Tán xạ hai hạt trong điện đông lực học lượng tử trong gần đúng một vòng Tán xạ hai hạt trong điện đông lực học lượng tử trong gần đúng một vòng Tán xạ hai hạt trong điện đông lực học lượng tử trong gần đúng một vòng luận văn tốt nghiệp,luận văn thạc sĩ, luận văn cao học, luận văn đại học, luận án tiến sĩ, đồ án tốt nghiệp luận văn tốt nghiệp,luận văn thạc sĩ, luận văn cao học, luận văn đại học, luận án tiến sĩ, đồ án tốt nghiệp
Luận văn thạc sĩ ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN Đỗ Đức Thành TÁN XẠ HAI HẠT TRONG ĐIỆN ĐỘNG LỰC HỌC LƢỢNG TỬ TRONG GẦN ĐÚNG MỘT VÒNG LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội – 2014 Luận văn thạc sĩ ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN - Đỗ Đức Thành TÁN XẠ HAI HẠT TRONG ĐIỆN ĐỘNG LỰC HỌC LƢỢNG TỬ TRONG GẦN ĐÚNG MỘT VÒNG Chuyên ngành: Vật lý lý thuyết vật lý toán Mã số: 60.44.01.03 LUẬN VĂN THẠC SĨ KHOA HỌC CÁN BỘ HƯỚNG DẪN KHOA HỌC: GS TSKH Nguyễn Xuân Hãn Hà Nội – 2014 Luận văn thạc sĩ LỜI CẢM ƠN Lời đầu tiên, em xin gửi lời cảm ơn sâu sắc tới Thầy giáo, GS TSKH Nguyễn Xuân Hãn, người trực tiếp bảo tận tình, trực tiếp giúp đỡ em suốt thời gian học tập hoàn thành luận văn thạc sĩ khoa học Em gửi lời cảm ơn chân thành tới tất Thầy Cô, tập thể cán Bộ môn Vật lý lý thuyết, toàn thể người thân, bạn bè giúp đỡ, dạy bảo, động viên, trực tiếp đóng góp, trao đổi ý kiến khoa học quý báu để em hồn thành luận văn Qua đây, em chân thành gửi lời cảm ơn tới Thầy Cô khoa vật lý dạy bảo tạo điều kiện thuận lợi giúp đỡ em suốt q trình học tập hồn thành luận văn Hà Nội, tháng năm 2014 Học viên Đỗ Đức Thành Luận văn thạc sĩ MỤC LỤC Mục lục…………………………………………….…………………………02 Danh mục hình vẽ…………………… ………… …………………………03 Mở đầu……………………… …………….…………….……………… 04 Chương 1: Tiết diện tán xạ…….…… .……………….…07 1.1 Các biến Mandelstam……………………… ……… ….…… 07 1.2 Tiết diện tán xạ vi phân cho hai hạt…….……… ………………10 1.2.1 Tiết diện tán xạ hệ khối tâm………… ………………15 1.2.2 Tiết diện tán xạ hệ phịng thí nghiệm………………….16 Chương 2: Tán xạ electron-electron … ……………….……………… …18 2.1 Tán xạ electron-electron…………………………………………18 2.1.1 Tiết diện tán xạ hệ khối tâm………………….……… 22 2.1.2 Tiết diện tán xạ hệ phòng thí nghiệm…………………23 2.2 Tán xạ electron-positron …………… ……………………… 25 2.2.1 Tiết diện tán xạ hệ khối tâm……………………….… 28 2.2.2 Tiết diện tán xạ hệ phịng thí nghiệm.……… .……30 Chương 3: Bổ vịng cho tán xạ electron-electron ……………… 33 3.1 Giản đồ Feynman ………………….…… … 32 3.2 Tiết diện tán xạ tính đến bổ vịng 34 3.3 Thế tính đến bổ vịng…………… …… 37 Kết luận…………………………………………………………… ……… 43 Tài liệu tham khảo……………………………………….……….……… 45 Phụ lục A Metric giả Euclide………………………………….…………… 46 Phụ lục B Các toán tử chiếu …………………………… ….…… ……….50 Phụ lục C Tái chuẩn hóa……………… …………………………… …….56 C.1 Tái chuẩn hóa điện tích electron ………………………… ……57 Luận văn thạc sĩ C.2 Năng lượng riêng photon …………………………… …….62 DANH MỤC HÌNH VẼ Hình 1.1 Các biến Mandelstam ……………………………………………………05 Hình 1.2 Tán xạ hai hạt thành hai hạt ………………………………… … ……08 Hình 2.1 Tán xạ electron-electron 16 Hình 2.2 Tán xạ electron-positron 23 Hình 3.1 Giản đồ Feynman .30 Hình 3.2: Bổ vịng tán xạ electron-electron………………… …31 Hình 3.3 Bổ vòng cho hai hạt ….……………………… 39 Hình 3.2 Giản đồ phân cực chân khơng……………………………………………53 Hình C.1 Tái chuẩn hóa điện tích electron …………… ………………………….57 Hình C.2 Giản đồ lượng riêng photon ……….………………………….58 Luận văn thạc sĩ MỞ ĐẦU Điện động lực học lượng tử (QED) dựa vào việc tái chuẩn hóa khối lượng điện tích hạt lý thuyết tái chuẩn hóa, chứng minh vào kỷ 20 [1], [3], [6], [8], [10], [11], song việc tái chuẩn hóa cho trình vật lý cụ thể nghiên cứu liên tục phát triển tính đến cấu trúc bên hạt ta lại gặp tốn tương tự tương tác hạt bên với Trong tự nhiên tồn bốn loại tương tác: tương tác điện từ, tương tác yếu, tương tác mạnh tương tác hấp dẫn, cơng cụ tính toán định lượng tương tác điện từ-QED thường vận dụng để mô xây dựng công cụ tính tốn tương tự cho dạng tương tác khác, hay tổ hợp dạng tương tác kể dựa vào lý thuyết nhiễu loạn hiệp biến với việc tái chuẩn hóa tham số vật lý tùy mơ hình Việc nghiên cứu q trình vật lý cụ thể bổ vịng QED cần thiết quan trọng, [8], [11] Mục đích luận văn thạc sĩ khoa học vật lý dành cho việc nghiên cứu trình tán xạ hai hạt thành hai hạt ( ) tính đến bổ vịng đường trong QED Luận văn bao gồm phần mở đầu, ba chương, kết luận, phụ lục tài liệu tham khảo Chƣơng 1: Tiết diện tán xạ hai hạt Trong mục $1.1 giới thiệu vắn tắt biến số Mandelstam công thức cho biên độ tán xạ vi phân qua biến Mục $1.2 dành cho việc xây dựng công thức tiết diện tán xạ vi phân kể hệ khối tâm hệ phịng thí nghiệm Chƣơng 2: Tán xạ electron-electron Trong mục $ 2.1, theo quy tắc Feynman cho tương tác điện từ ta viết yếu tố ma trận tương ứng với trình tán xạ electronelectron bậc thấp (gần Born) của lý thuyết nhiễu loạn hiệp biến Dựa vào yếu tố ma trận, ta tính tiết diện tán xạ vi phân cho trình tán xạ electron-electron hệ khối tâm hệ phịng thí nghiệm Mục $2.2 dành cho việc nghiên cứu q trình tán xạ electron lên positron Cách tính tương tự Luận văn thạc sĩ trình tán xạ electron–electron, có thay đổi electron thay positron Kết ta thu tiết diện tán xạ vi phân cho trình tán xạ electron-positron So sánh kết tiết diện tán xạ vi phân hai trình tán xạ kể ta nhận thấy hai kết giống khác dấu, có nghĩa ta chuyển từ kết thành kết cách chuyển đổi dấu chúng Chƣơng 3: Bổ vịng cho tán xạ electron-electron.Trong mục $3.1 giới thiệu giản đồ Feynman cho trình tán xạ electron-electron gần bậc theo số tương tác điện từ So với gản đồ Feynman xét chương trước, số lượng giản đồ tăng lên việc trao đổi hai photon (giản đồ d) gữa hạt, giản đồ phân cực chân không (chân không vật lý trường electron-positron) gắn với photon ảo trao đổi hạt (giản đồ c), giản đồ lại liên quan đến tương tác electron với chân không vật lý trường điện từ Trong luận văn xét giản đồ (b) giản đồ (c) bỏ giản đồ Feynman lại Giản đồ (a) khơng cho đóng góp vào tương tác hai electron, giản đồ gắn với đường electron liên quan đến việc tái chuẩn hóa khối lượng electron, khơng cho đóng góp vào tương tác hai electron Mục $3.2 dành cho việc tính tiết diện tán xạ electron-electron , kết thu tiết diện tán xạ vi phân (3.6) Nghiên cứu tương tác tương ứng hai electron tính bổ vòng giới thiệu mục $3.3 Kết luận dành cho việc liệt kê kết thu luận văn phương hướng nghiên cứu Trong luận văn này, sử dụng hệ đơn vị nguyên tử c metric giả Euclide (metric Feynman) tất bốn thành phần véctơ 4-chiều ta chọn thực A A0 , A gồm thành phần thời gian thành phần không gian, số 0,1, 2,3 , theo quy ước ta gọi thành phần phản biến véctơ 4chiều ký hiệu thành phần với số A A0 , A A0 , A1 , A2 , A3 def A (0.1) Luận văn thạc sĩ Các véctơ phản biến tọa độ: x x0 t , x1 x, x2 y, x3 z t , x , (0.2) Các véctơ tọa độ hiệp biến: x g x x0 t , x1 x, x2 y, x3 z t , x (0.3) Véctơ xung lượng: p E , px , p y , p z E , p (0.4) Tích vơ hướng hai véc tơ xác định công thức: AB g A B A B A0 B AB (0.5) Tensor metric có dạng: g g 1 0 1 0 0 1 0 1 (0.6) Chú ý, tensor metric tensor đối xứng g g g g Thành phần véc tơ hiệp biến xác định công thức sau: A g A , A0 A0 , Ak Ak (0.7) Các số Hy Lạp lặp lại có ngụ ý lấy tổng từ đến Luận văn thạc sĩ CHƢƠNG 1: TIẾT DIỆN TÁN XẠ Chương dành cho việc dẫn công thức tán xạ hai hạt [8] Biên độ tán xạ, mà tỷ lệ với yếu tố S-matrận tán xạ, đại lượng phức Trước tiên ta xem xét trình p1 p2 p3 p4 , mà ta gọi tán xạ Tính tốn mang tính bất biến (biểu diễn qua biến bất biến- u, s, t biến số Mandelstam) trình tán xạ toán động học sở vật lý hạt Trong chương ta xem xét đại lượng bất biến cho q trình tán xạ hai hạt vơ hướng , tìm biểu thức giải tích tổng qt cho tiết diện tán xạ vi phân cho trình qua biên độ tán xạ Viết biểu thức tiết diện tán vi phân hai hệ phòng thí nghiệm hệ khối tâm Việc tổng qt hóa cho q trình mà có spin khơng vấn đề khó khăn 1.1 Các biến Mandelstam Chúng ta sử dụng cho trình tán xạ hai hạt với hai hạt Mọi công thức trở nên đơn giản ta biểu diễn xung lượng hạt theo tập hợp biến gọi biến Mandelstam Các biến Mandelstam định nghĩa sau: s p1 p2 p3 p4 , (1.1) t p1 p3 p2 p4 , (1.2) u p1 p4 p2 p3 , (1.3) 2 2 2 p1 p2 xung lượng chiều hạt vào p3 ,p4 xung lượng chiều hạt Vì vậy, s hiểu bình phương khối lượng trung tâm ( bất biến khối lượng ) t hiểu bình phương momen xung lượng chuyển đổi Trong giản đồ Feynman tán xạ 2, s, t, u sử dụng dạng kênh s, kênh t kênh u Luận văn thạc sĩ p p t u s p p Hình 1.1 Các biến Mandelstam p1 p2 p3 p4 kênh s, p1 p3 p4 p2 kênh t, p1 p4 p3 p2 kênh u, (Các kênh mô tả tán xạ 1+23+4, khác cách trao đổi xung lượng) Các kênh miêu tả giản đồ Feynman khác trình tán xạ khác tương tác trao đổi lượng tử-các hạt chúng, bình phương xung lượng bốn chiều kể biểu thức s, t, u tách theo thứ tự định sẵn Ví dụ: kênh s tương ứng với trình hai hạt 1, tương tác kết hợp thành hạt truyền tương tác trung gian, cuối sinh hai hạt 4, kênh s cách xuất cộng hưởng hạt với điều kiện thời gian sống đủ dài để ta đo trực tiếp Kênh t trình bày q trình hạt phát hạt tương tác cuối trở thành hạt 3, hạt hấp thụ hạt tương tác trở thành hạt Kênh u kênh t với việc đổi vị trí hạt 3, Các biến Mandelstam lần đưa vào nhà vật lý Stanley Mandelstam vào năm 1938 Trong giới hạn lượng cao tương đối tính, khối lượng nghỉ bỏ qua , ta có: s p1 p2 p12 p22 p1 p2 p1 p2 Bởi vì: p12 m12 p2 m2 Vì ta viết: s p1 p2 p3 p4 t 2 p1 p3 2 p4 p2 u 2 p1 p4 2 p3 p2 10 (1.4) Luận văn thạc sĩ PHỤ LỤC B: CÁC TOÁN TỬ CHIẾU Chúng ta nhận điều kiện trực chuẩn spinơ Dirac, mà chúng mô tả trạng thái với độ xoắn xác định rr ' u ( p)u ( p) rr ' u r ' ( p)u r ( p) u r ' ( p) u r ( p) r' r (B.1) Theo điều kiện chuẩn hóa trực giao thi nghiệm hạt có xung lượng p xác định thỏa mãn hệ thức: u ( p)u ( p) u ( p) u ( p) r r r r (B.2) r 1 , 1, 2,3, Dấu trừ hệ thức cuối xuất điều kiện chuẩn hóa (B 1) nghiệm tương ứng với hạt lượng âm.Cần y thứ tự thừa số hệ thức tương ứng với tích trực tiếp u với u (u u) ma trận 4.Một cách tương tự từ điều kiện trực chuẩn ta suy : u r 1 r ( p)u( p) u r ( p) u r ( p) (B.3) Với mục đích đơn giản kí hiệu spinơ đưa vào kí hiệu : W ( p) u1 ( p) 1 W ( p ) u ( p) W n ( p) W ( p) u ( p) W ( p) u 1 ( p) (B.4) điều kiện trực chuẩn (B.1) viết dạng : w n ( p)w m ( p) n nm , (n, m 1, 2,3, 4) Các hệ thức (B.2) (B.3) có dạng : 52 (B.5) Luận văn thạc sĩ n W n ( p) W n ( p) I (B.6) n W n ( p) W n ( p) (B.7) n 1 n 1 Khi tính tiết diện hiệu dụng q trình với hạt spin ½ tham gia thường phải lấy tổng theo trạng thái spin trung gian cụ thể theo trạng thái trung gian,mà chúng có lượng dương,hay cách tương tự theo trạng thái với lượng âm.Giả sử tổng cần quan tâm có dạng: ( fQW s ) (W s Pg ) s 1 f QW Ws P g s 1 , 1 1 (B.8) s Trong Q P tốn tử (tích ma trận Dirac) f g spinơ,còn tổng theo s lấy theo trạng thái W với lượng dương Trong trường hợp trạng thái với lượng âm tính hồn tồn cách tương tự Bây ta tìm tốn tử chiếu hiệp biến ,mà phép chúng vào vế phải (B.9)cho phép mở rộng phép lấy tổng theo tất trạng thái W(p) thay cho trạng thái, sau biểu thức nhận được đơn giản nhờ cơng thức (B.7) Chúng ta muốn tốn tử chiếu cần thiết tác dụng lên spinơ W làm không đổi W trạng thái với lượng dương, cho không W trạng thái với lượng âm Nếu quan tâm trạng thái hạt với lượng âm cách hồn tồn tuơng tự xác định toán tử chiếu dạng với lượng âm Tốn tử xây dựng ta biết phương trình Dirac cho spinơ chúng có dạng : pˆ im u p pˆ imW n ( p) 0, n 1, pˆ im u p pˆ imW n ( p) 0, n 3, 53 (B.9) Luận văn thạc sĩ Các phương trình (B.9 B.10) xác định tốn tử chiếu trạng thái hạt với lượng chiều p dạng : ( p) pˆ im im (B.10) ( p)W n ( p) W n ( p) hay ( p) u( p) u( p) n 1, 2 ( p)W n ( p) O( p) hay ( p) u( p) n 3, 4 (B.11) (B.12) Và pˆ im p 2im pˆ m2 pˆ im ( p) ( p) 4m im im (B.13) Vì hạt tự p2 = -m2 Chú y hệ thức (B.7),(B.8) (B.13),chúng ta có : pˆ im W n ( p)W n ( p) im n 1 ( p ) u ( p)u ( p) r (B.14) r r 1 Thật vậy,nhân vào phía phải phương trình (B.16) với w n ( p) n lấy tổng theo n=1,2 ta có : 2 n 1 n 1 ( p) W n ( p)W n ( p) n W n ( p)W n ( p) n (B.15) Từ phương trình ( p)wn ( p) ;n=3,4 ta có: ( p) W n ( p)W n ( p) n (B.16) n 3 Cộng vế (B.17) (B.18) ta nhận được: n 1 n 1 ( p) nW n ( p)W n ( p) n W n ( p)W n ( p) Chú y (B.7) ta nhận : 54 (B.17) Luận văn thạc sĩ ( p) W n ( p)W n ( p) (B.18) n 1 Đó điều phải chứng minh.Ở ( p) n có tính chất tốn tử ( p) trạng thái với lượng âm n 1 tác dụng tốn tử ( p) lên spinơ Wn cho khơng.Điều cho phép ta viết biểu thức (A.8) dạng : fQW s W s Pg (B.19) s 1 fQ( p) s 1 s W s W s Pg ( A.6) f Q ( p) Pg (B.20) Như đạt mục đích đặt tính tổng theo tất trạng thái trung gian tất hạt Nếu quan tâm trạng thái hạt với lượng âm cách yytương tự xác định toán tử chiếu dạng : ( p) pˆ im 2im (B.21) Nó có tính chất sau : ( p)W n ( p) W n ( p); hay ( p)u ( p) u ( p) (n 3, 4) ( p)W n ( p) hay ( p)u ( p) (n 1, 2) Và 55 (B.22) Luận văn thạc sĩ ( p)2 ( p) W n ( p)W n ( p) n 3 (B.23) u ( p)u r r ( p ) r 1 Chú y tổng ( p) ( p) ma trận đơn vị : ( p) ( p) I (B.24) Và tích ( p ) ( p ) ( p ) ( p ) (B.25) Xác suất trình tỉ lệ với bình phương biên độ |M|2 với M fi u f Q ui W f QWi (B.26) Trong spinơ u f ui tương ứng với đường ra, vào ngồi giản đồ, cịn Q ma trận tác dụng lên biến spin | M fi |2 M fi Ffi* W f Q Wi W f Q Wi W W Q Wf f Q Wi * (B.27) i Trong Q Q (B.28) Trong nhiều trường hợp ta không quan tâm đến trạng thái spin cuối hạt.Lúc ta cần phải lấy tổng theo hai trạng thái spin cuối Theo phương pháp trình bày phép lấy tổng thực sau thay vào tốn tử chiếu thích hợp Giả sử trạng thái đầu cuối mô tả spinơ W i = u(p) Wf(p) =u(p) tương ứng với trạng thái lượng dương Lúc cách lấy tổng theo trạng thái spin cuối ta có : Tổng |M|2 theo trạng thái spin cuối 56 Luận văn thạc sĩ Wi Q W fs W fs Q Wi s 1 Wi Q ( p ') s W fs W fs QWi (B.29) s 1 Wi Q ( p ') QWi Nếu trạng thái đầu khơng phân cực ta phải lấy trung bình theo trạng thái spin đầu Giá trị trung bình M theo trạng thái spin đầu tổng theo trạng thái spin cuối : s Wi Q ( p ')Wi s s 1 4 Wi s Q ( p ') Q ( p) Wi s s s 1 , 1 Q ( p ') Q ( p) , 1 Sp Q ( p ') Q ( p) 57 (B.30) Luận văn thạc sĩ PHỤ LỤC C : TÁI CHUẨN HÓA Như thấy phần trước, tính đến bổ vịng khơng thể tránh khỏi tích phân phân kỳ Đó đặc trưng khơng thể thiếu đóng góp giản đồ Feynman bậc cao Để khử phân kỳ nhà vật lý đưa vài phương pháp khác đẫn đến kết phù hợp với thực nghiêm Khi tính tốn người ta phát điều răng, có vài hạt nặng đóng góp vào giản đồ vòng làm phân kỳ nhắc tới biến (sự sinh hủy hạt ảo giản đồ vòng) Cụ thể việc tái chuẩn hóa nhà vật lý làm sau: Giả sử xét giản đồ lượng riêng electron với GF ( p) hàm truyền toàn phần electron gồm bậc cao lý thuyết nhiễu loạn, e0 , m0 điện tích “trần” khối lượng “trần” electrong chưa kể đến tương tác chúng trường khác Ta có: GF ( p) i GF(1) ( p) p me i (C 1) Đại lượng GF(1) ( p) đại lượng phân kỳ Để khử phân kỳ, thƣờng làm theo bƣớc sau: Bƣớc 1: Điều chỉnh Ở đưa tích phân hữu hạn GF(1) ( p, ) phụ thuộc vào tham số ( thường gọi “cutoff”) Tích phân có tính chất sau: GF(1) ( p, ) GF(1) ( p) (C.2) Chúng ta tách tích phân thành phần phân kỳ phần hữu hạn: GF(1) ( p, ) Apk ( p, ) Aht ( p, ) (C.3) Aht ( p, ) đưa đến hiệu ứng vật lý đo được biết tới bổ xạ Bƣớc 2: Tái chuẩn hóa 58 Luận văn thạc sĩ Nếu lý thuyết tái chuẩn hóa thành phần phân kỳ Apk ( p, ) gộp vào hàm truyền mức i GF ( p) Apk ( p, ) Aht ( p, ) p me i iZ () Aht ( p, ) p me () i (C.4) Và GF ( p) đại lượng hữu hạn hay nói cách khác phân kỳ khử, có điều phải thay đổi! Bƣớc 3: Gỡ bỏ phụ thuộc vào Cuối ta lấy giới hạn lim GF ( p) C.1 Tái chuẩn hóa điện tích electron Trong phần tính tốn đóng góp giản đồ phân cực chân không xin vắn tắt hóa tính tốn phức tạp tập trung vào việc đưa kết việc tái chuẩn hóa nhằm phục vụ cho tính tốn luận văn p+ k k v k k v + p Hình 3.2 Giản đồ phân cực chân khơng Hàm truyền photon tính đến bổ vịng: iDF' (q) iDF (q) iDF (q) i (q) iDF (q) 4 (C.5) đây: DF (q) hàm truyền photon mức giản khơng có vịng (q) tensơ phân cực chân không với: i (q) d 4k 1 e02 Tr 4 (2 ) k me i ( k q ) me i 59 (C.6) Luận văn thạc sĩ Do (q) tensơ lorentz nên phân tích thành số hạng chứa g , q , q hàm vô hướng q , cụ thể là: (q) Dg g q2(1) (q2 ) q q (2) (q2 ) Thay (C.6) vào (C.5) q2 ta : iDF' (q2 0) 4 ig q D i (C.7) Như hàm truyền photon tương ứng với hàm truyền hạt boson với khối lượng D Từ (C.7) (C.6) ta : k me k me d 4k D (0) ie0 Tr 2 (2 ) k me i k me i 2me2 k d 4k 8 ie (2 )4 k m2 i e (C.8) Trong trường hợp hạt truyền Photon D phải không, ta thấy từ công thức D đại lượng phân kỳ, điều định nghĩa tensơ phân cực chân khơng cơng thức (3.6) chưa xác Để khử phân kỳ ta phải định nghĩa lại tensơ phân chực chân không Từ công ban đầu, ta thêm phần để tich phân kết giảm đủ mạnh k tăng lên Hay đưa vào khối lượng phụ Mi số Ci Và đến gần cuối ta cho Mi để thu kết cuối kết khơng phụ thuộc vào Mi Ci N (q) d k f (q, k , me2 ) Ci f (q, k , M i2 ) i 1 (C.9) d k Tr ( k me ) ( k q me ) (q) 4 ie (2 )4 k me2 i (k q)2 me2 i Tr ( k M i ) ( k q M i ) Ci k M i2 i (k q)2 M i2 i i 1 N 60 Luận văn thạc sĩ (q) 16 ie02 d 4k (2 )4 k (k q) k (k q) g (k q.k m2 ) e Re g k me2 i (k q)2 me2 i Reg phần thêm vào Sử dụng công thức thuật toán sau để giải : i d exp i k me2 i k me2 i 0 ik exp ikzi |zi 0 zi (C.10) ib2 d 4k i exp i ak b k exp (2 )4 (4 )2 a2 4a Ta : i (q) 16i e02 d1 d exp i me2 1 q 2 4 1 0 2 i 2 2 q q g q g q m Re g e 2 2 (C.11) Ta viết (q) dạng ngắn gon sau : (q) q q g q (q ) (C.12) (q ) 0 e02 d1 d N 1 C exp i M i2 1 q i 1 1 i 0 61 Luận văn thạc sĩ i 2 C q M i i 1 1 i 0 1 0 exp i M i2 1 q 1 e02 g d1 d N (C.13) Số hạng thứ hai biến đổi biến Áp dụng cơng thức sau để tính (q ) với i Qi , 12 (1 ) dQ (Q 1 2 ) (C.14) Ta kết : 1 q2 2 e02 d 1 d 2 (1 1 )1 ln 1 1 2 ln me me q e02 ln d (1 ) ln 1 (1 ) me me 2 e0 ln R (q ) 3 me (q ) (C.15) ta ký hiệu Mi2 2 N C ln i m2 me2 i 0 e ln q2 (q ) e d (1 ) ln 1 (1 ) me e2 q 1 q2 2 me 15 140 me R 2 , với phần cắt xung lượng (C.16) Nhƣ ta tách phần phân kỳ khổi hàm gốc, phần không phụ thuôc vào xung lƣợng, phần cịn lại phần hữu hạn Vậy ta có yếu tố ma trận tính đến bổ vịng viết dạng sau 62 Luận văn thạc sĩ 4 ig 4 i i ' g ( q ) ie0u2 u2 q 4 q 4 ig ' ie0u1' u1 iDF(0) (q) g g q q q (q) ie0u2 u2 q ' M (2) fi e ie0u1 u1 e0 ie u u1 iD (q) 1 ln R (q ) ie0u2' u2 3 me ' R (0) ie0u1 u1 Z3 (q ) iDF (q) ie0u2' u2 ' (0) F (C.17) Trong ta đặt e02 Z3 ln 3 me2 Đây phần phân kỳ ta tách Trong trường hợp q nhỏ ta có R (q2 ) ,Cơng thức trở thành ' (0) ' M (2) fi ie0u1 u1 Z3iDF (q) ie0u2 u2 i e0 Z3 u1' u1 iDF(0) (q) i e0 Z3 u2' u2 (C.18) Công thức giống với dạng cơng thức ứng với q trình tán xạ khơng có vịng đặt eR e0 Z ,tức ' ' (0) M (2) fi ieR u1 u1 iDF (q) ieRu2 u2 (C.19) Hay nói cách khác xung lượng hạt nhỏ phần phân kỳ gộp vào điện tích hạt Trong trường hợp xung lượng lớn ta khơng thể bỏ qua phần R (q2 ) Phần có đóng góp đáng kể vào biểu thức tiết diện tán xạ vi phân biểu thức tương tác hai hạt Kết luận : Bằng cách tái chuẩn hóa lại điện tích electron, ta giải đƣợc phần phân kỳ sinh giản đồ vòng xung lƣợng nhỏ Ta biểu diễn kết luận hình vẽ sau: 63 Luận văn thạc sĩ e0 e0 eR = + e0 eR e0 Hình C.1 Tái chuẩn hóa điện tích electron : e0 điên tích electron chưa tái chuẩn hóa eR điện tích electron sau tái chuẩn hóa C.2 Năng lƣợng riêng photon Một phần đồ thị Feynman gọi phần lượng riêng trường vô hướng trường spinor bao gồm đường nối với phần khác đồ thị nhờ hai đường boson ferrmion Khi photon tương tác với trường electron-positron thi cặp hạt phản hạt electron-positron sinh ra, sau chúng lại tự hủy tạo photon Quá trình mô ta giản đồ lượng riêng photon sau: e p k k p+ k v e Hình C.2 Giản đồ lượng riêng photon Đỉnh tương tác V ( , e , e ) : ieR Hàm truyền electron (positron) G: 64 i( p me ) p me2 Luận văn thạc sĩ Áp dụng quy tắc Feynman ta được: F d n p(ieR ) ( p k me ) ( p me ) i( p k me ) i( p me ) n ( ie ) e d p R R ( p k )2 me2 p2 me2 ( p k )2 me2 p me2 Đặt I ( p k me ) ( p me ) (C.20) I ( p k me ) ( p me ) p p k p me p p me k me mR me ( p p k p )Tr ( ) meTr ( ) ( p p k p )n( g g g g g g ) me2ng Thay vào công thức ta được: p p k p ( pp) g (kp) g p p me2 g F eR n d n p ( p k )2 me2 p me2 (C.21) Sử dụng công thức hàm hai điểm: B0 (k , me , me ) B (k , me , me ) i i B (k , me , me ) d p p n 2 d p p m ( p k )2 me2 e n i d p p n 2 p m ( p k )2 me2 p p e me2 ( p k )2 me2 B (k , me , me ) k B1 (k , me , me ) B (k , me , me ) k k B21 (k , me , me ) B22 (k , me , me ) p B21 (k , me , me ) nB22 (k , me , me ) A(me ) me2 B0 (k , me , me ) Ta tính cơng thức: F 4eR B (k , me , me ) k B (k , me , me ) B (k , me , me ) k B (k , me , me ) me2 g B0 (k , me , me ) g A0 (me ) me2 B0 (k , me , me ) g k B (k , me , me ) eR k k B21 (k , me , me ) B1 (k , me , me ) B22 (k , me , me ) g k B1 (k , me , me ) A(me ) me2 B0 (k , me , me ) 65 (C.22) Luận văn thạc sĩ Ta đặt: A 8eR B21 (k , me , me ) B1 (k , me , me ) B 4eR k B1 (k , me , me ) A(me ) me2 B0 (k , me , me ) C 4eR B22 (k , me , me ) (C.23) Giờ ta tính hệ số A, B, C sử dụng công thức sau : 2 ln 2c n4 A mR ime2 i me2 ln me2 i me2 B0 (k , me , me ) i i ln me2 B1 (k , me , me ) me2 B0 (k , me , me ) 2me 1 i i i i ln me2 2 1 B21 (k , me , me ) i me2 me2 A me B0 (k , me , me ) 18me 3me 13 i i i i ln me2 18 3 1 B22 (k , me , me ) i me2 me2 A me me2 B0 (k , me , me ) 18 6me 17 ime2 i me2 i 3me2 i me2 ln me2 12 18 12 (C.24) Ta được: 1 A 8eR2 i i i i ln me2 18 6 1 B 4eR2 ime2 2i me2 i 3me2 i me2 ln me2 2 17 5 C 4eR2 ime2 i me2 i 3me2 i me2 ln me2 18 12 12 m 2 T E 1 1 e2 cos me (4 E 2) 2me4 E 66 (C.25) ... 2 Pdir tiết diện tán xạ trình tán xạ hai hạt ứng với kênh t Pex tiết diện tán xạ trình tán xạ hai hạt ứng với kênh u Pint tiết diện tán xạ trình tán xạ hai hạt ứng với hai kênh t kênh u Các... văn thạc sĩ Pdir tiết diện tán xạ trình tán xạ hai hạt ứng với kênh t Pex tiết diện tán xạ trình tán xạ hai hạt ứng với kênh u Pint tiết diện tán xạ trinh tán xạ hai hạt ứng với kênh t kênh u...Luận văn thạc sĩ ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN - Đỗ Đức Thành TÁN XẠ HAI HẠT TRONG ĐIỆN ĐỘNG LỰC HỌC LƢỢNG TỬ TRONG GẦN ĐÚNG MỘT VÒNG Chuyên ngành: Vật lý