Xác định giá trị lớn nhất – giá trị nhỏ nhất của hàm số thông qua đồ thị của nó .... Ứng dụng GTLN-GTNN vào bài toán thực tế ...[r]
(1)CHUYÊN ĐỀ
GIÁ TRỊ LỚN NHẤT – GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ MỤC LỤC
PHẦN A CÂU HỎI
Dạng Xác định giá trị lớn – giá trị nhỏ hàm số thông qua đồ thị nó
Dạng Xác định giá trị lớn – giá trị nhỏ hàm số đoạn [a;b]
Dạng Xác định giá trị lớn – giá trị nhỏ hàm số khoảng (a;b)
Dạng Ứng dụng GTLN-GTNN vào toán thực tế
Dạng Định m để GTLN-GTNN hàm số thỏa mãn điều kiện cho trước 11
Dạng Bài toán GTLN-GTNN liên quan đến đồ thị đạo hàm 13
Dạng Ứng dụng GTLN-GTNN vào toán đại số 18
PHẦN B LỜI GIẢI THAM KHẢO 19
Dạng Xác định giá trị lớn – giá trị nhỏ hàm số thông qua đồ thị nó 19
Dạng Xác định giá trị lớn – giá trị nhỏ hàm số đoạn [a;b] 28
Dạng Xác định giá trị lớn – giá trị nhỏ hàm số khoảng (a;b) 32
Dạng Ứng dụng GTLN-GTNN vào toán thực tế 34
Dạng Định m để GTLN-GTNN hàm số thỏa mãn điều kiện cho trước 41
Dạng Bài toán GTLN-GTNN liên quan đến đồ thị đạo hàm 51
Dạng Ứng dụng GTLN-GTNN vào toán đại số 62
PHẦN A CÂU HỎI
Dạng Xác định giá trị lớn – giá trị nhỏ hàm số thơng qua đồ thị Câu1 (ĐỀTHAMKHẢOBGD&ĐTNĂM2018-2019) Cho hàm số y= f x( ) liên tục đoạn -1; 3
và có đồ thị hình vẽ bên Gọi M m giá trị lớn nhỏ hàm số cho
đoạn -1; 3 Giá trị M m-
A. B. C. D.
Câu2 (ĐỀ 01 ĐỀ PHÁT TRIỂN ĐỀ THAM KHẢO BGD&ĐT NĂM 2018-2019) Cho hàm số ( )
(2)Gọi M m giá trị lớn nhỏ hàm số cho đoạn -1;1 Giá trị M -m
bằng
A. B.1 C. D.
Câu3 (CHUYÊNLƯƠNGTHẾVINHĐỒNGNAINĂM2018-2019LẦN01) Cho hàm số y= f x( )
xác định liên tục có đồ thị hình vẽ bên Tìm giá trị nhỏ m giá trị lớn M hàm
số y= f x( ) đoạn -2; 2
A. m= -5;M = -1 B. m= -2;M =2 C. m= -1;M =0 D. m= -5;M =0
Câu4 (ĐỀMINHHỌAGBD&ĐTNĂM2017) Cho hàm sốy= f x( )xác định, liên tục trên có bảng biến thiên:
Khẳng định sau khẳng định đúng?
A.Hàm số có giá trị cực tiểu
B.Hàm số có giá trị lớn giá trị nhỏ -1
C.Hàm số đạt cực đại x=0 đạt cực tiểu x=1
D.Hàm số có cực trị
Câu5 (THPT-THANG-LONG-HA-NOI-NAM-2018-2019LẦN01) Cho hàm số y= f x( ) liên tục
-3; 2 có bảng biến thiên sau Gọi M m, giá trị lớn giá trị nhỏ hàm số
( )
(3)A. B. C. D.
Câu6 (THPT BA ĐÌNH NĂM 2018-2019 LẦN 02) Xét hàm số với có bảng biến thiên sau:
Khẳng định sau
A.Hàm số cho không tồn taị GTLN đoạn
B.Hàm số cho đạt GTNN đoạn
C.Hàm số cho đạt GTNN đạt GTLN đoạn
D.Hàm số cho đạt GTNN đoạn
Câu7 (CHUYÊNLÊTHÁNHTÔNGNĂM2018-2019LẦN01) Cho hàm số y= f x( ) liên tục , có bảng biến thiên hình sau:
Trong mệnh đề sau, mệnh đề sai?
A.Hàm số có hai điểm cực trị
B.Hàm số có giá trị lớn giá trị nhỏ -3
C.Đồ thị hàm số có đường tiệm cận
D.Hàm số nghịch biến khoảng (- -; , 2;) ( )
Câu8 (THPTCHUYÊNLAM SƠNTHANHHÓANĂM2018-2019LẦN 01) Cho hàm số y= f x( )
liên tục có bảng biến thiên hình vẽ Mệnh đề sau đúng?
A.Phương trình f x( )=0có nghiệm phân biệt
B.Hàm số đồng biến khoảng (0;)
C.Giá trị nhỏ hàm số
D.Hàm số có điểm cực trị
Câu9 (CHUYÊNNGUYỄNTẤTTHÀNHYÊNBÁILẦN01NĂM2018-2019) Cho hàm số y= f x( )
liên tục có bảng biến thiên đoạn -1; 3 hình vẽ bên Khẳng định sau đúng?
( )
y= f x x - 1;5
-1;5
x= - x=2 -1;5
x= - x=5 -1;5
x= -1;5
x – ∞ -2 + ∞
y' + 0 – 0 + 0 –
y
– ∞
4
0
4
(4)A.
1;3
max ( )f x f(0)
- = B. max-1;3 f x( )= f ( )3 C. max-1;3 f x( )= f ( )2 D. max-1;3 f x( )= f ( )-1
Câu10 (ĐỀTHITHỬVTED02NĂMHỌC2018-2019) Cho hàm số f x( ) liên tục -1;5 có đồ thị đoạn -1;5 hình vẽ bên Tổng giá trị lớn giá trị nhỏ hàm số f x( ) đoạn -1;5bằng
A. -1 B. C. D.
Câu11 (SỞGD&ĐTTHANHHÓANĂM2018-2019) Cho hàm số f x( ) liên tục có đồ thị hình vẽ sau:
Gọi M m giá trị lớn nhỏ hàm số f x( ) 1;3
2
-
Giá trị M m
bằng
A.
2 B. C. D.
Câu12 (THPT YÊN MỸ HƯNG YÊN NĂM 2018-2019 LẦN 01) Cho hàm số y= f x( ) xác định, liên tục 1,5
2
-
(5)Giá trị lớn M giá trị nhỏ m hàm số f x( ) 1,5
-
là:
A. M =4,m=1 B. M =4,m= -1 C. 7,
M = m= - D. 7, M = m=
Câu13 (GKITHPTNGHĨAHƯNGNAMĐỊNHNĂM2018-2019) Cho hàm số y= f x( ) có đồ thị hình vẽ Giá trị lớn hàm số f x( ) đoạn 0; 2 là:
A.
0;2 ( )
Max f x = B.
0;2 ( )
Max f x = C.
0;2 ( )
Max f x = D.
0;2 ( )
Max f x =
Câu14 (SỞGD&ĐTBẮCGIANGNĂM2018-2019LẦN01) Cho hàm số y= f x( ) liên tục đoạn
-1; 3 có đồ thị hình vẽ bên Gọi M m, giá trị lớn giá trị nhỏ hàm số
cho đoạn -1; 3 Giá trị M m
A. B. -6 C. -5 D. -2
(6)Mệnh đề đúng? A.
5;7) ( )
Min f x
- = B. Min-5;7) f x( )=2 C. Max-5;7) f x( )=9 D. Max-5;7) f x( )=6
Câu16 (TT THANH TƯỜNG NGHỆ ANNĂM 2018-2019 LẦN 02) Cho hàm số f ( )x liên tục đoạn 0 ; 3 và có đồ thị hình vẽ bên Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho 0 ; 3 Giá trị của M m bằng?
A. B. C. D.
Câu17 (CHUYÊNLÊQUÝĐÔNĐIỆNBIÊNLẦN3NĂM2018-2019) Cho hàm số y= f x( ) liên tục đoạn 2 ; 6 có đồ thị hình vẽ bên
Gọi M mlần lượt giá trị lớn nhỏ hàm số cho đoạn 2 ; 6 Giá trị Mm
bằng
A. B. -8 C. -9 D.
y = f(x)
y
x
-2
4 5
6 -1
-3 -4
-1
3
(7)Câu18 (ĐỀTHI THỬVTED 03NĂM HỌC2018 -2019) Cho hàm số y= f x( ) liên tục có đồ thị đoạn -2; 4 hình vẽ bên Tổng giá trị lớn nhỏ hàm số y= f x( ) đoạn -2; 4
A. B. C. D. -2
Câu19 (THPTNGÔSĨLIÊNBẮCGIANGNĂM2018-2019LẦN01) Cho hàm số y= f x( ) có bảng xét dấu đạo hàm sau:
Mệnh đề sau A.
( 1;1 ( ) ( )
maxf x f
-= B.
(0; ) ( ) ( )
max f x f
= C.
( ; 1) ( ) ( )
min f x f
-= - D.
( 1; ) ( ) ( )
min f x f
-
=
Dạng Xác định giá trị lớn – giá trị nhỏ hàm số đoạn [a;b]
Câu20 (Mã102-BGD-2019) Giá trị nhỏ hàm số f x( )=x3-3x2 đoạn -3;3
A. B. -16 C. 20 D.
Câu21 (MÃĐỀ110BGD&ĐTNĂM2017) Tìm giá trị lớn M hàm số y=x4 -2x23 đoạn 0;
A. M =6 B. M =1 C. M =9 D. M =8
Câu22 (Mã103-BGD-2019) Giá trị lớn hàm số f x( )=x3-3x đoạn [ 3;3]-
A. -2 B.18 C. D. -18
Câu23 (ĐỀ MINH HỌA GBD&ĐT NĂM 2017) Tìm giá trị nhỏ hàm số
3
=
-x y
x đoạn
2; 4 A.
2;4
miny= -3 B.
2;4
19
3
=
y C.
2;4
miny=6 D.
2;4
miny= -2
(8)A. 85 B. 51
4 C. 13 D. 25
Câu25 (MĐ104BGD&DTNĂM2017) Tìm giá trị nhỏ m hàm số y x2 x
= đoạn 1;
2
A. m=5 B. m=3 C. 17
4
m= D. m=10
Câu26 (MÃ ĐỀ 123 BGD&DT NĂM 2017) Tìm giá trị nhỏ m hàm số y=x3-7x2 11x-2 đoạn [0 ; 2]
A. m=3 B. m=0 C. m= -2 D. m=11
Câu27 (Mãđề101BGD&ĐTNĂM2018) Giá trị lớn hàm số y=x4-4x29 đoạn -2;3
A. 201 B. C. D. 54
Câu28 (ĐỀTHAMKHẢOBGD&ĐT2018) Giá trị lớn hàm số f x( )=x4-4x25 trêm đoạn
-2;3
A. 122 B. 50 C. D.
Câu29 (MĐ 105 BGD&ĐT NĂM 2017) Tìm giá trị nhỏ m hàm số y=x4-x2 13 đoạn -
2;3
A. m=13 B. =51
4
m C. =51
2
m D. = 49
4 m
Câu30 (Mãđề104-BGD-2019) Giá trị nhỏ hàm số f x( )=x3-3xtrên đoạn -3;3
A. -18 B. -2 C. D. 18
Câu31 (MĐ103BGD&ĐTNĂM2017-2018) Giá trị nhỏ hàm số y=x33x2 đoạn - -4; 1
A. -16 B. C. D. -4
Câu32 (Mãđề102BGD&ĐTNĂM2018) Giá trị nhỏ hàm số y=x32x2-7x đoạn 0; 4
A. -259 B. 68 C. D. -4
Câu33 (Mãđề101-BGD-2019) Giá trị lớn hàm số f x( )=x3-3x2 đoạn -3; 3
A. B. -16 C. 20 D.
Dạng Xác định giá trị lớn – giá trị nhỏ hàm số khoảng (a;b)
Câu34 (ĐỀ THAM KHẢO BGD&ĐT NĂM 2017) Tính giá trị nhỏ hàm số y 3x 42 x
=
khoảng (0;) A.
(0; )
33
5 y
= B. ( )
3 0;
miny
= C. ( )
3 0;
min y
= D. (min0;)y=7
Câu35 (CHUYÊNLƯƠNG THẾVINH ĐỒNGNAI NĂM2018-2019LẦN 01) Gọi m giá trị nhở
nhất hàm số y x
x
= khoảng (0;) Tìm m
(9)Câu36 (THPT- YÊNĐỊNH THANHHÓA 20182019-LẦN 2) Gọi a giá trị nhỏ hàm số
y x
x
= khoảng (0;) Tìm a
A. B. C. D. 16
Câu37 (THPTMINHCHÂUHƯNGYÊNNĂM2018–2019) Giá trị nhỏ hàm số y x x = -
trên khoảng (0;) bao nhiêu?
A. B. -1 C. -3 D. -2
Câu38 (THPT CHUYÊN BẮC GIANG NAM 2018-2019 LẦN 01) Giá trị nhỏ hàm số
( )
f x x
x
= nửa khoảng 2;) là:
A. B.
2 C. D.
7 Dạng Ứng dụng GTLN-GTNN vào toán thực tế
Câu39 (Mãđề101BGD&ĐTNĂM2018) Ông A dự định dùng hết
6, 5m kính để làm bể cá có dạng
hình hộp chữ nhật khơng nắp, chiều dài gấp đơi chiều rộng (các mối ghép có khơng đáng kể) Bể cá có dung tích lớn (kết làm tròn đến hàng phần trăm)
A. 2, 26m3 B.1, 61m3 C. 1,33m3 D. 1,50m3
Câu40 (MĐ104BGD&DTNĂM2017) Một vật chuyển động theo quy luật
s= - t t với t (giây)
khoảng thời gian tính từ vật bắt đầu chuyển động s (mét) quãng đường vật di chuyển
khoảng thời gian Hỏi khoảng thời gian giây kể từ bắt đầu chuyển động, vận tốc lớn
vật đạt bao nhiêu?
A. 243 (m/s) B. 27 (m/s) C. 144 (m/s) D. 36 (m/s)
Câu41 (MĐ 103 BGD&ĐT NĂM 2017-2018) Ông A dự định sử dụng hết 5m2 kính để làm bể cá kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước khơng đáng kể) Bể cá có dung tích lớn (kết làm tròn đến hàng phần trăm)?
A. 1, 01m3 B. 0, 96m3 C. 1,33m3 D. 1,51m3
Câu42 (ĐỀ MINHHỌA GBD&ĐTNĂM2017) Cho nhơm hình vng cạnh 12 cm Người ta
cắt bốn góc nhơm bốn hình vng nhau, hình vng có cạnh x (cm), gập
tấm nhôm lại hình vẽ để hộp khơng nắp Tìm x để hộp nhận tích lớn
nhất
A. x=3 B. x=2 C. x=4 D. x=6
Câu43 (KTNL GIA BÌNH NĂM 2018-2019) Một chất điểm chuyển động theo phương trình
3
S = - t t - , t tính giây S tính theo mét Chuyển động có vận tốc lớn
(10)Câu44 (THPTNĂM2018-2019LẦN04) Một loại thuốc dùng cho bệnh nhân nồng độ thuốc máu bệnh nhân giám sát bác sĩ Biết nồng độ thuốc máu bệnh nhân sau
tiêm vào thể t cho công thức ( ) 2
1 t c t
t =
(mg L/ ) Sau tiêm thuốc
nồng độ thuốc máu bệnh nhân cao nhất?
A.4 B.1 C.3 D.2
Câu45 (THPTYÊNMỸHƯNGYÊNNĂM2018-2019LẦN01) Đợt xuất gạo tỉnh A thường
kéo dài tháng ( 60 ngày) Người ta nhận thấy số lượng xuất gạo tính theo ngày thứ t xác
định công thức ( ) 63 3240 3100
5
= -
-S t t t t với (1 t 60) Hỏi 60 ngày ngày thứ
có số lượng xuất gạo cao
A. 60 B. 45 C. 30 D. 25
Câu46 (GKINHÂN CHÍNHHÀ NỘI NĂM 2018-2019 LẦN 01) Một vật chuyển động theo quy luật
10
S = t - t , với t(giây) khoảng thời gian tính từ lúc vật bắt đầu chuyển động S m( )là quãng đường
vật khoảng thời gian Hỏi khoảng thời gian 15 giây từ lúc vật bắt đầu chuyển động vận
tốc v m s( / ) vật đạt giá trị lớn thời điểm t s( ) bằng:
A. 8( )s B. 20( )s C. 10( )s D. 15( )s
Câu47 (CHUYÊNLÊQUÝĐÔNĐIỆNBIÊNNĂM2018-2019LẦN02) Một sợi dây có chiều dài 28m
được cắt thành hai đoạn để làm thành hình vng hình trịn Tính chiều dài (theo đơn vị mét) đoạn dây làm thành hình vng cắt cho tổng diện tích hình vng hình trịn nhỏ nhất?
A. 56
4 B.
112
4 C.
84
4 D.
92 4
Câu48 (PENI-THẦYLÊANHTUẤN-ĐỀ3-NĂM2019) Một xưởng in có 15 máy in cài đặt tự
động giám sát kỹ sư, máy in in 30 ấn phẩm giờ, chi phí cài đặt bảo
dưỡng cho máy in cho đợt hàng 48.000 đồng, chi phí trả cho kỹ sư giám sát 24.000 đồng/giờ
Đợt hàng xưởng in nhận 6000 ấn phẩm số máy in cần sử dụng để chi phí in
A. 10 máy B.11máy C. 12 máy D. máy
Câu49 Một chất điểm chuyển động thẳng với quãng đường biến thiên theo thời gian quy luật
( )
4 12
s t =t - t (m), t (s) khoảng thời gian tính từ lúc bắt đầu chuyển động Vận tốc chất
điểm đạt giá trị bé t bao nhiêu?
A.2 (s) B.
3 (s) C.0 (s) D.
4 (s)
Câu50 (THPTMINHCHÂUHƯNGNNĂM2018–2019) Cho nhơm hình chữ nhật có chiều
dài 10cm chiều rộng 8cm Người ta cắt bỏ bốn góc nhơm bốn hình vng
nhau, hình vng có cạnh x cm( ), gập nhôm lại (như hình vẽ) để hộp khơng
(11)A. 21
x= - B. 10
3
x= - C. 21
9
x= D. 21
3
x=
-Câu51 (GKI THPT VIỆT ĐỨC HÀ NỘI NĂM 2018-2019) Một đoàn cứu trợ lũ lụt vị trí A tỉnh miền trung muốn đến xã C để tiếp tế lương thực thuốc men Để đến C, đoàn cứu trợ phải chèo thuyền từ A đến vị trí D với vận tốc 4(km h/ ), đến vị trí C với vận tốc 6(km h/ ) Biết A cách
B khoảng 5km, B cách C khoảng 7km (hình vẽ) Hỏi vị trí điểm D cách A bao xa để đoàn cứu
trợ đến xã C nhanh nhất?
A. AD=5 3km B. AD=2 5km C. AD=5 2km D. AD=3 5km Dạng Định m để GTLN-GTNN hàm số thỏa mãn điều kiện cho trước
Câu52 (MÃ ĐỀ 123 BGD&DT NĂM 2017) Cho hàm số = -1
x m y
x (m tham số thực) thỏa mãn =
[2;4]
miny Mệnh đề đúng?
A. m4 B. 3m4 C. m -1 D. 1m3
Câu53 (ĐỀ THAM KHẢO BGD & ĐT 2018) Gọi S tập hợp tất giá trị tham số thực m
cho giá trị lớn hàm số
3
y= x - x m đoạn 0;2 Số phần tử S
A. B. C. D.
Câu54 (MÃ ĐỀ 110 BGD&ĐT NĂM 2017) Cho hàm số
1
x m
y x
=
(m tham số thực) thoả mãn
1;2 1;2
16
min max
3
y y= Mệnh đề đúng?
A. m4 B. 2m4 C. m0 D. 0m2
Câu55 (CỤM LIÊN TRƯỜNG HẢI PHÒNG NĂM 2018-2019) Có giá trị m0 tham số m để hàm số yx3m21x m 1 đạt giá trị nhỏ 5 đoạn 0;1 Mệnh đề sau đúng?
A. 2018m0m020 B. 2m0 1
C. 6m0m020 D. 2m0 1
Câu56 (SỞ GIÁO DỤC ĐÀO TẠO VĨNH PHÚC NĂM 2018 - 2019 LẦN 01) Tính tổng tất giá trị tham số m cho giá trị lớn hàm số y= x2-2xm đoạn -1; 2
A. -1 B. C. -2 D.
Câu57 (THCS - THPT NGUYỄN KHUYẾN NĂM 2018-2019 LẦN 01) Nếu hàm số
y=xm -x
(12)A.
2 B. - C. D.
2
-
Câu58 (THPTLÊVĂNTHỊNHBẮCNINHNĂM2018-2019) Cho hàm số
1 x m y x
(m tham số
thực) thỏa mãn 0;1
miny
Mệnh đề đúng?
A. 1m 3 B. m6 C. m1 D. 3m 6
Câu59 (CHUYÊNKHTNLẦN2NĂM2018-2019) Tổng giá trị lớn giá trị nhỏ hàm số x m y x
1; (m tham số thực) Khẳng định sau đúng?
A. m10 B. 8m10 C. 0m4 D. 4m8
Câu60 (THPTNGÔGIATỰVĨNH PHÚCNĂM2018-2019LẦN01) Cho hàm số y=2x3-3x2-m Trên -1;1 hàm số có giá trị nhỏ -1 Tính m?
A. m= -6 B. m= -3 C. m= -4 D. m= -5
Câu61 (THPTĐƠNGSƠNTHANHHĨANĂM2018-2019LẦN02) Tìm m để giá trị lớn hàm số y= x3-3x2m-1 đoạn 0; nhỏ Giá trị m thuộc khoảng nào?
A. 3;
-
-
B.
2 ;
C. -1; 0 D. (0;1 )
Câu62 (HỌCMÃINĂM2018-2019-LẦN02) Biết S tập giá trị m để tổng giá trị lớn giá
trị nhỏ hàm số
2
y=x -m x - x -m đoạn 0;1 -16 Tính tích phần tử S
A. B. -2 C. -15 D. -17
Câu63 (CHUYÊNBẮCNINHNĂM2018-2019LẦN03) Gọi A B, giá trị nhỏ nhất, giá trị lớn hàm số
2
1 x m m y
x
=
- đoạn 2; Tìm tất giá trị thực tham số m để
13 A B =
A. m=1;m= -2 B. m= -2 C. m= 2 D. m= -1;m=2
Câu64 (THPTANLÃOHẢIPHỊNGNĂM2018-2019LẦN02) Tìm tất giá trị thực tham số m
để hàm số x mx y x m =
liên tục đạt giá trị nhỏ đoạn 0; điểm x0(0; 2) A. 0m1 B. m1 C. m2 D. - 1 m1
Câu65 (THPTCHUYÊNVĨNHPHÚCLẦN02NĂM2018-2019) Gọi S tập hợp tất giá trị thực
của tham số m cho giá trị lớn hàm số
2
1 x mx m y
x
=
1; Số phần tử tập
S
A. B.1 C. D.
Câu66 (THPT MINHCHÂU HƯNG YÊNNĂM 2018 –2019) Tìm m để giá trị nhỏ hàm số
( )
1 x m m f x
x
-
=
đoạn (0;1) –2
A. m m = = . B. m m = = - . C. m m = - =
D. 21
2
(13)Câu67 (THPT BẠCH ĐẰNG QUẢNG NINH NĂM 2018-2019) Cho hàm số sin
cos
m x
y
x
-=
Có bao
nhiêu giá trị nguyên tham số m thuộc đoạn 0;10 để giá trị nhỏ hàm số nhỏ -2?
A. B. C. D.
Câu68 (ĐỀHỌCSINHGIỎITỈNHBẮCNINHNĂM2018-2019) Xét hàm số f x( )= x2ax b , với a, b tham số Gọi M giá trị lớn hàm số -1; 3 Khi M nhận giá trị nhỏ được, tính a2b
A. B. C. -4 D.
Câu69 (ĐỀHỌCSINHGIỎITỈNHBẮCNINHNĂM2018-2019) Cho hàm số y=ax3cxd a, 0 có
( ;0) ( ) ( )
min
x
f x f
-
= - Giá trị lớn hàm số y= f x( )trên đoạn 1;3
A. d-11a B. d-16a C. d2a D. d8a
Câu70 (CHUYÊNTHÁIBÌNHNĂM2018-2019LẦN03) Gọi S tập hợp giá trị tham số m để giá trị lớn hàm số
2
2
x mx m
y
x
-
=
- đoạn -1;1 Tính tổng tất phần tử
S
A.
- B. C.
3 D. -1
Câu71 (GKITHPTNGHĨAHƯNGNAMĐỊNHNĂM2018-2019) Tìm tất giá trị tham số m
để hàm số 2
1
x m
y
x x
=
có giá trị lớn nhỏ
A. m1 B. m1 C. m -1 D. m -1 Dạng Bài toán GTLN-GTNN liên quan đến đồ thị đạo hàm
Câu72 (Mã102-BGD-2019) Cho hàm số f x( ), hàm số y= f¢( )x liên tục có đồ thị hình vẽ
Bất phương trình f x( ) x m (m tham số thực) nghiệm với x(0; 2)
(14)Câu73 (Mã103-BGD-2019) Cho hàm số y= f x( ), hàm số y= f '( )x liên tục và có đồ thị
hình vẽ bên Bất phương trình f x( )2xm(m tham số thực) nghiệm với x(0; 2)khi
khi
A. m f ( )0 B. m f ( )2 -4 C. m f ( )0 D. m f ( )2 -4
Câu74 (Mãđề 101- BGD-2019) Cho hàm số y= f x( ), hàm số y= f '( )x liên tục và có đồ thị hình vẽ bên
Bất phương trình f x( ) x m (m tham số thực) nghiệm với x(0; 2)
A. m f ( )2 -2 B. m f( )0 C. m f ( )2 -2 D. m f( )0
Câu75 (Mãđề104-BGD-2019) Cho hàm số f x( ), hàm số f x¢( ) liên tục có đồ thị hình vẽ
Bất phương trình f x( )2x m (m tham số thực) nghiệm với x(0; 2)
A. m f ( )2 -4 B. m f ( )2 -4 C. m f ( )0 D. m f ( )0
Câu76 (THCS-THPTNGUYỄNKHUYẾNNĂM2018-2019LẦN01) Cho hàm số y= f x( ) xác định liên tục , đồ thị hàm số y= f¢( )x hình vẽ
x y
2
(15)Giá trị lớn hàm số y= f x( ) đoạn -1; 2
A. f ( )1 B. f ( )-1 C. f ( )2 D. f ( )0
Câu77 (THPTTHIỆUHĨA–THANHHĨANĂM2018-2019LẦN01) Cho hàm số f x( ) có đạo hàm
là f¢( )x Đồ thị hàm số y= f¢( )x cho hình vẽ bên Biết
( )0 ( )1 ( )3 ( )5 ( )4
f f - f = f - f Tìm giá trị nhỏ m giá trị lớn M f x( ) đoạn 0; 5
A. m= f ( )5 ,M = f ( )3 B. m= f ( )5 ,M = f ( )1 C. m= f ( )0 ,M = f ( )3 D. m= f ( )1 ,M = f ( )3
Câu78 (ĐỀ04VTEDNĂM2018-2019) Cho hàm số y= f x( ) Hàm số y= f/( )x có bảng biến thiên sau:
Bất phương trình f e( )x exm nghiệm với
( 1;1)
x -
A. m f 1
e e
- B. ( )
1 m f
e
- - C. m f ( )1 e
- - D. m f 1
e e
-
Câu79 (CHUYÊNLÊHỒNGPHONGNAMĐỊNHLẦN1NĂM2018-2019) Cho hàm số y= f x( ) có
bảng biến thiên hình Tìm giá trị lớn hàm số ( ) (4 2) 3
3
g x = f x-x x - x x
(16)A.15 B. 25
3 C.
19
3 D.12
Câu80 (THPTNGHĨA HƯNG NĐ-GK2 -2018 -2019) Cho hàm sốy= f x( ) Hàm số y= f¢( )x có bảng biến thiên sau
Bất phương trình f x( )2cosx3m với 0;
2
x
A. ( )0
-
m f B. ( )0
-
m f C. 1
3
-
m f D. 1
3
-
m f
Câu81 (Đề minh họa 2019) Cho hàm số y= f x( ) Hàm số y= f/( )x có bảng biến thiên sau: Bất phương trình f e( )x exm nghiệm với x -( 1;1)
A. m f 1
e e
- B. ( )
1 m f
e
- - C. m f ( )1 e
- - D. m f 1
e e
-
Câu82 (THPTNGƠSĨLIÊNBẮCGIANGNĂM2018-2019LẦN01) Cho hàm số f x( ) có bảng biến thiên sau:
Gọi S tập hợp số nguyên dương m để bất phương trình f x( )m x( 3-3x25) có nghiệm thuộc đoạn
-1; 3 Số phần tử S
(17)Câu83 (CỤMLIÊNTRƯỜNGHẢIPHÒNGNĂM2018-2019LẦN01) Cho hàm số y= f x( ) liên tục Đồ thị hàm số y= f¢( )x hình bên Đặt g x( )=2f x( ) (- x1 )2 Mệnh đề
A.
3;3 ( ) ( )
maxg x g
- = B. min-3;3g x( )=g( )1 C. max-3;3 g x( )=g( )0 D. max-3;3 g x( )=g( )1 Câu84 (THPTCHUYÊNVĨNHPHÚCNĂM2018-2019LẦN3) Cho hàm số có đạo hàm cấp
hai Biết , bảng xét dấu sau:
Hàm số đạt giá trị nhỏ điểm thuộc khoảng sau đây?
A. (- -; 2017) B. (2017;) C. (0; ) D. (-2017;0)
Câu85 (ĐỀTHITHỬ VTED02NĂMHỌC2018 -2019) Cho hàm số f x( ) liên tục có đồ
thị hình vẽ bên Bất phương trình ( )
2f x x 2m3x nghiệm với x -( 1;3)
A. m -10 B. m -5 C. m -3 D. m -2
Câu86 (KTNLGVBẮCGIANGNĂM2018-2019) Cho hàm số f x( ) có đạo hàm có đồ thị
của hàm y= f¢( )x cho hình vẽ
( ) y= f x f¢( )0 =3 f¢( )2 = -2018 f¢¢( )x
( 2017) 2018
(18)Biết f ( )-3 f ( )0 = f( )4 f ( )-1 Giá trị lớn giá trị nhỏ f x( ) đoạn -3; 4 là:
A. f(4) f( 3)- B. f( 3)- f(0) C. f(4) f(0) D. f(2) f( 3)- Câu87 Cho hàm số f x( ) có đạo hàm f¢( )x Đồ thị hàm số y= f¢( )x cho hình vẽ đây:
Biết f ( )-1 f ( )0 f ( )1 f ( )2 Giá trị nhỏ giá trị lớn hàm số y= f x( ) đoạn -1; 2 là:
A. f ( )1 ; f ( )2 B. f ( )2 ; f ( )0 C. f ( )0 ; f ( )2 D. f ( )1 ; f ( )-1 Dạng Ứng dụng GTLN-GTNN vào tốn đại số
Câu88 (THPTCHUN VĨNHPHÚCLẦN02 NĂM2018-2019) Tìm tất giá trị tham số m để bất phương trình 6x (2x)(8-x)x2m-1 nghiệm với x - 2;8
A. m16 B. m15 C. m8 D. - 2 m16
Câu89 (GKI THPT LƯƠNG THẾ VINH HÀ NỘI NĂM 2018-2019) Tìm mđể bất phương trình
1
x m
x
- có nghiệm khoảng (-;1)
(19)Câu90 (THPTCHUYÊNLAMSƠNTHANHHÓANĂM2018-2019LẦN01) Biết tập nghiệm bất phương trình
2
6
2 2
5
x
x x
x
- - -
a b; Khi giá trị biểu thức P=3a-2b bằng:
A. B. C. -2 D.
Câu91 (CHUYÊN LÊ QUÝĐÔN ĐIỆN BIÊN NĂM 2018-2019LẦN 02) Gọis tập hợp giá trị
nguyên tham số m0; 2019 để bất phương trình
( )3
2
1
x -m -x với x - 1;1 Số phần tử tậpsbằng
A. B. 2020 C. 2019 D.
Câu92 (CHUYÊN BẮC NINH NĂM 2018-2019 LẦN 03) Gọi M giá trị lớn hàm số
( ) 2
4
f x = x - x x-x Tính tích nghiệm phương trình f x( )=M
A. B. C. -2 D. -4
Câu93 (THPTCHUYÊNBẮCGIANGNAM2018-2019LẦN01) Cho
2
2
x -xyy = Giá trị nhỏ
của
2
P=x xyy bằng:
A.
3 B.
1
6 C.
1
2 D.
Câu94 (THPT CHUYÊN BẮCGIANG NAM 2018-2019 LẦN01) Cho x, y số thực thỏa mãn
1 2
xy= x- y Gọi M , m giá trị lớn nhỏ
( )( )
2
2 1
P=x y x y - -x y Tính giá trị M m
A. 42 B. 41 C. 43 D. 44
Câu95 (KTNL GIA BÌNH NĂM 2018-2019) Cho bất phương trình ( ) ( )
2 2
m x - x x -x
Hỏi có số nguyên m không nhỏ -2018 để bất phương trình cho có nghiệm x0;1 3
?
A. 2018 B. 2019 C. 2017 D. 2020
PHẦN B LỜI GIẢI THAM KHẢO
Dạng Xác định giá trị lớn – giá trị nhỏ hàm số thông qua đồ thị Câu 1. (ĐỀ THAM KHẢO BGD&ĐT NĂM 2018-2019) Cho hàm số y= f x( ) liên tục đoạn
-1; 3 có đồ thị hình vẽ bên Gọi M m giá trị lớn nhỏ hàm
số cho đoạn -1; 3 Giá trị M m-
(20)Lời giải Chọn C
Dựa đồ thị suy M = f ( )3 =3; m= f ( )2 = -2
Vậy M m- =5
Câu 2. (ĐỀ 01 ĐỀ PHÁT TRIỂN ĐỀ THAM KHẢO BGD&ĐT NĂM 2018-2019) Cho hàm số ( )
y= f x liên tục đoạn -1;1 có đồ thị hình vẽ
Gọi M m giá trị lớn nhỏ hàm số cho đoạn -1;1 Giá trị
của M -m
A 0 B 1 C 2 D 3
Lời giải
Từ đồ thị ta thấy M =1,m=0 nên M -m=1
Câu 3. (CHUYÊN LƯƠNG THẾ VINH ĐỒNG NAI NĂM 2018-2019 LẦN 01)Cho hàm số y= f x( )
xác định liên tục có đồ thị hình vẽ bên Tìm giá trị nhỏ m giá trị lớn
M hàm số y= f x( ) đoạn -2; 2
A m= -5;M = -1 B m= -2;M =2 C m= -1;M =0 D m= -5;M =0 Lời giải
Nhìn vào đồ thị ta thấy:
2;2 ( )
max
M f x
-= = - x= -1 x=2
2;2 ( )
min
m f x
-= = - x= -2 x=1
(21)Khẳng định sau khẳng định đúng?
A Hàm số có giá trị cực tiểu
B Hàm số có giá trị lớn giá trị nhỏ -1
C Hàm số đạt cực đại x=0 đạt cực tiểu x=1
D Hàm số có cực trị
Lời giải Chọn C
Đáp án A sai hàm số có điểm cực trị
Đáp án B sai hàm số có giá trị cực tiểu y = -1 x=0
Đáp án C sai hàm số khơng có GTLN GTNN
Đáp án D hàm số đạt cực đại x=0 đạt cực tiểu x=1
Câu 5. (THPT-THANG-LONG-HA-NOI-NAM-2018-2019 LẦN 01) Cho hàm số y= f x( ) liên tục -3; 2 có bảng biến thiên sau Gọi M m, giá trị lớn giá trị nhỏ hàm số y= f x( ) đoạn -1; 2 Tính Mm
A 3 B 2 C 1 D 4
Lời giải
Trên đoạn -1; 2 ta có giá trị lớn M =3 x= -1 giá trị nhỏ m=0 x=0
Khi M m= =3
Câu 6. (THPT BA ĐÌNH NĂM 2018-2019 LẦN 02)Xét hàm số với có bảng biến thiên sau:
Khẳng định sau
A Hàm số cho không tồn taị GTLN đoạn
B Hàm số cho đạt GTNN đoạn
C Hàm số cho đạt GTNN đạt GTLN đoạn
D Hàm số cho đạt GTNN đoạn
Lời giải
( )
y= f x x - 1;5
-1;5
x= - x=2 -1;5
x= - x=5 -1;5
(22)A Đúng Vì lim
x
y
-
= nên hàm số khơng có GTLN đoạn
B Sai Hàm số cho đạt GTNN đoạn
C Sai Hàm số cho đạt GTNN đoạn
D Sai Hàm số cho đạt GTNN đoạn
Câu 7. (CHUYÊN LÊ THÁNH TÔNG NĂM 2018-2019 LẦN 01)Cho hàm số y= f x( ) liên tục
, có bảng biến thiên hình sau:
Trong mệnh đề sau, mệnh đề sai?
A Hàm số có hai điểm cực trị
B Hàm số có giá trị lớn giá trị nhỏ -3
C Đồ thị hàm số có đường tiệm cận
D Hàm số nghịch biến khoảng (- -; , 2;) ( ) Lời giải Dựa vào BBT ta thấy hàm số khơng có GTLN, GTNN
Câu 8. (THPT CHUN LAM SƠN THANH HÓA NĂM 2018-2019 LẦN 01)Cho hàm số y= f x( )
liên tục có bảng biến thiên hình vẽ Mệnh đề sau đúng?
A Phương trình f x( )=0có nghiệm phân biệt
B Hàm số đồng biến khoảng (0;)
C Giá trị nhỏ hàm số
D Hàm số có điểm cực trị
Lời giải Chọn D
Dựa vào bảng biến thiên, hàm số có điểm cực trị
Câu 9. (CHUYÊN NGUYỄN TẤT THÀNH YÊN BÁI LẦN 01 NĂM 2018-2019) Cho hàm số ( )
=
y f x liên tục có bảng biến thiên đoạn -1; 3 hình vẽ bên Khẳng định sau
đúng?
-1;5
x= -1;5
x= -1;5
5 lim
x y=
x= -1;5
x – ∞ -2 + ∞
y' + 0 – 0 + 0 –
y
– ∞
4
0
4
(23)A
1;3
max ( )f x f(0)
- = B max-1;3 f x( )= f ( )3
C
1;3 ( ) ( )
max
- f x = f D max-1;3 f x( )= f ( )-1
Lời giải Nhìn vào bảng biến thiên ta thấy
1;3 ( ) ( )
max f x f
- =
Câu 10. (ĐỀ THI THỬ VTED 02 NĂM HỌC 2018 - 2019)Cho hàm số f x( ) liên tục -1;5
có đồ thị đoạn -1;5 hình vẽ bên Tổng giá trị lớn giá trị nhỏ hàm
số f x( ) đoạn -1;5bằng
A -1 B 4 C D 2
Lời giải
Từ đồ thị ta thấy:
( )
( )
1;5
1;5
max
1
min
M f x
M n
n f x
-= =
=
= =
-
(24)Gọi M m giá trị lớn nhỏ hàm số f x( ) 1;3
-
Giá trị
M m
A 1
2 B 5 C 4 D 3
Lời giải
Dựa vào đồ thị hàm số f x( ) ta có: ( )
3 1;
2
max
M f x
-
= = ; ( )
3 1;
2
min
m f x
-
= = -
Do M m=4 -( )1 =3
Câu 12. (THPT YÊN MỸ HƯNG YÊN NĂM 2018-2019 LẦN 01)Cho hàm số y= f x( ) xác định, liên
tục 1,5
2
-
và có đồ thị đường cong hình vẽ
Giá trị lớn M giá trị nhỏ m hàm số f x( ) 1,5
2
-
là:
A M =4,m=1 B M =4,m= -1 C 7,
M = m= - D 7, M = m= Lời giải
(25)Dựa vào đồ thị M=4,m= -1
Câu 13. (GKI THPT NGHĨA HƯNG NAM ĐỊNH NĂM 2018-2019) Cho hàm số y= f x( ) có đồ thị hình vẽ Giá trị lớn hàm số f x( ) đoạn 0; 2 là:
A
0;2 ( )
Max f x = B
0;2 ( )
Max f x =
C
0;2 ( )
Max f x = D
0;2 ( )
Max f x =
Lời giải Chọn C
Dựa vào đồ thị ta thấy đoạn 0; 2 hàm số f x( ) có giá trị lớn x= Suy
0;2 ( )
Max f x =
Câu 14. (SỞ GD&ĐT BẮC GIANG NĂM 2018-2019 LẦN 01)Cho hàm số y= f x( ) liên tục đoạn
-1; 3 có đồ thị hình vẽ bên Gọi M m, giá trị lớn giá trị nhỏ
hàm số cho đoạn -1; 3 Giá trị M m
A 2 B -6 C -5 D -2
Lời giải
Dựa vào đồ thị ta thấy GTLN hàm số đoạn -1; 3 M =2 đạt x= -1 GTNN
của hàm số số đoạn -1; 3là m= -4 đạt x=2
2 ( 4)
M m
= - =
(26)Mệnh đề đúng? A
5;7) ( )
Min f x
- = B Min-5;7) f x( )=2 C Max-5;7) f x( )=9 D Max-5;7) f x( )=6
Lời giải Dựa vào bảng biến thiên -5; 7), ta có:
5;7) ( ) ( )
Min f x f
- = =
Câu 16. (TT THANH TƯỜNG NGHỆ AN NĂM 2018-2019 LẦN 02)Cho hàm số f ( )x liên tục đoạn 0 ; 3 và có đồ thị hình vẽ bên Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho 0 ; 3 Giá trị của M m bằng?
A 5 B 3 C 2 D 1
Lời giải Dựa vào hình vẽ ta có: M =3, m= -2 nên M m=1
Câu 17. (CHUYÊN LÊ QUÝ ĐÔN ĐIỆN BIÊN LẦN NĂM 2018-2019) Cho hàm số y= f x( ) liên tục đoạn 2 ; 6 có đồ thị hình vẽ bên
y = f(x)
y
x
-2
4 5
6 -1
-3 -4
-1
3
(27)Gọi M mlần lượt giá trị lớn nhỏ hàm số cho đoạn 2 ; 6 Giá trị
của Mm
A 9 B -8 C -9 D 8
Lời giải
Từ đồ thị suy - 4 f x( )5 -x 2;6 ; f ( )1 = -4;f ( )4 =5
4
M m
=
= -
9 M m - =
Câu 18. (ĐỀ THI THỬ VTED 03 NĂM HỌC 2018 - 2019)Cho hàm số y= f x( ) liên tục có đồ thị
trên đoạn -2; 4 hình vẽ bên Tổng giá trị lớn nhỏ hàm số y= f x( )
đoạn -2; 4
A 5 B 3 C 0 D -2
Lời giải Chọn B
Dựa vào đồ thị hàm số ta có
2; 4 ( ) x
m Min f x
-= = - ,
2; 4 ( ) x
M Max f x
-= =
Khi M m=3
Câu 19. (THPT NGÔ SĨ LIÊN BẮC GIANG NĂM 2018-2019 LẦN 01)Cho hàm số y= f x( ) có bảng xét dấu đạo hàm sau:
Mệnh đề sau A
( 1;1 ( ) ( )
maxf x f
-= B
(0; ) ( ) ( )
max f x f
= C
(- -min; 1) f x( )= f( )-1 D (- min1; )f x( )= f ( )0 Lờigiải
(28)Dạng Xác định giá trị lớn – giá trị nhỏ hàm số đoạn [a;b]
Câu 20. (Mã 102 - BGD - 2019)Giá trị nhỏ hàm số f x( )=x3-3x2 đoạn -3;3
A 0 B -16 C 20 D 4
Lời giải Chọn B
Cách 1:Mode f x( )=x3-3x2 Start -3
end3step
Chọn B
Cách 2: f¢( )x =3x2-3.f¢( )x = Û = -0 x 3;3
( )3 16
f - = - ; f ( )-1 =4; f ( )1 =0; f ( )3 =20 Giá trị nhỏ -16
Câu 21. (MÃ ĐỀ 110 BGD&ĐT NĂM 2017)Tìm giá trị lớn M hàm số y=x4 -2x23 đoạn 0; 3
A M =6 B M =1 C M =9 D M =8
Lời giải
Chọn A
Ta có: y¢ =4x3-4x=4x x( 2-1)
y¢ = Û 4x x( 2-1)=0
0 1( ) x x
x l
=
Û =
= -
Ta có : y( )0 =3 ; y( )1 =2 ; y( )3 =6
Vậy giá trị lớn hàm số y=x4-2x23 đoạn 0; 3 M =y( )3 =6
Câu 22. (Mã 103 - BGD - 2019)Giá trị lớn hàm số ( ) 3
f x =x - x đoạn [ 3;3]-
A -2 B 18 C 2 D -18
Lời giải Chọn B
Ta có y¢ =3x2- =3 0Û x= 1
( 3) 18; ( )1 2; ( )1 2; ( )3 18
f - = - f - = f = - f =
Câu 23. (ĐỀ MINH HỌA GBD&ĐT NĂM 2017) Tìm giá trị nhỏ hàm số
3
=
-x y
x đoạn
(29)A
2;4
miny= -3 B
2;4
19
3
=
y C
2;4
miny=6 D
2;4
miny= -2
Lời giải Chọn C
Tập xác định:D=\ 1 Hàm số 3 = -x y
x xác định liên tục đoạn 2; 4
Ta có ( ) 2 2
; 3
1
-
-¢= ¢= Û - - = Û =
-x x
y y x x x
x x= -1 (loại)
Suy ( )2 7; ( )3 6; ( )4 19
3
= = =
y y y Vậy
2;4
miny=6 x=3
Câu 24. (Mã đề 104 BGD&ĐT NĂM 2018)Giá trị lớn hàm số 13
y=x -x đoạn [ 1; 2]
-bằng
A 85 B 51
4 C 13 D 25
Lời giải Chọn D
( )
13 y= f x =x -x
3
'
y = x - x
3
0 [ 1; 2]
4 [ 1; 2]
2
[ 1; 2]
x
x x x
x = - - = Û = - - = -
1 51 51
( 1) 13; (2) 25; (0) 13; ;
4
2
f - = f = f = f - = f =
Giá trị lớn hàm số
13
y=x -x đoạn [ 1; 2]- 25
Câu 25. (MĐ 104 BGD&DT NĂM 2017)Tìm giá trị nhỏ m hàm số y x2 x
= đoạn 1;
2
A m=5 B m=3 C 17
4
m= D m=10
Lờigiải Chọn B
Đặt y f x( ) x2
x
= =
Ta có
3
2
2 2
2 x
y x
x x
-¢ = - = , 1;2
2
y¢ = x=
Khi ( )1 3, 17, ( )2
2
f = f = f =
(30)Vậy ( ) ( )
;2
min
m f x f
= = =
Câu 26. (MÃ ĐỀ 123 BGD&DT NĂM 2017)Tìm giá trị nhỏ m hàm số y=x3-7x2 11x-2 đoạn [0 ; 2]
A m=3 B m=0 C m= -2 D m=11
Lờigiải Chọn C
Xét hàm số đoạn [0 ; 2] Ta có y¢ =3x2-14x11suy y¢ = Û0 x=1
Tính f( )0 = -2; f( )1 =3,f( )2 =0 Suy ( ) ( )
= = - =
0;2
minf x f m Câu 27. (Mãđề101BGD&ĐTNĂM2018) Giá trị lớn hàm số
4
y=x - x đoạn -2;3
bằng
A 201 B 2 C 9 D 54
Lờigiải Chọn D
3
4
¢ =
-y x x; 0
2 = ¢ = Û = x y x
Ta có y( )-2 =9; y( )3 =54; y( )0 =9; y( 2)=5 Vậy
2;3
maxy 54
- =
Câu 28. (ĐỀTHAMKHẢOBGD&ĐT2018) Giá trị lớn hàm số f x( )=x4-4x25 trêm đoạn
-2;3
A 122 B 50 C 5 D 1
Lờigiải Chọn B
3
'( ) 2;3
2 = = - = Û -= x
f x x x
x ;
( )0 5; ( 2) 1; ( )2 5; ( )3 50 f = f = f - = f =
Vậy
2;3 50
Max y
- =
Câu 29. (MĐ 105 BGD&ĐT NĂM 2017)Tìm giá trị nhỏ m hàm số y=x4-x213 đoạn -
2;3
A m=13 B =51
4
m C =51
2
m D = 49
4 m Lời giải
Chọn B ¢ =4 3-2 y x x;
= - ¢ = Û = - 2;3 1 2;3 x y x ;
Tính y( )-2 =25, y( )3 =85, y( )0 =13, = =
(31)Kết luận: giá trị nhỏ m hàm số = 51
4 m
Câu 30. (Mã đề 104 - BGD - 2019)Giá trị nhỏ hàm số f x( )=x3-3xtrên đoạn -3;3
A -18 B -2 C 2 D 18
Lời giải Chọn A
Ta có ( ) 3
1
= ¢ == - = Û
= -
x
f x x
x
Mà f ( )-3 = -18; f ( )-1 =2; f ( )1 = -2; f ( )3 =18
Vậy giá trị nhỏ hàm số f x( )=x3-3xtrên đoạn -3;3 -18
Câu 31. (MĐ 103 BGD&ĐT NĂM 2017-2018) Giá trị nhỏ hàm số y=x33x2 đoạn - -4; 1
A -16 B 0 C 4 D -4
Lời giải Chọn A
Ta có y¢ =3x26x;
2 4;
0
4;
x
y x x
x
-=
¢ = = Û
=
-
Khi y(-4)= -16; y( )-2 =4; y( )-1 =2 Nên
min- -4; 1y= -16
Câu 32. (Mã đề 102 BGD&ĐT NĂM 2018)Giá trị nhỏ hàm số y=x32x2-7x đoạn 0; 4
A -259 B 68 C 0 D -4
Lời giải Chọn D
TXĐ D=.
Hàm số liên tục đoạn 0; Ta có y¢ =3x24x-7
0
y¢ =
1
7
x ;
x ;
= Û
= -
( )0 0; ( )1 4; ( )4 68
y = y = - y =
Vậy
0;4
miny= -4
Câu 33. (Mã đề 101 - BGD - 2019)Giá trị lớn hàm số f x( )=x3-3x2 đoạn -3; 3
A 4 B -16 C 20 D 0
Lời giải Chọn C
( )
3
f x =x - x tập xác định
( )
' 3 3;3
f x = Û x - = Û x= -
( )1 0; ( )1 4; ( )3 20; ( )3 16
(32)Từ suy
3;3 ( )
max f x f(3) 20
- = =
Dạng Xác định giá trị lớn – giá trị nhỏ hàm số khoảng (a;b)
Câu 34. (ĐỀ THAMKHẢO BGD&ĐTNĂM 2017) Tính giá trị nhỏ hàm số y 3x 42 x
=
khoảng (0;) A
(0; )
33
5 y
= B ( )
3 0;
miny
= C ( )
3 0;
min y
= D (min0;)y=7
Lờigiải Chọn C
Cách1:
3
2 2
4 3 3
3
2 2
x x x x
y x
x x x
= = =
Dấu "=" xảy
2
3
2 x x x = Û = Vậy ( ) 0;
miny
= Cách2:
Xét hàm số y 3x 42
x
= khoảng (0;)
Ta có y 3x 42 y' 83
x x
= =
-Cho 3
3
8 8
'
3
y x x
x = Û = Û = Û = ( ) 3 0;
min
3 y y = =
Câu 35. (CHUYÊN LƯƠNG THẾ VINH ĐỒNG NAI NĂM 2018-2019 LẦN 01)Gọi m giá trị nhở
nhất hàm số y x
x
= khoảng (0;) Tìm m
A m=4 B m=2 C m=1 D m=3 Lời giải
( )
2 '
' 2; 0;
y
x
y x x
=
-= Û = =
Bảng biến thiên:
x
(33)Suy giá trị nhỏ hàm số y(2)=4m=4
Câu 36. (THPT - YÊN ĐỊNH THANH HÓA 2018 2019- LẦN 2)Gọi a giá trị nhỏ hàm số
y x
x
= khoảng (0;) Tìm a
A 3 B 5 C 6 D 2 16
Lời giải Ta có:
3
2
4 4
' x
y x y x
x x x
-= = - =
3
'
y = Û x - = Û x=
Bảng biến thiên
Nhìn vào BBT ta thấy giá trị nhỏ hàm số a=3 43
Câu 37. (THPT MINH CHÂU HƯNG YÊN NĂM 2018 – 2019) Giá trị nhỏ hàm số
5 y x
x
= - khoảng (0;) bao nhiêu?
A 0 B -1 C -3 D -2
Lời giải Chọn C
Áp dụng bất đẳng thức Cơ – si ta có:
1
5
y x x
x x
= - =
-Dấu xảy
1
x x x
x
= Û = Û = (vì x0)
Vậy
(min0;)y= -3
Câu 38. (THPT CHUYÊN BẮC GIANG NAM 2018-2019 LẦN 01) Giá trị nhỏ hàm số
( )
f x x
x
= nửa khoảng 2;) là:
A 2 B 5
2 C 0 D
7 Lời giải
(34)Áp dụng bất đẳng thức Cô-si, ta được: ( ) 3.2
4 4
x x x
f x x
x x x
= = =
Dấu xảy x=2
Dạng Ứng dụng GTLN-GTNN vào toán thực tế
Câu 39. (Mã đề101 BGD&ĐT NĂM2018) Ông A dự định dùng hết 6, 5m2 kính để làm bể cá có dạng hình hộp chữ nhật khơng nắp, chiều dài gấp đôi chiều rộng (các mối ghép có khơng đáng kể) Bể cá có dung tích lớn (kết làm tròn đến hàng phần trăm)
A
2, 26m B
1, 61m C
1,33m D
1,50m
Lờigiải Chọn D
Giả sử hình hộp chữ nhật có kích thước hình vẽ Ta có dung tích bể cá: V =abc
Mặt khác theo giả thiết ta có: 2 6,5
2
=
=
ab bc ac a b
2
2 6,5
2
=
Û =
b bc a b
2 6,5
6
-= Û
=
b c
b a b Khi
2
2 6,5
2
-= b
V b
b
3
6,5
3
-ÛV = b b
Xét hàm số: ( )
3
6,5
3
-= b b
f b Có BBT
Vậy bể cá có dung tích lớn là: 39 1,50
6
=
f m
Câu 40. (MĐ 104 BGD&DT NĂM 2017)Một vật chuyển động theo quy luật
s= - t t với t (giây)
là khoảng thời gian tính từ vật bắt đầu chuyển động s (mét) quãng đường vật di chuyển
được khoảng thời gian Hỏi khoảng thời gian giây kể từ bắt đầu chuyển động,
vận tốc lớn vật đạt bao nhiêu?
A 243 (m/s) B 27 (m/s) C 144 (m/s) D 36 (m/s)
Lờigiải c
b
(35)Chọn D
Ta có:
12
v=s¢= -t t; v¢ = - 2t 12; v¢ = Û =0 t BBT
Nhìn bbt ta thấy vận tốc đạt giá trị lớn t=6 Giá trị lớn v( )6 =36m/s
Câu 41. (MĐ 103 BGD&ĐT NĂM 2017-2018)Ông A dự định sử dụng hết 5m2 kính để làm bể cá kính có dạng hình hộp chữ nhật khơng nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước khơng đáng kể) Bể cá có dung tích lớn (kết làm trịn đến hàng phần trăm)?
A 1, 01m3 B 0, 96m3 C 1,33m3 D 1,51m3
Lời giải Chọn A
Gọi x y, chiều rộng chiều cao bể cá (điều kiện x y, 0) Ta tích bể cá V =2x y2
Theo đề ta có: 2xy2.2xy2x2 =5Û6xy2x2 =5
5
x y
x
-Û = (Điều kiện kiện
0
y Û - x
2 x
)
2
2 5 2
6
x x x
V x x
-
- = =
2
3 x V¢
- = V¢=0Û -5 6x2 =0 x
Û =
3 max
5 30 1, 01 27
V m
=
Câu 42. (ĐỀ MINH HỌA GBD&ĐT NĂM 2017)Cho nhơm hình vng cạnh 12 cm Người ta
cắt bốn góc nhơm bốn hình vng nhau, hình vng có cạnh x (cm),
rồi gập nhơm lại hình vẽ để hộp khơng nắp Tìm x để hộp nhận
được tích lớn
y x
2 x C
D A
D'
B
C' B'
A'
t
v¢
v
0
0
(36)A x=3 B x=2 C x=4 D x=6 Lời giải
Chọn B
Ta có : h=x cm( ) đường cao hình hộp
Vì nhơm gấp lại tạo thành hình hộp nên cạnh đáy hình hộp là: 12 2- x cm( )
Vậy diện tích đáy hình hộp S =(12 2- x)2(cm2) Ta có: 0 (0; 6)
12
x x
x
x x
Û Û
-
Thể tích hình hộp là: V =S.h=x 1( 2- x)2
Xét hàm số: y=x 12 2( - x)2 x (0; 6)
Ta có : y'=(12 2- x)2-4x(12 2- x) (= 12 2- x)(12 6- x) ;
( ) ( )
' 12 12
y = Û - x - x = Ûx= x=6(loại)
Suy với x=2 thể tích hộp lớn giá trị lớn y( )2 =128
Câu 43. (KTNL GIA BÌNH NĂM 2018-2019) Một chất điểm chuyển động theo phương trình
3
S = - t t - , t tính giây S tính theo mét Chuyển động có vận tốc lớn
A 1 m/s B 4 m/s C 3 m/s D 2 m/s
Lời giải
Chọn C
( )2
3 2
3 3
S = - t t - = -v t t= - t- Do maxv=3(m s/ )
Câu 44. (THPT NĂM 2018-2019 LẦN 04) Một loại thuốc dùng cho bệnh nhân nồng độ thuốc máu bệnh nhân giám sát bác sĩ Biết nồng độ thuốc máu
bệnh nhân sau tiêm vào thể t cho công thức ( ) 2
1 t c t
t =
(mg L/ ) Sau
khi tiêm thuốc nồng độ thuốc máu bệnh nhân cao nhất?
A 4 B 1 C 3 D 2
Lời giải
Xét hàm số ( ) 2
1 t c t
t =
(37)( )
( )
2 2
1
t c t
t
-¢ =
( )
1
t c t
t
= ¢ = Û
= -
Với t=1 nồng độ thuốc máu bênh nhân cao
Câu 45. (THPT YÊN MỸ HƯNG YÊN NĂM 2018-2019 LẦN 01)Đợt xuất gạo tỉnh A thường kéo dài tháng (60 ngày) Người ta nhận thấy số lượng xuất gạo tính theo ngày thứ t
được xác định công thức ( ) 63 3240 3100
5
= -
-S t t t t với (1 t 60) Hỏi 60 ngày
đó ngày thứ có số lượng xuất gạo cao
A 60 B 45 C 30 D 25
Lời giải Chọn B
( ) ( )
63 3240 3100 126 3240
5 ¢
= - - = -
S t t t t S t t t
Ta có: ( ) 45
60 = ¢ = Û
=
t S t
t
Câu 46. (GKI NHÂN CHÍNH HÀ NỘI NĂM 2018-2019 LẦN 01)Một vật chuyển động theo quy luật
10
S = t - t , với t(giây) khoảng thời gian tính từ lúc vật bắt đầu chuyển động S m( )là quãng đường vật khoảng thời gian Hỏi khoảng thời gian 15 giây từ lúc vật bắt đầu chuyển động vận tốc v m s( / ) vật đạt giá trị lớn thời điểm t s( ) bằng:
A 8( )s B 20( )s C 10( )s D 15( )s
Lời giải
Chọn C
Ta có: 10
3
S = t - t v t( )=S¢=20t t-
Xét hàm số v t t( ); 0;15, ta có: v t¢( )=20-2t=0Ût=10 ( )0 0; ( )15 75; ( )10 100
v = v = v = Do đó:
0;15 ( )
(38)Câu 47. (CHUYÊN LÊ QUÝĐÔN ĐIỆN BIÊN NĂM 2018-2019 LẦN 02) Một sợi dây có chiều dài
28m cắt thành hai đoạn để làm thành hình vng hình trịn Tính chiều dài (theo
đơn vị mét) đoạn dây làm thành hình vng cắt cho tổng diện tích hình vng hình trịn nhỏ nhất?
A 56
4 B
112
4 C
84
4 D
92 4 Lời giải
Gọi chiều dài đoạn dây làm thành hình vng x(m) ( 0x28)
=> chiều dài đoạn dây làm thành hình trịn 28-x (m) +) Diện tích hình vng là:
2 16 x x =
+) Bán kính hình trịn là: R = 28
2
x
-=> Diện tích hình trịn:
2 2
2 28 784 56
2
x x x
R - - = =
+) Tổng diện tích hai hình:
2
2
784 56 14 196
16 16
x x x
x x - = -
Xét ( ) 14 196
16
f x x x
= -
Nhận thấy ( )f x đạt giá trị nhỏ
2 b x a -= = ( )
14 16 112
2 4
=
Vậy chiều dài đoạn dây làm thành hình vng để tổng diện tích hai hình đạt giá trị nhỏ
nhất 112
4 m
Câu 48. (PENI-THẦYLÊANHTUẤN-ĐỀ3-NĂM2019) Một xưởng in có 15 máy in cài đặt
tự động giám sát kỹ sư, máy in in 30 ấn phẩm giờ, chi phí cài
đặt bảo dưỡng cho máy in cho đợt hàng 48.000 đồng, chi phí trả cho kỹ sư giám sát 24.000 đồng/giờ Đợt hàng xưởng in nhận 6000 ấn phẩm số máy in cần sử dụng để chi phí in
A 10 máy B 11máy C 12 máy D 9 máy
Lờigiải ChọnA
Gọi x (0x15) số máy in cần sử dụng để in lô hàng
Chi phí cài đặt bảo dưỡng 48000x
Số in hết số ấn phẩm 6000
30x , chi phí giám sát
6000 48000
.24000
30x x
Tổng chi phí in P x( ) 48000x 4800000
x
=
( )
4800000 48000 P x x ¢ = - ; ( ) ( ) 10 100 10 x
P x x
x L = ¢ = Û = Û = -
(39)Vậy chi phí in nhỏ 10 máy
Câu 49. Một chất điểm chuyển động thẳng với quãng đường biến thiên theo thời gian quy luật
( )
4 12
s t =t - t (m), t (s) khoảng thời gian tính từ lúc bắt đầu chuyển động Vận tốc
của chất điểm đạt giá trị bé t bao nhiêu?
A 2 (s) B 8
3 (s) C 0 (s) D
4 (s) Lờigiải
( ) ( )
3
v t =s t¢ = t - t
( )
v t¢ = t- Có ( )
3 v t¢ = Û =t
Dựa vào bảng biến thiên ta có
0; )
4 16
min
3
v v
= =
-
Vậy vận tốc chất điểm đạt giá trị bé
3 t=
Câu 50. (THPT MINH CHÂUHƯNG N NĂM2018 – 2019) Cho nhơm hình chữ nhật có
chiều dài 10cm chiều rộng 8cm Người ta cắt bỏ bốn góc nhơm bốn
hình vng nhau, hình vng có cạnh x cm( ), gập nhơm lại (như hình vẽ)
để hộp khơng nắp Tìm x để hộp nhận tích lớn
A 21
3
x= - B 10
3
x= - C 21
9
x= D 21
3
x=
-Lờigiải ChọnD
x
( )
P x¢ ( )
P x
0 10 15
0
-
( )10
(40)Ta có : h=x cm( ) đường cao hình hộp
Vì nhơm gấp lại tạo thành hình hộp nên cạnh đáy hình hộp là: 10-2x cm( )và
( ) 2- x cm
Vậy diện tích đáy hình hộp ( )( )( 2)
10
S = - x - x cm Ta có:
( )
0
0
10 0;
4
8
x
x
x x
x x
- Û Û
-
Thể tích hình hộp là: V =S.h=x 10( -2x) ( 2- x)
Xét hàm số: y=x 10( -2x) ( 8-2x) x (0; 4) Ta có : y' 12= x2-72x80 ;
( ) ( )
9 21
4
'
9 21
3
x l
y
x n
=
= Û
-=
Suy với 21
3
x= - thể tích hộp lớn giá trị lớn
Câu 51. (GKI THPT VIỆT ĐỨC HÀ NỘI NĂM 2018-2019) Một đoàn cứu trợ lũ lụt vị trí A tỉnh miền trung muốn đến xã C để tiếp tế lương thực thuốc men Để đến C, đoàn cứu trợ phải chèo thuyền từ A đến vị trí D với vận tốc 4(km h/ ), đến vị trí C với vận tốc
( )
6 km h/ Biết A cách B khoảng 5km, B cách C khoảng 7km (hình vẽ) Hỏi vị trí
điểm D cách A bao xa để đồn cứu trợ đến xã C nhanh nhất?
A AD=5 3km B AD=2 5km C AD=5 2km D AD=3 5km
(41)Đặt AD=x km( ),(x0) Ta có
( )
2 2
25
BD= AD -AB = x - x
2
7 25
CD=BC-BD= - x
-Thời gian từ A đến C là: ( )
2
7 25
4 6
AD DC x x
T x = = -
-( )
2
2
1 25
4 12 25 12 25
x x x
T x
x x
- -
-¢ = =
-
-
( )
0 25
T¢ x = Û x - = xÛx=
Bảng biến thiên
Do
5; ) ( ) ( )
14 5
min
12
x T x T
= =
Vậy AD=3 5(km)
Dạng Định m để GTLN-GTNN hàm số thỏa mãn điều kiện cho trước
Câu 52. (MÃ ĐỀ 123 BGD&DT NĂM 2017) Cho hàm số = -1
x m y
x (m tham số thực) thỏa mãn =
[2;4]
miny Mệnh đề đúng?
A m4 B 3m4 C m -1 D 1m3
Lờigiải Chọn A
Ta có
( )
-=
-
1 '
1 m y
x
* TH - -1 m0Ûm -1 suy y đồng biến 2; 4 suy
( ) ( )
= = = Û =
2;4
2
min
1 m
(42)* TH - -1 m0Ûm -1 suy y nghịch biến 2; 4 suy
( ) ( )
= = = Û =
2;4
4
min
3 m
f x f m suy m4
Câu 53. (ĐỀTHAMKHẢOBGD&ĐT2018) Gọi S tập hợp tất giá trị tham số thực m
cho giá trị lớn hàm số
3
y= x - x m đoạn 0;2 Số phần tử S
A 0 B 6 C 1 D 2
Lờigiải Chọn D
Xét hàm số f x( )=x3-3x m , ta có f¢( )x =3x2-3 Ta có bảng biến thiên f x( ):
TH1 : 2m Û0 m -2 Khi
0;2 ( ) ( )
max f x = - - m = -m 2-m= Û3 m= -1 (loại)
TH2 : 2
0 m
m m
Û -
Khi : m- = - 2 m 2 m
0;2 ( ) ( )
max f x m m
= - - =
-2-m= Û3 m= -1 (thỏa mãn)
TH3 : 0
2
m
m m
Û
-
Khi : m- = - 2 m 2 m
0;2 ( )
max f x m
=
2m= Û3 m=1 (thỏa mãn)
TH4: - 2 m Û0 m2 Khi
0;2 ( )
max f x = m 2m= Û3 m=1 (loại)
Câu 54. (MÃ ĐỀ 110 BGD&ĐT NĂM 2017) Cho hàm số
1
x m
y x
=
(m tham số thực) thoả mãn
1;2 1;2
16
min max
3
y y= Mệnh đề đúng?
A m4 B 2m4 C m0 D 0m2 Lời giải
Chọn A Ta có
( )2
1
m y
x
-¢ =
Nếu m= 1 y=1, -x Không thỏa mãn yêu cầu đề
Nếu m 1 Hàm số đồng biến đoạn 1;2
Khi đó:
1;2 1;2
16
min max
3
y y= ( )1 ( )2 16 16
3 3
m m
y y m
Û = Û = Û = (loại)
(43)Khi đó:
1;2 1;2 ( ) ( )
16 16 16
min max
3 3
m m
y y= Û y y = Û = Ûm= ( t/m)
Câu 55. (CỤM LIÊN TRƯỜNG HẢI PHỊNG NĂM 2018-2019)Có giá trị m0 tham số m để hàm số yx3m21x m đạt giá trị nhỏ đoạn 0;1 Mệnh đề sau đúng?
A 2018m0m020 B 2m0 1 C 6m0m020 D 2m0 1
Lời giải + Đặt f x x3m21x m 1
+ Ta có: y 3x2m21 Dễ thấy y 0 với x, m thuộc nên hàm số đồng biến
trên , suy hàm số đồng biến 0;1 Vì 0;1
miny
0;1
min f x
f 0 m + Theo ta có: m 1 5, suy m4
+ Như m0 4 mệnh đề 2018m0m020.
Câu 56. (SỞ GIÁO DỤC ĐÀO TẠO VĨNH PHÚC NĂM 2018 - 2019 LẦN 01) Tính tổng tất giá
trị tham số m cho giá trị lớn hàm số
2
y= x - xm đoạn -1; 2
A -1 B 2 C -2 D 1
Lời giải
Ta có 22
2
x y
x x m
-¢ =
- , y¢ = 0 x=1
Do u cầu tốn tương đương maxy( ) ( ) ( )-1 ,y ,y 1=5
max m m m, ,
Û - =
+ Trường hợp m -1, ta có max 3 m m m, , -1=5Û 3m = 5 m=2
+ Trường hợp m -1 ta có max 3 m m m, , -1=5Û m-1= 5 m= -4
Vậy tổng giá trị m -2
Câu 57. (THCS - THPT NGUYỄN KHUYẾN NĂM 2018-2019 LẦN 01) Nếu hàm số
1
y=xm -x có giá trị lớn 2 giá trị m
A
2 B - C D
2
-
Lời giải
Xét hàm số y=xm 1-x2
Tập xác định: D= - 1;1 Ta có:
2
1
x y
x
(44)-2 1 x x y x - = ¢ = Û - 1 x x x Û - = 1
1 1
2
2
1 x x x x x x = Û Û Û = = = -
Ta có: ( )1 , ( )1 ,
2
y - = - m y = m y = m
Do hàm số y=xm 1-x2 liên tục -1;1 nên
1;1
Maxy m
-= Theo
1;1
Maxy 2
-= , suy m =2 Ûm=
Câu 58. (THPT LÊ VĂN THỊNH BẮC NINH NĂM 2018-2019)Cho hàm số
1 x m y x
(m tham
số thực) thỏa mãn 0;1
miny
Mệnh đề đúng?
A 1m 3 B m6 C m1 D 3m 6
Lời giải
Chọn D
Tập xác định: D \ 1
Với m 1 y 1, x 0;1 0;1
miny
Suy m 1 Khi
2
1 m y x
không đổi dấu khoảng xác định
TH 1: y 0 m 1
0;1
miny y m
(loại)
TH 2: y 0 m1
0;1
miny y m
( thỏa mãn)
Câu 59. (CHUYÊN KHTN LẦN NĂM 2018-2019)Tổng giá trị lớn giá trị nhỏ hàm số x m y x
1; (m tham số thực) Khẳng định sau đúng?
A m10 B 8m10 C 0m4 D 4m8 Lời giải
Nếu m=1 y1 (không thỏa mãn tổng giá trị lớn nhỏ 8)
Nếu m1 hàm số cho liên tục 1;
2
1 ' m y x
Khi đạo hàm hàm số không đổi dấu đoạn 1; 2
Do
1;2 1;2 ( ) ( )
1 41
1
2
x x
m m
Min y Max y y y m
= = = Û =
Câu 60. (THPT NGÔ GIA TỰ VĨNH PHÚC NĂM 2018-2019 LẦN 01) Cho hàm số y=2x3-3x2-m Trên -1;1 hàm số có giá trị nhỏ -1 Tính m?
(45)Lời giải Chọn C
Xét -1;1 có
6
y¢ = x - x
0
y¢ =
6x 6x
Û - = 1;1 1;1 x x = -Û = - Khi
( )1
y - = - -m; y( )0 = -m; y( )1 = - -1 m Ta thấy 5- -m - -1 m -m nên
1;1
miny m
- = - - Theo ta có
1;1
miny
- = - nên 5- -m= -1 Ûm= -4
Câu 61. (THPT ĐƠNGSƠNTHANH HĨANĂM2018-2019 LẦN02) Tìm m để giá trị lớn hàm số y= x3-3x2m-1 đoạn 0; nhỏ Giá trị m thuộc khoảng nào?
A 3;
-
-
B
2 ;
C -1; 0 D (0;1 )
Lời giải Xét hàm số y= f x( )=x3-3x2m-1 đoạn 0;
Ta có '( ) 3 0; 2
1
x
f x x
x = - = - = Û =
Ta có f ( )0 =2m-1, f ( )1 =2m-3 f ( )2 =2m1 Suy
0;2 ( ) 2 ; ; 1 2 ; 1
max f x =max m- m- m =max m- m =P
Trường hợp 1: Xét 4( 2)
2 m- m Û - m- Ûm
Khi P= 2m-3 2,
2 m
Suy min
2 P = Ûm=
Trường hợp 2: Xét 4( 2)
2 m- m Û - m- Ûm
Khi P= 2m 1 2,
2 m
Suy Pmin không tồn
Vậy
2 m=
Câu 62. (HỌCMÃINĂM2018-2019-LẦN02) Biết S tập giá trị m để tổng giá trị lớn giá
trị nhỏ hàm số
2
y=x -m x - x -m đoạn 0;1 -16 Tính tích phần tử
của S
A 2 B -2 C -15 D -17 Lờigiải
TXĐ: D=
Ta có: 2
4
y¢ = x - m x - x
( )
3 2
2 2
0
0 4
4 64
x
y x m x x
x m x m
=
¢ = Û - - = Û
- - = =
(46)2
2
0
3 64
1
3 64
0 x m m x m m x = Û = - =
Nên hàm số đơn điệu (0;1)
Tổng giá trị lớn giá trị nhỏ hàm số đoạn 0;1 -16 nên
( ) ( ) ( )
0 16 16 15
y y = - Û -m -m -m- = - Û -m - m =
Vậy m m1 2 = -15
Câu 63. (CHUYÊN BẮCNINHNĂM2018-2019LẦN03) Gọi A B, giá trị nhỏ nhất, giá trị lớn hàm số
2
1 x m m y
x
=
- đoạn 2; Tìm tất giá trị thực tham số m để
13 A B =
A m=1;m= -2 B m= -2 C m= 2 D m= -1;m=2 Lờigiải
Xét hàm số
2
1 x m m y
x
=
- đoạn 2;
( ) ( ) ( )
2 2
2
1
' 2;3 ,
2
1
m m m m m m
y x A f B f
x
- - -
= = = = =
-
2 1
13 13
2
2 2
m
m m m m
A B m = = Û = Û = -
Câu 64. (THPT ANLÃO HẢIPHỊNGNĂM 2018-2019LẦN02) Tìm tất giá trị thực tham số
m để hàm số
2 x mx y x m =
liên tục đạt giá trị nhỏ đoạn 0; điểm x0(0; 2)
A 0m1 B m1 C m2 D - 1 m1 Lờigiải
ChọnA
Tập xác định: D= \ -m Hàm số liên tục 0; 0
2 m m m m - Û Û - - Ta có ( ) ( ) ( ) 2 2
2 x m
x mx m y
x m x m
-
-¢ = =
Cho
1 1 x m y x m = - - ¢ = Û = -
(47)Hàm số đạt giá trị nhỏ x0(0; 2) nên 0 -m 1 2Û - 1 m1 So với điều kiện hàm số liên tục đoạn 0; Ta có 0 m1
CĨ THỂ GIẢI NHƯ SAU:
Điều kiện xác định x -m
Hàm số liên tục đoạn 0; nên 0; 2 0 ( )*
2 m m m m m - - Û - - ( ) ( ) ( ) 2 2 2
' x mx m x m
y
x m x m
-
-= =
'
y = có hai nghiệm
2 1 x m x m = - = - - ,
1 2
x -x = nên có nhiều nghiệm thuộc (0; 2)
Ta thấy - - - m m 1, m để hàm số liên tục đạt giá trị nhỏ 0; điểm x0(0; 2) 0 - m 2Û - 1 m1 **( )
Từ ( ) ( )* , ** ta có 0m1
Câu 65. (THPT CHUYÊNVĨNHPHÚCLẦN 02NĂM2018-2019) Gọi S tập hợp tất giá trị
thực tham số m cho giá trị lớn hàm số
2
1 x mx m y
x
=
1; 2 Số phần tử tập S
A 3 B 1 C 4 D 2
Lờigiải ChọnD
Xét
1
x mx m
y
x
=
Ta có: ( ) ( )
2 2 x x f x x ¢ = , ( )
0 1;
0
2 1;
x f x x = ¢ = Û = -
Mà ( ) ( )
1;2
2 4
1 ,f max ;
2 x
m m m m
f y = = =
Trường hợp 1:
1;2
3
2
max 2 x m m y m = = = = -
• Với 3 17
2
m
(48)• Với
2
m
m= - = (thỏa mãn)
Trường hợp 2:
1;2
2
3
3
max
3 10
3 x m m m y m m = = = = Û = - = -
• Với 2
3
m
m= = (thỏa mãn)
• Với 10 17
3
m
m= - = (loại)
Vậy có giá trị m thỏa mãn
Câu 66. (THPTMINHCHÂUHƯNG YÊNNĂM2018–2019) Tìm m để giá trị nhỏ hàm số
( )
1 x m m f x
x
-
=
đoạn (0;1) –2
A m m = = .
B m m = = - .
C
2 m m = - =
D 21
2
m=
Lờigiải ChọnC Ta có: ( ) 2 ' 0, m m y m x - =
Hs nghịc biến 0;1
0;1 ( ) ( )0
Max f x f
= 2
1 m m m m = Û - = - Û = -
Câu 67. (THPT BẠCH ĐẰNG QUẢNGNINH NĂM2018-2019) Cho hàm số sin
cos m x y x -=
Có bao
nhiêu giá trị nguyên tham số m thuộc đoạn 0;10 để giá trị nhỏ hàm số nhỏ -2
?
A 1 B 9 C 3 D 6
Lờigiải
Tập xác định: D=
Ta có: sin
cos m x y x -=
Û ycosxmsinx= -1 2y
Phương trình có nghiệm khi: 2
1 4
y m - y y 2
3y 4y m
Û - -
2
2 3
3
m m
y
-
Û
Theo đề bài, ta có:
2
2
min 0;10 x m y m m - = -
1
(49)5, 6, 7,8,9,10 m
Û
Vậy có giá trị nguyên tham số m thỏa yêu cầu toán
Câu 68. (ĐỀ HỌC SINH GIỎI TỈNH BẮC NINH NĂM 2018-2019) Xét hàm số f x( )= x2ax b , với a, b tham số Gọi M giá trị lớn hàm số -1; 3 Khi M nhận giá trị nhỏ được, tính a2b
A 2 B 4 C -4 D 3
Lời giải
Xét hàm số f x( )= x2ax b Theo đề bài, M giá trị lớn hàm số -1; 3
Suy ( ) ( ) ( ) M f M f M f -
M a b
M a b
M a b
-
Û
4M a b 3a b a b
-
-1 a b 3a b ( a b)
- - - - 4M 8 M 2
Nếu M =2 điều kiện cần 1- a b = 3 a b = - - -1 a b =2 1- a b, 3 a b ,
1 a b
- - - dấu
1
a b a b a b
a b a b a b
- = = - - - = Û - = = = - a b = - Û = -
Ngược lại,
1 a b = - = -
ta có, hàm số f x( )= x2-2x-1 -1; 3
Xét hàm số ( )
2
g x =x - x- xác định liên tục -1; 3
( ) 2
g x¢ = x- ; g x¢( )=0Û x= -1 1; 3
M giá trị lớn hàm số f x( ) -1; 3M =maxg( )-1 ; g( )3 ;g( )1 =2
Vậy
1 a b = - = -
Ta có: a2b= -4
Câu 69. (ĐỀ HỌC SINH GIỎI TỈNH BẮC NINH NĂM 2018-2019)Cho hàm số
,
y=ax cxd a
có
( ;0) ( ) ( )
min
x
f x f
-
= - Giá trị lớn hàm số y= f x( )trên đoạn 1;3
A d-11a B d-16a C d2a D d8a Lời giải
Vì
,
y=ax cxd a hàm số bậc ba có
( ;0) ( ) ( )
min
x
f x f
-
= - nên a0 y'=0 có hai
nghiệm phân biệt
Ta có y'=3ax2 =c 0có hai nghiệm phân biệt Ûac0
Vậy với a0, c0 y'=0 có hai nghiệm đối
3 c x
a =
-Từ suy
( ;0) ( )
min
3
x
c
f x f
a - = - -
2 12
3
c c
c a
a a
Û - - = - Û - = Û =
(50)Ta suy
1;3 ( ) ( )
max 16
x
f x f a c d a d
= = = -
Câu 70. (CHUYÊN THÁI BÌNH NĂM 2018-2019 LẦN 03)Gọi S tập hợp giá trị tham số m để giá trị lớn hàm số
2
2
x mx m
y
x
-
=
- đoạn -1;1 Tính tổng tất
phần tử S A
3
- B 5 C 5
3 D -1
Lời giải
Xét hàm số ( )
2
2
x mx m
y f x
x
-
= =
- -1;1 có ( ) ( )2
4 f x x ¢ = ; ( ) 0 1;1 x f x x = ¢ = Û = -
; ( )1 1; ( )0 ; ( )1
3
m m
f - = f = -m f =
- -
Bảng biến thiên
x -1
( )
f¢ x
-( )
f x f ( )0
( )1 ( )1
f - f
Trường hợp f ( )0 0Ûm0 Khi
1;1 ( ) ( ) ( )
3 max f x max f ; f
-= = - Û3 max 1;
3 m m =
Ûm =1 3Ûm=2
Trường hợp f ( )0 0Ûm0
Khả ( )
( ) 1 f m f - Û -
Khi
1;1 ( ) ( )
3 max f x f
-= = Ûm= -3
Khả 1
3 m
- - Khi ( )
( ) 1 f f -
1;1 ( ) ( ) ( )
3 max f x max f ; f
-= =
3 max m m;
Û = - : Trường hợp vô nghiệm
Khả
3 m
- Khi
1;1 ( ) ( ) ( ) ( )
3 max f x max f ; f ; f
-= = - : Vơ nghiệm
Vậy có hai giá trị thỏa mãn m1 = -3,m2 =2 Do tổng tất phần tử S -1
Câu 71. (GKI THPT NGHĨA HƯNG NAM ĐỊNH NĂM 2018-2019)Tìm tất giá trị tham số
m để hàm số 2
1 x m y x x =
có giá trị lớn nhỏ
(51)Chọn A
+ TXĐ: D=
+ lim
xy= +
( )
2
2
2
1
x mx m
y
x x
- -
-¢ =
2
0 (*)
y¢ = Û -x - mx -m=
(*) m m 0, m ¢
= - nên (*) có nghiệm phân biệt x1x2, m
+ BBT:
Vậy hàm số đạt giá trị lón ( )2
2
2
f x
x
=
với
2
2
x = -m m -m
2
1
1 2 1
2 1
YCBT m m m
m m m
Û Û - -
- -
( f x( )2 0 2x2 1 0)
2
2
0
1
1
m m
m m m m
m m m
Û - Û Û
-
Dạng Bài toán GTLN-GTNN liên quan đến đồ thị đạo hàm
Câu 72. (Mã 102 - BGD - 2019) Cho hàm số f x( ), hàm số y= f¢( )x liên tục có đồ thị hình vẽ
Bất phương trình f x( ) x m (m tham số thực) nghiệm với x(0; 2)
A m f ( )0 B m f ( )0 C m f ( )2 -2 D m f ( )2 -2 Lời giải
Chọn C
(52)Xét hàm số g x( )= f x( )-x với x(0; 2) Ta có g x¢( )= f¢( )x -1
( ) ( )
g x¢ = Û f¢ x = Từ đồ thị ta thấy đường thẳng y=1 không cắt đồ thị y= f¢( )x
điểm có hồnh độ thuộc khoảng (0; nên phương trình ) f¢( )x =1 vơ nghiệm với x(0; 2) Ta có bảng biến thiên sau:
(do f¢( )x 1 với x(0; 2))
Từ bảng biến thiên ta thấy để mg x( ) với x(0; 2) Ûmg( )2 Ûm f ( )2 -2
Câu 73. (Mã 103 - BGD - 2019)Cho hàm số y= f x( ), hàm số y= f '( )x liên tục và có đồ thị
hình vẽ bên Bất phương trình f x( )2xm(m tham số thực) nghiệm với x(0; 2)
khi
A m f ( )0 B m f ( )2 -4 C m f ( )0 D m f ( )2 -4 Lời giải
Chọn A ( )
( )
(0;2) ( )
2
2
max
f x x m m f x x
m f x x
Û
-Û -
Ta tìm
0;2 ( )
maxf x -2x
Đặt g x( )= f x( )-2x
( ) ( )
( )
0;2 ( ) ( ) ( )
' '
0; , '
max 0
g x f x
x f x
g x g f
=
- -
= =
Vậy m f ( )0
Câu 74. (Mã đề 101 - BGD - 2019) Cho hàm số y= f x( ), hàm số y= f '( )x liên tục và có đồ thị hình vẽ bên
x y
2
(53)Bất phương trình f x( ) x m (m tham số thực) nghiệm với x(0; 2) A m f ( )2 -2 B m f( )0 C m f ( )2 -2 D m f( )0
Lời giải Chọn D
( )
f x x m Û f x( )- x m
Đặt g x( )= f x( )-x xét khoảng (0; ) ( )
( )
g x¢ = f¢ x -
Từ đồ thị ta thấy g x¢( )= f¢( )x - 1 với x(0; 2) Suy hàm số g x( )= f x( )-x nghịch biến khoảng (0; )
Bất phương trình f x( ) x m (m tham số thực) nghiệm với x(0; 2)
khi ( )
0
lim (0)
x
m g x f
=
Câu 75. (Mã đề 104 - BGD - 2019) Cho hàm số f x( ), hàm số f x¢( ) liên tục có đồ thị hình vẽ
Bất phương trình f x( )2x m (m tham số thực) nghiệm với x(0; 2)
khi
A m f ( )2 -4 B m f ( )2 -4 C m f ( )0 D m f ( )0 Lời giải
Chọn B
Hàm số g x( )= f x( )-2x nghịch biến khoảng (0; 2) g x¢( )= f¢( )x - 2 0, x (0;2)
(54)Suy g( )2 g x( )g( )0 , x (0;2)
Bất phương trình cho nghiệm với x(0; 2) mg x( ), x (0; 2)
( )2 ( )2
m g m f
Û Û -
Câu 76. (THCS - THPT NGUYỄN KHUYẾN NĂM 2018-2019 LẦN 01) Cho hàm số y= f x( ) xác định liên tục , đồ thị hàm số y = f¢( )x hình vẽ
Giá trị lớn hàm số y = f x( ) đoạn -1; 2
A f ( )1 B f ( )-1 C f ( )2 D f ( )0 Lờigiải
( )
1
0
2 x
f x x
x = -
¢ = Û =
=
Từ đồ thị hàm y f x ta có bảng biến thiên
Từ suy giá trị lớn hàm số 1; 2 f 1
Câu 77. (THPT THIỆU HÓA– THANH HÓA NĂM 2018-2019 LẦN 01) Cho hàm số f x( ) có đạo
hàm f¢( )x Đồ thị hàm số y= f¢( )x cho hình vẽ bên Biết
( )0 ( )1 ( )3 ( )5 ( )4
f f - f = f - f Tìm giá trị nhỏ m giá trị lớn M f x( )
(55)A m= f ( )5 ,M = f ( )3 B m= f ( )5 ,M = f ( )1 C m= f ( )0 ,M = f ( )3 D m= f ( )1 ,M = f ( )3
Lờigiải ChọnA
Từ đồ thị ta có bảng biến thiên f x( ) đoạn 0;5
( )3
M f
= f ( )1 f( )3 , f ( )4 f ( )3
( )5 ( )0 ( )1 ( )3 ( )4 ( )3 ( )5 ( )0 ( )5
f - f = f - f f - f f f m= f
Câu 78. (ĐỀ04VTEDNĂM2018-2019) Cho hàm số y= f x( ) Hàm số / ( )
y= f x có bảng biến thiên
sau:
Bất phương trình f e( )x exm nghiệm với
( 1;1)
x -
A m f 1
e e
- B ( )
1 m f
e
- - C m f ( )1 e
- - D m f 1
e e
-
Lờigiải ChọnA
Ta có f e( )x exmÛ f e( )x -exm,
( 1;1)
x -
Đặt g x( )= f e( )x -exkhi
( ) ( )
1;1 ( )
1;1
m g x x m Max g x
- - Û
Xét g x( )= f e( )x -extrên -1;1
Có g x¢( )=e fx ¢( )ex -ex=ex(f¢( )ex -1)0, -x 1;1 (Suy từ bảng biến thiên) Do
1;1 ( ) ( )
1
1
Max g x
e
g f
e
- = - =
-
(56)Vậy
1;1 ( ) ( )1
1
f
m Ma
e e
x g x g
- -
= - = giá trị cần tìm
Câu 79. (CHUYÊN LÊ HỒNG PHONG NAM ĐỊNH LẦN NĂM 2018-2019)Cho hàm số y= f x( ) có bảng biến thiên hình Tìm giá trị lớn hàm số
( ) ( 2)
4
3
g x = f x-x x - x x đoạn 1;3
A 15 B 25
3 C
19
3 D 12
Lời giải
( ) ( ) ( 2)
4
g x¢ = - x f¢ x-x x - x =(2-x)2f¢(4x-x2) -4 x
Với x1;3 4- x 0; 34x-x2 4 nên ( 2)
4
f¢ x-x
Suy ( 2)
2f¢ 4x-x -4 x0, x 1;3 Bảng biến thiên
Suy
1;3 ( ) ( )
maxg x =g = f ( )4 =7 12
Câu 80. (THPT NGHĨA HƯNG NĐ- GK2 - 2018 - 2019)Cho hàm sốy= f x( ) Hàm số y= f¢( )x có bảng biến thiên sau
Bất phương trình f x( )2cosx3m với 0;
2
x
A ( )0
-
m f B ( )0
-
m f C 1
3
-
m f D 1
3
-
m f
Lời giải
Ta có f x( )2cosx3m 0;
2
x Û f x( )-2cosx 3m 0;
2
(57)Xét hàm g x( )= f x( )-2cosx 0; Ta có g x¢( )= f¢( )x 2cosxsin ln 2x
Vì f¢( )x 1 0;
2
x ; sinx0 0;
2
x 2cosxsin ln 2x 0 0;
2
x nên ta suy
( ) ( ) cos
2 sin ln
¢ = ¢ x
g x f x x 0;
2 x
Vậy ta có bảng biến thiên
Từ bảng biến thiên ta có ycbt Û g( )0 3m Û3m f ( )0 -2 ( )0
3
Ûm f -
Câu 81. (Đề minh họa 2019) Cho hàm số y= f x( ) Hàm số / ( )
y= f x có bảng biến thiên sau:
Bất phương trình f e( )x exm nghiệm với
( 1;1)
x -
A m f 1
e e
- B ( )
1 m f
e
- - C m f ( )1 e
- - D m f 1
e e - Lời giải Chọn A
Ta có f e( )x exmÛ f e( )x -exm,
( 1;1)
x -
Đặt g x( )= f e( )x -exkhi
( ) ( )
1;1 ( )
1;1
m g x x m Max g x
- - Û
Xét g x( )= f e( )x -extrên -1;1
Có g x¢( )=e fx ¢( )ex -ex=ex(f¢( )ex -1)0, -x 1;1 (Suy từ bảng biến thiên) Do
1;1 ( ) ( )
1
1
Max g x
e g f e - = - = - Vậy
1;1 ( ) ( )1
1
f
m Ma
e e
x g x g
- -
= - = giá trị cần tìm
(58)Câu 82. (THPT NGƠ SĨ LIÊN BẮC GIANG NĂM 2018-2019 LẦN 01) Cho hàm số f x( ) có bảng biến thiên sau:
Gọi S tập hợp số nguyên dương m để bất phương trình f x( )m x( 3-3x25) có nghiệm
thuộc đoạn -1;3 Số phần tử S
A 3 B Vô số C 2 D 0
Lời giải Chọn B
Gọi g x( )=x3-3x25 đoạn -1;3
( )
' 3x 6x
2 x g x
x =
= Û - = Û
=
( )1 1; ( )0 5; ( )2 1; ( )3
g - = g = g = g = 1 g x( )5, -x 1;3
( ) ( ) ( )
( )
( ) ( )
1;3
3 , 1;3 f x , 1;3 f x
f x m x x x m x m
g x - g x
- - Û - Û
Vì hàm số f x( ),g x( ) liên tục đoạn -1;3 suy tồn giá trị nhỏ hàm số ( ) ( )
f x g x
trên đoạn -1;3 Suy
( ) ( ) 1;3 ; f x
m
g x
-
-
Số phần tử tập hợp S vô số
Câu 83. (CỤM LIÊN TRƯỜNG HẢI PHÒNG NĂM 2018-2019 LẦN 01)Cho hàm số y= f x( ) liên tục Đồ thị hàm số y= f¢( )x hình bên Đặt g x( )=2f x( ) (- x1 )2 Mệnh đề
A
3;3 ( ) ( )
maxg x g
- = B min-3;3g x( )=g( )1 C max-3;3 g x( )=g( )0 D max-3;3 g x( )=g( )1
Lời giải Chọn D
( ) ( ) ( 1)2 ( ) ( ) 2( 1)
g x = f x - x g x¢ = f¢ x - x
(59)( ) ( )
3
0 1
3 x
g x f x x x
x = - ¢ = Û ¢ = Û =
=
Và
với x - -( ; :) f¢( )x x 1 g x¢( )0 với x -( 3;1 :) f¢( )x x 1 g x¢( )0, với x(1; :) f¢( )x x 1 g x¢( )0 với x(3;): f¢( )x x 1 g x¢( )0 Bảng biến thiên
x - -3 1 3
( )
g x¢ ‒ 0 + 0 ‒ 0 +
( )
g x
Dựa vào bảng biến thiên suy
3;3 ( ) ( )
maxg x g
- =
Câu 84. (THPT CHUYÊN VĨNH PHÚC NĂM 2018-2019 LẦN 3)Cho hàm số có đạo hàm
cấp hai Biết , bảng xét dấu sau:
Hàm số đạt giá trị nhỏ điểm thuộc khoảng sau đây?
A (- -; 2017) B (2017;) C (0; ) D (-2017; 0)
Lời giải
Dựa vào bảng xét dấu f¢¢( )x ta có bảng biến thiên hàm sồ f¢( )x
Đặt t= x2017
Ta có y= f x( 2017)2018x= f t( )2018t-2017.2018=g t( ) ( ) ( ) 2018
g t¢ = f¢ t
Dựa vào bảng biến thiên hàm số f¢( )x suy phương trình g t¢( ) có nghiệm đơn
( ; 0)
- nghiệm kép t=2
Ta có bảng biến thiên g t( )
Hàm số g t( ) đạt giá trị nhỏ t0 = -( ;0)
( ) y= f x f¢( )0 =3 f¢( )2 = -2018 f¢¢( )x
( 2017) 2018
(60)Suy hàm số đạt giá trị nhỏ x0 mà
( ) ( )
0 2017 ; 0 ; 2017
x - Û x - -
Câu 85. (ĐỀ THI THỬ VTED 02 NĂM HỌC 2018 - 2019)Cho hàm số f x( ) liên tục có đồ thị hình vẽ bên Bất phương trình 2f x( )x32m3x2 nghiệm với x -( 1;3)
A m -10 B m -5 C m -3 D m -2
Hướng dẫn giải
Ta có 2f x( )x3 2m3x2 Û2f x( ) -x33x22m Nhận xét
( 1;3) ( ) ( )
minf x f
- = =
-Đặt ( ) ( )
3 m, 1;
g x = -x x -x
( ) ( )
3 ,
2 x g x x x g x
x =
¢ = - ¢ = Û
=
( )0 ; ( )1 ; ( )3
g = m g - = m g = m g( )2 = 4 2m
( 1;3) ( ) ( )
maxg x g 2m
- = =
ycbt
( 1;3) ( ) ( 1;3) ( )
2 f x maxg x 2m m
-
-Û Û - Û
-Câu 86. (KTNL GV BẮC GIANG NĂM 2018-2019)Cho hàm số f x( ) có đạo hàm có đồ thị
của hàm y= f¢( )x cho hình vẽ
Biết f ( )-3 f ( )0 = f ( )4 f ( )-1 Giá trị lớn giá trị nhỏ f x( ) đoạn -3; 4 là:
( 2017) 2018
(61)A f(4) f( 3)- B f( 3)- f(0) C f(4) f(0) D f(2) f( 3)-
Lời giải
Chọn B
Dựa vào đồ thị hàm số y= f¢( )x ta có bảng biến thiên hàm số y= f x( ):
x - -3
( )
f¢ x - - 0 0
-( )
f x f( )-3
( )0 f
( )4 f
( )0 ( )4
f¢ = f¢ = nên x=0 x=4 hai điểm cực trị y= f x( )
Từ bảng biến thiên ta có
3;4
min ( )f x f(0)
- = , đồng thời f ( )-1 f ( )0 Do đó:
( )3 ( )0 ( )4 ( )1
f - f = f f - Û f ( )-3 - f ( )4 = f ( )-1 - f ( )0 0 f ( )-3 f ( )4
3;4
max ( )f x f( 3)
- = - Chọn B
Câu 87. Cho hàm số f x( ) có đạo hàm f¢( )x Đồ thị hàm số y= f¢( )x cho hình vẽ đây:
Biết f ( )-1 f ( )0 f ( )1 f ( )2 Giá trị nhỏ giá trị lớn hàm số y= f x( ) đoạn -1; 2 là:
A f ( )1 ; f ( )2 B f ( )2 ; f ( )0 C f ( )0 ; f ( )2 D f ( )1 ; f ( )-1 Lời giải
(62)Nhận thấy
1; 2 ( ) ( )
min f x f
- =
Để tìm
1; 2 ( )
max f x
ta so sánh f ( )-1 f ( )2
Theo giả thiết, f ( )-1 f ( )0 f ( )1 f ( )2 Û f ( )2 - f ( )-1 f ( )0 - f ( )1
Từ bảng biến thiên, ta có f ( )0 - f ( )1 0 Do f ( )2 - f ( )-1 0Û f ( )2 f ( )-1 Hay
1;2 ( ) ( )
max f x f
- =
Dạng Ứng dụng GTLN-GTNN vào tốn đại số
Câu 88. (THPTCHUNVĨNHPHÚCLẦN02NĂM2018-2019) Tìm tất giá trị tham số m để bất phương trình 6x (2x)(8-x)x2m-1 nghiệm với x - 2;8
A m16 B m15 C m8 D - 2 m16 Lờigiải
ChọnB
Xét bất phương trình: 6x (2x)(8-x)x2m-1 1( ), điều kiện x - 2;8 Đặt t= (2x)(8-x), x - 2;8 Ta có:
( )( )
3 '
2
x t
x x
-=
- , t'=0Ûx=3
Bảng biến thiên
Suy t0; 5 Khi ( )1 trở thành: t2 -t 15m ( )2
Xét hàm số ( )
15
f t =t -t , f '( )t =2t 1 0, t 0; 5
Bất phương trình ( )1 nghiệm với x - 2;8 ( )2 nghiệm với
0;5 t
0;5
max
Û f t( )mÛm15
Câu 89. (GKI THPT LƯƠNG THẾ VINH HÀ NỘI NĂM 2018-2019) Tìm mđể bất phương trình
1
x m
x
- có nghiệm khoảng (-;1)
A m5 B m -3 C m1 D m -1 Lờigiải
(63)4 ( )
1
f x x
x = - ( ) ( ) ( ) 2 3( ) 4
'( )
1( ) 1 x l x f x x tm x x = - - = - = = = -
Bảng biến thiên
Vậy m -3
Câu 90. (THPTCHUYÊNLAMSƠNTHANHHÓANĂM2018-2019LẦN01) Biết tập nghiệm bất phương trình
2
6
2 2
5 x x x x - - -
a b; Khi giá trị biểu thức
3
P = a- b bằng:
A 2 B 4 C -2 D 1
Lờigiải ChọnC
ĐK: - 2 x2
Ta có:
2
6 4 4(2 )
2 2
2 2
5
x x x x
x x x x x x - - - - - - Û - - ( ) ( ) ( ) ( ) 2 1
6
2 2
6 2
x
x x x
x x x x
Û - - - Û - - -
Xét hàm số f x( )= 2x 4 2-x với - 2 x2
Ta có ( ) 1
3
2
f x x
x x
¢ = - = Û =
- - Do ( ) ( )
2
2 6; 4; 2
3
f - = f - = f =
Suy 2 f x( )2 mà x2 1 nên x2 -1 ( 2x42 2-x)0
( )1
3
x x
Û - Û Kết hợp với điều kiện ta có tập nghiệm 2;
3
VậyP=3a-2b= -2
Câu 91. (CHUYÊNLÊQUÝĐÔNĐIỆNBIÊNNĂM2018-2019LẦN02) Gọis tập hợp giá trị
nguyên tham số m0; 2019 để bất phương trình
( )3
2
1
x -m -x với x - 1;1 Số phần tử tậpsbằng
A 1 B 2020 C 2019 D 2
Lời giải
Đặt
1
t= -x , với x - 1;1 t 0;1 Bất phương trình x2-m (1-x2)3 0 1( ) trở thành ( )
3
1
(64)Bất phương trình ( )1 với x - 1;1khi bất phương trình ( )2 nghiệm với t0;1 Hay
( )
3
0;1ax 1
mm t -t Ûm
Mặt khác, m số nguyên thuộc 0; 2019 nên m1; 2;3; ; 2019 Vậy có 2019 giá trị m thỏa mãn toán
Câu 92. (CHUYÊN BẮC NINH NĂM 2018-2019 LẦN 03) Gọi M giá trị lớn hàm số
( ) 2
4
f x = x - x x-x Tính tích nghiệm phương trình f x( )=M
A 2 B 4 C -2 D -4
Lờigiải Đặt t= x2-4x6= (x-2)2 2
Khi đó, ( )
) ( ) ;
max max
M f x g t
= = , với g t( )= -t24t7 2;)
Có g t( )= -t24t7=11-(t-2)211, dấu đẳng thức xảy t=2Û x2-4x6=2
4
x x
Û - = 2
2 x x = Û = -
Như vây, ( )
) ( ) ;
max max 11 2
M f x g t x
= = = Û = , suy nghiệm phương trình
( )
f x =M x= 2
Vậy tích nghiệm phương trình f x( )=M
Câu 93. (THPT CHUYÊN BẮC GIANGNAM 2018-2019 LẦN 01) Cho
2
2
x -xyy = Giá trị nhỏ
nhất
2
P=x xyy bằng:
A 2
3 B
1
6 C
1
2 D 2
Lờigiải ChọnA
Xét
2 2
2
2
P x xy y x xy y
x xy y
= =
-
+nếu y=0 x2 =2 Do P=x2 =2 suy minP=2
+nếu y0 ta chia tử mẫu cho
y ta
2 2 2 2 x x y y
P x xy y
x xy y x x
y y = = - -
Đặt t x
y
= ,
2
2
P t t
t t
=
-
Xét ( ) ( )
( )
2
2
2 2
1 2
'
1 1
t t t
f t f t
t t t t
-
= =
- -
( )
' t f t t = = Û = -
(65)Khi
2
P
=
3 P=
Câu 94. (THPT CHUYÊN BẮC GIANG NAM 2018-2019 LẦN 01) Cho x, y số thực thỏa mãn
1 2
xy= x- y Gọi M , m giá trị lớn nhỏ
( )( )
2
2 1
P=x y x y - -x y Tính giá trị M m
A 42 B 41 C 43 D 44
Lờigiải ChọnC
(xy)2 =( x- 1 y1)2 3(xy)Û0 x y3
( )( ) ( )2 ( ) ( )
2
2 1 2
P=x y x y - -x y = xy xy - xy Đặt t= 4-(xy t), 1;
Ta có: ( ) ( 2)2 ( 2)
4 10 26
f t = -t -t t=t - t t
( )
4 20
f¢ t = t - t
( )
2 1;
2
0 1;
2
1 1;
t t
f t t
t t
t
= =
¢ = Û Û = -
- =
= - -
( )1 25; ( )2 18 f = f = Suy
1;2 ( ) ( ) 1;2 ( ) ( )
min 18; max 25
m= f t = f = M = f t = f =
Vậy M m=43
Câu 95. (KTNL GIABÌNHNĂM2018-2019) Cho bất phương trình ( ) ( )
2 2
m x - x x -x
Hỏi có số ngun m khơng nhỏ -2018 để bất phương trình cho có nghiệm
0;1
x
?
A 2018 B 2019 C 2017 D 2020
(66)Đặt t= x2-2x2, ta có x0;1 3 t 1; 2
Vì ( )
2 2
2 2
t =x - x Ûx x- =t -
Bất phương trình cho trở thành ( )
2
2
1
1
t
m t t m
t
- - Û
( )1
Xét hàm số ( )
2
t f t
t
-=
, t 1;2 Ta có ( ) ( ) ( ) ( )
2
2
2
1 0, 1;
1
t t
f t t
t t
¢ = =
Bất phương trình cho có nghiệm x0;1 3
Û Bất phương trình ( )1 có nghiệm t 1;2
3
m
Û
Theo giả thiết m -2018 nên ta có 2018
3
m
- Vậy có tất 2019 số nguyên m thỏa