sao cho tiếp tuyến tại M vuông góc với dờng thẳng IM Bài 10: Cho hàm số )1(12 224 += xmxy 1) Khảo sát sự biến thiên của đồ thị của hàm số khi m=1 2) Tìm m để đồ thị của hàm số (1) có 3 điểm cực trị là 3 đỉnh của một tam giác vuông cân Bài 11 Cho hàm số )1( 1 2 + + = x x y Trần Văn Hà 1 ************Trần Văn Hà************ Cho điểm A(0;a). Xác định a để từ A kẻ đợc 2 tiếp tuyến tới (C) sao cho 2 tiếp điểm tơng ứng nằm về 2 phía đối với trục Ox HD a# -1 va a> -2 có 2 nghiệm phân biêt Y 1 .y 2 <0 ĐS a>-2/3 và a khác 1 Bài 2: ứng dụng của khảo sát hàm số Một số kiến thức cần nhớ Phơng pháp tìm GTLN,GTNN trên một khoảng, một đoạn Xác định tham số đểcác phơng trình hoặc bất phơng trình có nghiệm VD F(x)=m m thuộc [MaxF(X); minF(x)] F(x)>m với mọi x . .<=> m<minF(x) F(x)>m có ngiệm . .<=> m<MaxF(x) . . . Chú y khi đổi biến phải tìm ĐK của biến mới có thể sử dụng phơng pháp miền giá trị Các ví dụ Bài 1: Tìm GTLN,GTNN của hàm số trên đoạn [-1;2] 1 1 2 + + = x x y Bài 2: Tìm GTLN,GTNN của hàm số trên đoạn [1;e 3 ] x x y 2 ln = Bài 3: Tìm GTLN,GTNN của hàm số trên đoạn [-1;1] 326 )1(4 xxy += Bài 4: Tìm m để bất phơng trình sau có nghiệm với mọi x thuộc [-1/2;3] )352()3).(21( 2 ++>+ xxmxx HD Đặt t= )3).(21( xx + Từ miền xác đinh của x suy ra 4 27 ;0t Biến đổi thành f(t)=t 2 +t>m+2 Tìm miền giá trị của VT m<-6 Bài 5: Tìm a nhỏ nhất để bất phơng trình sau thoả mãn với mọi x thuộc [0;1] 222 )1()1.( +++ xxxxa HD Đặt t=x 2 +x dùng miền giá trị suy ra a=-1 Bài 6: Tìm m để bất phơng trình sau có nghiệm mxxxx =++++ 11 22 HD -1<m<1 Bài 7: Tìm m để bất phơng trình sau có nghiệm với mọi x 0122436 cos15sin.363cos.5cos3 2 24 + + mm xxxx HD Đặt t=cosx BBT 0<=m<=2 Bài 8: Tìm m để phơng trình sau có nghiệm trên [-/2; /2] 2 )cos1(2sin22 xmx +=+ Bài 9: Tìm GTLN,GTNN của hàm xxy 2cossin2 48 += HD : 3 và 1/27 Bài 10: Tìm GTLN,GTNN của hàm 2 2 (4 4 ) voi 0 x 1 x x x x y = + + HD : 3 và 1/27 Bài 3: Tính giới hạn của hàm số, tính đạo hàm bằng định nghĩa Một số kiến thức cần nhớ Phơng pháp tính giới hạn của hà số: các dạng vô định Tính liên tục của hàm số tại một điểm, liên tục bên trái liên tục bên phải Đạo hàm của hàm số tại một điểm, đạo hàm bên trái bên phải Các ví dụ Bài 1: Bài toán giới hạn hàm số 1) Tìm giới hạn x xx I x 3 0 11 lim ++ = 2) Tìm giới hạn 3 2 2 1 5 7 lim 1 x x x I x + = 3) Tìm giới hạn x xx I x cos1 1213 lim 2 3 2 0 ++ = 4) Tìm giới hạn 3 2 0 3 2 0 3 4 7 1 2 1 3 lim 1 2 1 lim 2 20 lim 9 2 x x x x x I x x x I sinx x x I x + + = + + = + + = + Trần Văn Hà 2 ************Trần Văn Hà************ 5) Tìm giới hạn 2 3 2 4 5 4 4 2 3 3 2 2 2 3 3 2 9 2 6 5 3 lim 2 16 3 8 7 2 3 lim 1 1 2 3 lim 4 1 2 4 3 7 lim 27 5 4 x x x x x x I DS x x x x I DS x x x x x I x x x x I x x x + + = + + + + = + + = + + = + + + 6) Tìm giới hạn ( ) ( ) ( ) ( ) ( ) 2 3 3 2 2 3 3 2 2 2 2 2 lim 5 6 lim 3 2 tach lam 2 chen them x lim 1 lim 4 7 1 4 8 1 lim . 1 x x x x x I x x x I x x x x I x x x I x x x x I x x x + = + = + = + + = + + + + = + 7) Tìm giới hạn 2 0 2 0 3 0 0 3 2 1 lim 1 cos 2 lim .sin sin lim 1 cos .cos 2 .cos 3 lim 1 cos sin 3 lim 1 2. s x x x x x cosx I tg x x I x x tgx x I x x x x I x x I co x + = = = = = 8) Tìm giới hạn 2 6 1 )1( 56 lim + = x xx I x 9) Tìm giới hạn 3 2 2 0 3 2 3 2 1 1 1 lim 2 1 lim 1 x x x I x x x x I x + = + + = Bài 2: Bài toán tính đạo hàm bằng định nghĩa 1) Xét tính liên tục của f(x) tại x=2 1 2 3 khi x 2 ( ) 2 1 khi 2 x f x x x = = 2) Tìm a để hàm số liên tục tại x=0 1 cos 4 khi x<0 .sin 2 ( ) x+a khi 0 x+1 x x x f x x = 3) Tìm a để hàm số liên tục tại x=0 Trần Văn Hà 3 ************Trần Văn Hà************ 2 khi x=0 ( ) cos cos 2 khi 0 x a f x x x x = 4) Cho 2 4 1( 2) ( ) ( 2) x e x f x ax b x + = + < Tìm a,b để hàm số cá đạo hàm tại x=2 5) Cho 2 ( 1). khi x>0 ( ) -x -ax+1 khi 0 x x e f x x + = Tìm a để hàm số cá đạo hàm tại x=0 6) Cho 2 ( ). khi x<0 ( ) ax +bx+1 khi 0 bx x a e f x x + = Tìm a để hàm số cá đạo hàm tại x=0 7) xét tính liên tục của f(x) tại x=2 8) Cho hàm số 2 2 3 ( ) 3 1 x x f x x + = CMR hàm số liên tục tại x=-3 nhng không có đạo hàm tại x=-3 9) Cho cos cos3 1 khi x 0 ( ) 0 khi 0 x x e f x x x = = Tình đạo hàm của hàm số tại x=0 Bài tập áp dụng 1) Cho hàm số )1( 1 2 ++ = x mxmx y a) Khảo sát sự biến thiên của đồ thị của hàm số m =-1 b) Tìm m để đồ thị hàm số (1) cắt trục hoành tại 2 điểm phân biệt có hoành độ dơng 2) Cho hàm số )1( 2 2 2 + = x mxx y a) Khảo sát sự biến thiên của đồ thị của hàm số khi m=1 b) Xác định m để hàm số (1) nghịch biến trên đoạn [-1;0] c) Tìm m để phơng trình sau có nghiệm 0123).2(9 22 111 =+++ ++ aa ttt 3) Cho hàm số )1(1 24 += mmxxy Tìm m để đồ thị của hàm số cắt trục hoành tại 4 điểm phân biệt 4) Cho hàm số )1( )1(2 33 2 ++ = x xx y a) Khảo sát sự biến thiên của đồ thị của hàm số b) Xác định m để đờng thẳng y=m cắt đồ thị hàm số (1) tại 2 điểm A,B sao cho AB=1 5) Tìm m để phơng trình sau có nghiệm 224 22 1112 )211( xxx xxm ++= =++ 6) CMR phơng trình sau có 1 nghiệm )1(012 25 = xxx 7) Cho hàm số )1( 1 1)1( 2 + ++++ = x mxmx y a) Khảo sát sự biến thiên của đồ thị của hàm số khi m=1 b) CMR với m bất kỳ đồ thị ( C m ) luôn luôn có điểm cực trị và khoảng cách giữa 2 điểm đó bằng 20 8) Cho hàm số )1( )(2 4)12( 22 mx mmxmx y + +++++ = a) Khảo sát sự biến thiên của đồ thị của hàm số b) Tìm m để hàm số có cực trị và tính khoảng cách giữa hai điểm cực trị của đồ thị của hàm số 9) Cho hàm số )1( 1 22 2 + = x xx y a. Khảo sát sự biến thiên của đồ thị của hàm số b. Tìm toạ độ 2 điểm A,B nằm trên (C ) và đối xứng nhau qua đờng thẳng x-y-4=0 10) Cho hàm số )1(23 22 += xxy Tìm trên đờng thẳng y= - 2 các điểm từ đó nhìn đờng cong dới một góc vuông ĐS M(55/27;-2) 11) Cho hàm số )1( 1 1 2 + = x xx y a) Khảo sát sự biến thiên của đồ thị của hàm số khi Trần Văn Hà 4 ************Trần Văn Hà************ b) Một đờng thẳng thayđổi song song với đờng thẳng y=1/2.x và cắt đồ thị hàm số đã cho tại M,N .Tìm quỹ tích trung điểm I của MN c) Biện luận theo tham số m số nghiệm phơng trình 01)1( 2 =+ mxmx 12) Cho hàm số )1(4 24 mxxy += Giả sử đồ thị cắt trục hoành tại 4 điểm phân biệt .Hãy xác định m sao cho hình phẳng giới hạn bởi đồ thị (C) và trục hoành có diện tích phần phía trên và phần phía dới đối với trục hoành bằng nhau HD: ĐK cắt 0<m<4 vẽ minh hoạ gọi x 1 , x 2 , x 3 , x 4 , là nghiệm S trên = S duói <=> 3 4 3 0 ( ) ( ) x x x f x dx f x dx= Vận dụng tính chất đối xứng , định ly viét m=20/9 13) Cho hàm số )1( 2 92 2 + = x xx y a) Khảo sát sự biến thiên của đồ thị của hàm số b) Xác định m để (d) y=m(x-5) + 10 cắt đồ thị (C ) tại 2 điểm phân biệt nhận A(5,10) là trung điểm 14) Tìm GTLN,GTNN của hàm số trên đoạn 2 4 xxy += 15) Cho hàm số )1( 22 43 2 x xx y + = a) Khảo sát sự biến thiên của đồ thị của hàm số b) Tìm trên đồ thị 2 điểm đối xứng nhau qua đờng thẳng y=x 16) Cho hàm số 2 2 1 (1) 1 x x y x + + = + a) Khảo sát sự biến thiên của đồ thị của hàm số b) CMR tích các khoảng cách từ M thuộc (C ) dến 2 tiệm cận của (C ) không phụ thuộc vào vị trí của M 17) Cho hàm số 2 (5 2) 2 1 (1) 1 x m x m y x + + = a) Khảo sát sự biến thiên của đồ thị của hàm số m=1 b) Tìm m để hàm số có cực trị và khoảng cách giữa điểm CĐ,CT nhỏ hơn 2 5 Chuyênđề số 2: Đại số Bài 1: Hệ phơng trình phơng trình đại số Một số dạng hệ ph ơng trình th ờng gặp 1) Hệ phơng trình bậc nhất : cách tính định thc 2) Hệ phơng trình đối xứng loại 1 :hệ không thay đổi khi ta thay x bởi y và ngợc lại 3) Hệ phơng trình đối xứng loại 2: nếu trao đổi vai trò của x và y thì phơng trình này trở thành phơng trình kia và ngợc lại 4) Hệ phơng trình đẳng cấp bậc 2 : Xét 2 trờng hợp sau đó đặt x=t.y 5) Một số hệ phơng trình khác Các ví dụ Bài 1: Một số hệ dạng cơ bản 1) Cho hệ phơng trình =+++ =++ 8 )1)(1( 22 yxyx myxxy a) Giải hệ khi m=12 b) Tìm m để hệ có nghiệm 2) Cho hệ phơng trình 2 2 2 1 1 2 a x y x y a + = + = + Tìm a để hệ phơng trình có đúng 2 nghiệm phân biệt 3) Cho hệ phơng trình 2 2 2 2 1 3 2 x xy y x xy y m + = + = Tìm m để hệ có nghiệm 4) Cho hệ phơng trình =+ =+ 222 6 ayx ayx a) Giải hệ khi a=2 b) Tìm GTNN của F=xy+2(x+y) biết (x,y) là nghiệm của hệ 5) Cho hệ phơng trình +=+ +=+ ymx xmy 2 2 )1( )1( Tìm m để hệ có nghiệm duy nhất Trần Văn Hà 5 ************Trần Văn Hà************ 6) =+ =+ 22 22 xy yx 7) =+++++++ =+++ myxxyyx yx 1111 311 a) Giải hệ khi m=6 b) Tìm m để hệ có nghiệm Bài 2: + = + = 2 2 2 2 2 3 2 3 y x x x y y (KB 2003) HD: Th1 x=y suy ra x=y=1 TH2 chú y: x>0 , y> 0 suy ra vô nghiệm Bài 3: =+ =+ 358 152 33 22 yx xyyx HD: Nhóm nhân tử chung sau đó đặt S=2x+y và P= 2x.y Đs : (1,3) và (3/2 , 2) Bài 4: =+ = )2(1 )1(33 66 33 yx yyxx HD: từ (2) : -1 x , y 1 hàm số : ( ) tttf 3 3 = trên [-1,1] áp dụng vào phơng trình (1) Bài 5: CMR hệ phơng trình sau có nghiệm duy nhất += += x a xy y a yx 2 2 2 2 2 2 HD: = = 223 2 axx yx xét 23 2)( xxxf = lập BBT suy ra KQ Bài 6: =+ =+ 22 22 xy yx HD Bình phơng 2 vế, đói xứng loại 2 Bài 7: =+ =+ )1( )1( 2 2 xayxy yaxxy xác định a để hệ có nghiệm duy nhất HD sử dụng ĐK cần và đủ a=8 Trần Văn Hà 6 ************Trần Văn Hà************ Bài 8: += = )2(5 )1(2010 2 2 yxy xxy HD : Rut ra y yy y x += + = 55 2 Cô si 52 5 += y y x 20 2 x theo (1) 20 2 x suy ra x,y Bài 9: ++=+ = 2 )1( 3 yxyx yxyx (KB 2002) HD: từ (1) đặt căn nhỏ làm nhân tử chung (1;1) (3/2;1/2) Bài 10: =+ =++ ayx ayx 3 21 Tìm a để hệ có nghiệm HD: từ (1) đặt 2,1 +=+= yvxu đợc hệ dối xứng với u, - v Chỉ ra hệ có nghiệm thì phơng trình bậc hai tơng ứng có 2 nghiệm trái dấu Bài tập áp dụng 1) = = 495 5626 22 22 yxyx yxyx 2) +=+ +=+ )(3 22 22 yxyx yyxx KD 2003 3) =++ =++ 095 18)3)(2( 2 2 yxx yxxx 4) ++=+ = 2 )(7 22 33 yxyx yxyx HD: tách thành nhân tử 4 nghiệm 5) += = mxyx yxy 26 12 2 2 Tìm m để hệ có nghiệm 6) = = 19 2.)( 33 2 yx yyx dặt t=x/y có 2 nghiệm 7) =++ =++ 64 9)2)(2( 2 yxx yxxx đặt X=x(x+2) và Y=2x+y 8) =++ =+ 4 )1(2 2222 yxyx yxyx đổi biến theo v,u từ phơng trình số (1) Trần Văn Hà 7 ************Trần Văn Hà************ 9) =+ =+ 22 333 6 191 xxyy xyx Đặt x=1/z thay vào đợc hệ y,z DS (-1/2,3) (1/3,-2) 10) += = 12 11 3 xy y y x x (KA 2003) HD: x=y V xy=-1 CM 02 4 =++ xx vô nghiệm bằng cách tách hoặc hàm số kq: 3 nghiệm 11) +=+ +=+ axy ayx 2 2 )1( )1( xác định a để hệ có nghiệm duy nhất HD sử dụng ĐK cần và đủ 12) =+ =+ 3 3 22 xyyx x y y x HD bình phơng 2 vế 13) =+ +=+ 78 1 7 xyyxyx xy x y y x HD nhân 2 vế của (1) với xy Bài 2: Phơng trình và bất phơng trình phơng trình đại số Một số dạng ph ơng trình và bất ph ơng trình th ờng gặp 1) Bất phơng trình bậc hai Định ly về dấu của tam thức bậc hai Phơng pháp hàm số 2) Phơng trình ,bất phơng trình chứa giá trị tuyệt đối BABBA BA BA BA BABA <<< < > > << 22 3) Phơng trình ,bất phơng trình chứa căn thức Liệt kê các dạng Một số ví dụ Bài 1: Tìm m để mxxxx ++++ )64)(3)(1( 2 Tìm m để bất phơng trình trên nghiệm đúng với mọi x HD: sử dụng hàm số hoặc tam thức : m-2 Bài 2: Tìm a để hệ sau có nghiệm =+++ + 2)1(2 2 ayxxy yx HD: +=+ + )2(1)2()1( )1(2 22 ayx yx TH1: a+10 Hệ vô nghiệm TH2: a+1>0 Ve đồ thị (2) là đờng tròn còn (1) là miền gạch chéo : a-1/2 Bài 3: Giải các phơng trình ,bất phơng trình sau 1) 014168 2 ++ xxx 2) xxx 2114 =+ : x=0 3) 510932)2(2 22 ==+ xxxxx 4) 211 22 =++ xxxx tích 2 nhân tử bằng 1 suy ra cách giải 5) 023)3( 22 xxxx KD 2002 Bài 4: Tìm m để hệ sau có nghiệm Trần Văn Hà 8 ************Trần Văn Hà************ + ++ 012 0910 2 2 mxx xx ĐS m>=4 Bài 5: Giải bất phơng trình 2212 >+ xxx HD nhân 2 vế với biểu thức liên hợp của VT Biến đổi về BPT tích chú y ĐK Bài 6: Giải bất phơng trình 7 2 1 2 2 3 3 +<+ x x x x HD Đặt 2, 2 1 += t x xt AD BĐT cô si suy ra ĐK Bài 7: Giải bất phơng trình 4 )11( 2 2 > ++ x x x HD Xét 2 trờng hợp chú y DK x>=-1 Trong trờng hợp x>=4 tiến hành nhân và chia cho biểu thức liên hợp ở mẫu ở VT Bài 8: Cho phơng trình mxxxx ++=+ 99 2 Tìm m để phơng trình có nghiệm HD Bình phơng 2 vế chú y ĐK Đặt t= tích 2 căn thớc Tìm ĐK t Sử dụng BBT suy ra KQ Bài 9: Giải bất phơng trình (KA 2004) 3 7 3 3 )16(2 2 >+ x x x x x Bài tập áp dụng 1) =+ ++ 0 12 22 ayx xyx Tìm a để hệ có nghiệm duy nhất. Tìmnghiệm duy nhất đ ĐS a=-1 và a=3 2) Tìm m để bất phơng trình sau có nghiệm mxx + 41624 3) 16212244 2 +=++ xxxx 4) 12312 +++ xxx 5) 1212)1(2 22 =+ xxxxx HD đặt 12 2 += xxt coi là phơng trình bậc hai ẩn t 6) 2 2)2()1( xxxxx =++ 7) 2 3 1)2(12 + =++ x xxxx 8) Cho phơng trình mxxxx =++++ 444 a) Giải phơng trình khi m=6 b) Tìm m để phơng trình có nghiệm 9) 1 1 251 2 < x xx 10) 023243 2 =+++ xxx 11) Tìm a để với mọi x 32)2()( 2 += axxxf ĐS a>=4 V a<=0 Chuyênđề số 3: L ợng giác Bài 1: Phơng trình và hệ phơng trình lợng giác Một số kiến thức cần nhớ Các công thức biến đổi lợng giác Một số dạng phơng trình cơ bản Phơng trình bậc 2,bậc 3 theo một hàm số lơng giác Phơng trình đẳng cấp bậc nhất với sinx,cosx: asinx+bcosx=c Phơng trình đẳng cấp bậc 2 với sinx,cosx: a.sin 2 x+ b.sinx.cosx+c.cos 2 x+d=0 Phơng trình đẳng cấp bậc 3 với sinx,cosx: a.sin 3 x+b.sin 2 x.cosx+ c.sinx.cos 2 x+d.cos 3 x=0 a.sin 3 x+b.sin 2 x.cosx+ Trần Văn Hà 9 ************Trần Văn Hà************ c.sinx.cos 2 x+d.cos 3 x+m=0 Phơng trình đối xứng với sinx,cosx a.(sinx cosx)+b.sinx.cosx+c=0 Phơng trình đối xứng với tgx,cotgx Phơng trình đối xứng với sin 2n x,cos 2n x Các ví dụ Bài 1: x x tgxgx 2sin 4cos.2 cot += HD: đặt ĐK x= pi/3 +k.pi Bài 2: )1(sin 2 1 3 2 cos 3 cos 22 += ++ + xxx HD: Sử dụng công thức hạ bậc xx sin 3 cos).2cos(.21 =++ ĐS 3 họ nghiệm Bài 3: 2 sin 2sin 2sin sin 2 2 2 2 =+ x x x x HD: Nhóm , nhân lên và tách 2 thành 2 nhóm Bài 4: 8 1 3 . 6 3cos.cos3sin.sin 33 = + + xtgxtg xxxx HD: Đặt ĐK rút gọn MS=1 AD công thức nhân 3 ĐS x=-pi/6+k.pi Bài 5: 0cos.6)sin.2(3 =++ xxtgxtgx HD: Biến đổi theo sin và cos 0)cos21(sin)cos21(cos.3 22 =++ xxxx ĐS x= pi/3+k.pi Bài 6: += =+ )sin(6sin2 2 )sin(2sin6 2 .3 xyx y tg xyx y tg HD: nhân (1) với (2) rút gọn y y tg 22 sin4 2 = đặt = 2 2 y tgt t=0, t= can 3 Bài 7: xxxxxx cos13sin. 2 1 sin.4cos2sin.3cos ++= HD : BĐ tích thành tổng rút gọn Bài 8: 2 1 5cos4cos3cos2coscos =++++ xxxxx HD: nhân 2 vế với 2.sin(x/2) chú y xet trờng hợp bằng 0 NX: Trong bài toán chứa tổng nxxxT nxxxT sin 2sinsin cos 2coscos +++= +++= thực hiện rút gọn bằng cách trên Bài 9: )cos.sin2(cos3sin.2sin. 22 xxxxxtgx += HD: BĐ sau đó đặt t=tg(x/2) Bài 10 42log.4.log 2 sin 2 9 cos = x x HD: 4 )(sinlog 2log .2.log2 2 sin sin sin = x x x x Bài 2: Giá trị lớn nhất nhỏ nhất, phơng trình có tham số Một số kiến thức cần nhớ Phơng pháp hàm số: Bài toán Max,Min trên 1 khoảng và một đoạn Phơng pháp bất đẳng thức, nhận xét đánh giá Các ví dụ Bài 1: Tìm GTLN,GTNN Trần Văn Hà 10 [...]... x sin 2 2 x cos 2 x + cos x( 2.tg 2 x 1) = 2 3 cos 4 x 8 cos 6 x + 2 cos 2 + 3 = 0 x (2 3 ) cos x 2 sin 2 + sin 3x 8) 2 4 =1 2 cos x 1 9) 1 + sin x + cos x + sin 2 x + cos 2 x = 0 7) Một số đềthi từ năm 2002 1) Tìm nghiệm thuộc khoảng ( 0; 2 ) của phơng trình cos 3x + sin 3x 5 sin x + = cos 2 x + 3 KA 2002 1 + 2 sin 2 x ( 2 sin 2 2 x) sin 3 x (DB 2002) cos 4 x 3) Tìm nghiệm thuộc khoảng... 2004) Bài 6: 9log2 ( xy) = 3(xy) log2 3 2 2 x + y = 3 y + 3x + 6 Chuyênđề số 4: Mũ Lôgarit Bài 1: Phơng trình và hệ phơng trình Mũ lôgarit Một số kiến thức cần nhớ Các công thức về mũ và lôgarit Giới thi u một số phơng trình cơ bản Khi giải phơng trình về logarit chú ĐK Các ví dụ Bài 1: Cho phơng trình y 1 log 2 2 ( x + 3) + 1 log 4 ( x 1) 8 = log 2 (4 x) 4 HD: ĐK x>0 Và x1 ĐS x=2 , x = 2 3 3 x... phơng trình 2 3 log 2 x 2 log 1 ( x + 3) 2 log 1 ( x + 3) 3 2 Bài 2: Bất phơng trình và hệ bất phơng trình Mũ lôgarit 3 x +1 >0 Bài 9: Giải bất phơng trình 1 1 < 2 log 4 ( x + 3 x) log 2 (3 x 1) Giới thi u một số bất phơng trình về mũ và logarit Chú y ĐK Các ví dụ Bài 1: Tìm k để hệ phơng trình sau có nghiệm 3 Bài tập áp dụng x 1 3x k < 0 1 1 log 2 x 2 + log 2 ( x 1) 3 1 3 2 1) x3 1 3 log... Biết A( 2 ; ;0), B ( 2 ; ;0) S(0;0;3) 1 1 Viết phơng trình mặt phẳng qua trung điểm M của cạnh AB, song song với 2 đờng thẳng AD và SC Gọi (P) là mặt phẳng qua điểm B và vuông góc với SC Tính diện tích thi t diện của hình chóp S.ABCD với mặt phẳng (P) Trong không gian với hệ toạ độ Oxyz cho 2 đờng thẳng d1 : x 1 y + 2 z + 1 = = 3 1 2 x+ y z 2= 0 d2 : x + 3 y 12 = 0 a) CMR 2 đờng thẳng trên song song... hàng trăm, hàng nghìn bằng 8 Biết rằng k nguyên (0 . biến thi n của đồ thị của hàm số với m = 0 2) Tìm m để hàm số đồng biến trên khoảng (1;+) Bài 2: Cho hàm số )1( 1 22 2 + = x xx y 1) Khảo sát sự biến thi n. thi n của đồ thị của hàm số b) Tìm trên đồ thị 2 điểm đối xứng nhau qua đờng thẳng y=x 16) Cho hàm số 2 2 1 (1) 1 x x y x + + = + a) Khảo sát sự biến thi n