b) Tìm tất cả giá trị của m để đường thăng (d) cắt trục Ox tại điểm B sao cho tam giác AOB là tam giác cân.. Cho tam giác ABC có ba góc nhọn và đường cao BE. Gọi H và K lần lượt là chân[r]
(1)SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI
KÌ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2020 – 2021
Khóa ngày 17/7/2020
Đề thi mơn: TỐN
Thời gian làm 120 phút, không kể thời gian phát đề Bài I (2 điểm)
Cho hai biểu thức
1
1
2
x x
A va B
x
x x
với x ≥ 0, x 1
1) Tính giá trị biểu thức A x =
2) Chứng minh
2 B x
3) Tìm tất giá trị x để biểu thưc P2 A B x đạt giá trị nhỏ Bài II (2 điểm)
1) Giải toán sau cách lập phương trình hệ phương trình
Quãng đường từ nhà An đến nhà Bình dài 3km Buổi sáng, An từ nhà An đến nhà Bình Buổi chiều ngày, An xe đạp từ nhà Bình nhà An quãng đường với vận tốc lơn vận tốc An 9km/h Tính vận tốc An, biết thời gian buổi chiều hớn thời gian buổi sáng 45 phút (Giả đình ràng An với vận tốc không đổi tồn qng đường đó)
2) Một bóng bàn có dạng hình cầu có bán kính cm Tính diện tích bề mặt bóng bàn (Lấy 3,14)
Bài III (2,5 điểm)
1) Giải hệ phương trình
3 1 x y x y
2) Trong mặt phẳng tọa độ Oxy, xét đường thẳng (d): y = mx + với m a) Gọi A giao điểm đường thẳng (d) va trục Oy Tìm toan độ A
b) Tìm tất giá trị m để đường thăng (d) cắt trục Ox điểm B cho tam giác AOB tam giác cân
Bài IV (3 điểm)
(2)Cho tam giác ABC có ba góc nhọn đường cao BE Gọi H K chân đường vng góc kẻ từ điểm E đến đường thẳng AB BC
1) Chứng minh tứ giác BHEK tứ giác nội tiếp 2) Chứng minh BH.BA = BK.BC
3) Gọi F chân đường vng góc kẻ từ điểm C đến đường thẳng AB I trung điểm đoạn thẳng EF Chứng minh ba điêm H, I, K ba điểm thẳng hàng
Bài V (0,5 điểm)
Giải phương trình x 3x 2x21