Viết phương trình mặt phẳng qua D và song song với mặt phẳng ( ABC ). +) Thay tọa độ điểm A vào phương trình mặt phẳng thấy không thỏa mãn.. Thay tọa độ điểm A vào phương trình mặ[r]
(1)CHỦ ĐỀ PHƯƠNG TRÌNH MẶT PHẲNG
A. TỔNG HỢP LÝ THUYẾT
I. Vectơ pháp tuyến mặt phẳng
• Vectơ n ≠0 vectơ pháp tuyến (VTPT) giá n vng góc với mặt phẳng ( )α
• Chú ý:
Nếu n VTPT mặt phẳng ( )α kn (k≠0) VTPT mặt
phẳng( )α
Một mặt phẳng xác định biết điểm qua VTPT
Nếu u v , có giá song song nằm mặt phẳng ( )α n=[ , ]u v VTPT
( )α
II. Phương trình tổng quát mặt phẳng
Trong khơng gian Oxyz, mặt phẳng có dạng phương trình:
Ax By Cz D+ + + = vớiA2+B2+C2 ≠0
Nếu mặt phẳng ( )α có phương trình Ax By Cz D+ + + =0 có VTPT ( ; ; )
n A B C
Phương trình mặt phẳng qua điểm M x y z0( ; ; )0 0 nhận vectơ n A B C( ; ; )
khác 0 VTPT là: A x x( − 0)+B y y( − 0)+C z z( − 0) 0=
• Các trường hợp riêng
Xét phương trình mặt phẳng ( )α : Ax By Cz D+ + + =0 với A2 +B2+C2 ≠0
Nếu D=0thì mặt phẳng ( )α qua gốc tọa độ O
Nếu A=0,B≠0,C≠0 mặt phẳng ( )α song song chứa trục Ox
Nếu A≠0,B=0,C≠0 mặt phẳng ( )α song song chứa trục Oy
Nếu A≠0,B≠0,C=0 mặt phẳng ( )α song song chứa trục Oz
Nếu A B= =0,C≠0 mặt phẳng ( )α song song trùng với (Oxy)
Nếu A C= =0,B≠0 mặt phẳng ( )α song song trùng với (Oxz)
(2)Chú ý:
Nếu phương trình ( )α khơng chứa ẩn ( )α song song chứa trục tương ứng
Phương trình mặt phẳng theo đoạn chắn ( ): x y z
a b c+ + =
α Ở ( )α cắt trục tọa độ điểm (a;0;0), (0; ;0b ), (0;0;c) với abc≠0
III.Khoảng cách từ điểm đến mặt phẳng.
• Trong khơng gian Oxyz, cho điểm M0(x ; ; )0 y z0 mặt phẳng ( )α :Ax By Cz D+ + + =0
Khi khoảng cách từ điểm M0 đến mặt phẳng ( )α tính:
0 0
0 | 2 2 2 |
( ,( )) Ax By Cz D
d M
A B C
IV.Góc hai mặt phẳng
Trong không gian Oxyz, cho hai mặt phẳng ( )α :A x B y C z D1 + + + =0
( )β :A x B y C z D2 + + + =0
Góc ( )α ( )β bù với góc hai VTPT n nα, β
Tức là: ( ) ( )
( ) ( ) 2
2 2 2
1 1 2
cos , cos ,
n n A A B B C C
n n
n n A B C A B C
α β
α β
α β
+ +
α β = = =
+ + + +
V. Một số dạng tập viết phương trình mặt phẳng
Dạng 1: Viết phương trình mặt phẳng biết điểm vectơ pháp tuyến Phương pháp giải
Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT
Dạng 2: Viết phương trình mặt phẳng ( )α đi qua điểm M x y z0( 0; ;0 0)và song song với mặt
phẳng ( )β :Ax By Cz D+ + + =0cho trước. Phương pháp giải
Cách 1: Thực theo bước sau: VTPT ( )β nβ =(A B C; ; )
2 ( )α //( )β nên VTPT mặt phẳng ( )α nα =nβ =(A B C; ; )
3 Phương trình mặt phẳng ( )α :A x x( − 0)+B y y( − 0)+C z z( − 0)=0
Cách 2:
1 Mặt phẳng ( )α //( )β nên phương trình( )P có dạng: Ax By Cz D+ + + ′=0(*), với D D′ ≠ Vì ( )P qua điểm M x y z0( 0; ;0 0)nên thay tọa độ M x y z0( 0; ;0 0) vào (*) tìm D′
Dạng 3: Viết phương trình mặt phẳng ( )α đi qua điểm A , B , C không thẳng hàng. Phương pháp giải
(3)2 Vectơ pháp tuyến của( )α : nα = AB AC,
3 Điểm thuộc mặt phẳng: A (hoặc B C)
4 Viết phương trình mặt phẳng qua điểm có VTPT nα
Dạng 4: Viết phương trình mặt phẳng ( )α đi qua điểm M vng góc với đường thẳng ∆ Phương pháp giải
1 Tìm VTCP ∆ u∆
2 Vì ( )α ⊥ ∆ nên ( )α có VTPT n =u∆
α
3 Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT nα
Dạng 5: Viết phương trình mặt phẳng( )α chứa đường thẳng ∆, vng góc với mặt phẳng ( )β Phương pháp giải
1 Tìm VTPT ( )β nβ Tìm VTCP ∆ u∆
3 VTPT mặt phẳng ( )α là: n = n u; ∆
α β
4 Lấy điểm M ∆
5 Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT
Dạng 6: Viết phương trình mặt phẳng ( )α qua hai điểm A , B vng góc với mặt phẳng ( )β
Phương pháp giải
1 Tìm VTPT ( )β nβ Tìm tọa độ vectơ AB
3 VTPT mặt phẳng ( )α là: nα = n AB β,
4 Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT
Dạng 7: Viết phương trình mặt phẳng( )α chứa đường thẳng ∆ và song song với ∆′ (∆,∆′ chéo nhau).
Phương pháp giải
1 Tìm VTCP ∆ ∆′ u∆
u∆'
2 VTPT mặt phẳng ( )α là: n = u u∆, ∆′
α
3 Lấy điểm M ∆
4 Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT Dạng 8: Viết phương trình mặt phẳng ( )α chứa đường thẳng ∆ và điểm M
Phương pháp giải
1 Tìm VTCP ∆ u∆
, lấy điểm N trên∆ Tính tọa độ MN VTPT mặt phẳng ( )α là: n = u MN∆;
α
3 Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT Dạng 9: Viết phương trình mặt phẳng ( )α chứa đường thẳng cắt ∆ và ∆′ Phương pháp giải
1 Tìm VTCP ∆ ∆′ u∆
u∆'
2 VTPT mặt phẳng ( )α là: n = u u∆; ∆'
(4)3 Lấy điểm M ∆
4 Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT Dạng 10: Viết phương trình mặt phẳng ( )α chứa song song ∆ và ∆′
Phương pháp giải
1 Tìm VTCP ∆ ∆′ u∆
u∆′
, lấy M∈ ∆,N∈ ∆′ VTPT mặt phẳng ( )α là: n = u MN∆;
α
3.Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT
Dạng 11:Viết phương trình mặt phẳng( )α đi qua điểm Mvà song song với hai đường thẳng ∆ và ∆′chéo cho trước.
Phương pháp giải
1 Tìm VTCP ∆ ∆’ u∆
u∆'
2 VTPT mặt phẳng ( )α là: n = u u∆; ∆′
α
3.Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT
Dạng 12:Viết phương trình mặt phẳng ( )α đi qua điểm Mvà vng góc với hai mặt phẳng
( ) ( )P Q, cho trước. Phương pháp giải
1 Tìm VTPT ( )P ( )Q nP nQ
2 VTPT mặt phẳng ( )α là: nα = n n P; Q
3.Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT
Dạng 13: Viết phương trình mặt phẳng ( )α song song với mặt phẳng ( )β và cách
( )β :Ax By Cz D+ + + =0 một khoảng k chotrước. Phương pháp giải
1 Trên mặt phẳng ( )β chọn điểm M
2 Do ( )α //( )β nên ( )α có phương trình Ax By Cz D+ + + ′=0 (D D′ ≠ ) Sử dụng công thức khoảng cách d(( ) ( )α , β =) d M( ,( )β =) k để tìm D′.
Dạng 14: Viết phương trình mặt phẳng ( )α song song với mặt phẳng
( )β :Ax By Cz D+ + + =0cho trước cách điểm M khoảng k cho trước. Phương pháp giải
1 Do ( )α //( )β nên ( )α có phương trình Ax By Cz D+ + + ′=0 (D D′ ≠ ) Sử dụng công thức khoảng cách d M( ,( )α =) k để tìm D′.
Dạng 15: Viết phương trình mặt phẳng ( )α tiếp xúc với mặt cầu ( )S . Phương pháp giải
1 Tìm tọa độ tâm I tính bán kính mặt cầu ( )S
2 Nếu mặt phẳng ( )α tiếp xúc với mặt cầu ( )S M ∈( )S mặt phẳng ( )α qua điểm M có VTPT MI
3 Khi tốn khơng cho tiếp điểm ta phải sử dụng kiện tốn tìm VTPT mặt phẳng viết phương trình mặt phẳng có dạng: Ax By Cz D+ + + =0 (D chưa biết)
(5)Dạng 16: Viết phương trình mặt phẳng ( )α chứa đường thẳng ∆và tạo với mặt phẳng ( )β :Ax By Cz D+ + + =0cho trước góc ϕ cho trước
Phương pháp giải
1 Tìm VTPT ( )β nβ Gọi n A B Cα( ; ; ).′ ′ ′
3 Dùng phương pháp vô định giải hệ: ( ; )n n n
n u
α β
α
α ∆
= ϕ
⇒
⊥
4 Áp dụng cách viết phương trình mặt phẳng qua điểm có VTPT VI.Các ví dụ
Ví dụ Trong khơng gian Oxyz, viết phương trình mặt phẳng ( )P qua điểm A(1;0; 2)−
và có vectơ pháp tuyến n(1; 1;2)− Lời giải
Mặt phẳng ( )P qua điểm A(1;0; 2)− có vectơ pháp tuyến n(1; 1;2)− có phương trình là:
1(x− −1) 1(y−0) 2(+ z+2) 0= ⇔ − +x y 2z+ =3 0 Vậy phương trình mặt phẳng ( )P là: x y− +2z+ =3
Ví dụ Trong khơng gian Oxyz, viết phương trình mặt phẳng( )P qua điểm M(0;1;3)và song song với mặt phẳng( ) : 2Q x−3 0z+ =
Lời giải
Mặt phẳng ( )P song song với mặt phẳng( ) : 2Q x−3 0z+ = nên mặt phẳng( )P có phương trình dạng: 2x−3z D+ =0 (D≠1)
Mặt phẳng ( )P qua điểm M(0;1;3) nên thay tọa độ điểm Mvào phương trình mặt phẳng phải thỏa mãn Ta được: 2.0 3.3− + = ⇔D D=9(thỏa mãn D≠1 )
Vậy phương trình mặt phẳng ( )P là: 2x−3z+ =9
Ví dụ Trong khơng gian Oxyz, viết phương trình mặt phẳng qua ba điểm
(1;0; 2),
A − B(1;1;1),C(0; 1;2)− Lời giải
Ta có: AB=(0;1;3),AC = − −( 1; 1: 4)⇒ AB AC, =(7; 3;1)− Gọi n vectơ pháp tuyến mặt phẳng (ABC)ta có
n AB n AC
⊥
⊥
nên n phương với AB AC,
Chọn n=(7; 3;1)− ta phương trình mặt phẳng (ABC)là: 7(x− −1) 3(y− +0) 1(z+2) 0=
7x 3y z
⇔ − + − =
Ví dụ Trong khơng gian Oxyz, viết phương trình mặt phẳng ( )α qua điểm O vng góc với đường thẳng :
2
x t
d y t
z t
=
= − +
= +
Lời giải
Đường thẳng d có vectơ phương là: ud =(1;2;1)
Mặt phẳng( )α vng góc với đường thẳng dnên ( )α có vectơ pháp tuyến là:
(1;2;1)
d
nα =u =
(6)Đồng thời ( )α qua điểm O nên có phương trình là: x+2y z+ =0
Ví dụ Trong khơng gian Oxyz, viết phương trình mặt phẳng ( )α chứa đường thẳng
:
2
x t
d y t
z t
= −
= − +
= +
vng góc với ( )β :x+2y z− + =1
Lời giải
Đường thẳng d qua điểm A(0; 1;2− ) có VTCP là: ud = −( 1;2;1)
Mặt phẳng ( )β có VTPT nβ =(1;2; 1− )
Mặt phẳng( )α chứa đường thẳng dvà vng góc với ( )β nên ( )α có vectơ pháp tuyến là: nα =u n d, β= −( 4;0; 4− = −) 1;0;1( )
Phương trình mặt phẳng ( )α là: x z+ − =2
Ví dụ Trong khơng gian Oxyz, viết phương trình mặt phẳng ( )α qua điểm
(1;2; 2), (2; 1;4)
A − B − vng góc với ( )β :x−2y z− + =1
Lời giải
Có AB=(1; 3;6− )
Mặt phẳng ( )β có VTPT nβ =(1; 2; 1− − )
Mặt phẳng( )α chứa A, B vng góc với ( )β nên ( )α có vectơ pháp tuyến là:
( )
, 15;7;1
n =AB n =
α β
Phương trình mặt phẳng ( )α là: 15x+7 27 0z+ − =
Ví dụ Trong khơng gian Oxyz, viết phương trình mặt phẳng( )P chứa đường thẳng
1
1 :
1
x
d y t
z t
= = − = +
song song với đường thẳng 2: 1
1 2
x y z
d − = = − Lời giải
Đường thẳng d1 qua điểm M1(1;1;1) vectơ phương u1(0; 2;1)−
Đường thẳng d2 qua điểm M2(1;0;1) vectơ phương u2(1;2;2)
Ta có u u1, 2 = − ( 6;1;2)
Gọi n vectơ pháp tuyến mặt phẳng( )P , ta có:
1
2 n u n u
⊥
⊥
nên n phương với u u1, 2
Chọn n= −( 6;1;2)
Mặt phẳng( )P qua điểm M1(1;1;1) nhận vectơ pháp tuyến n= −( 6;1;2)
có phương trình:
6(x 1) 1(y 1) 2( 1) 0z
− − + − + − =
6x y 2z
⇔ − + + + =
Thay tọa độ điểm M2vào phương trình mặt phẳng ( )P thấy khơng thỏa mãn
(7)Ví dụ Trong khơng gian Oxyz, viết phương trình mặt phẳng( )α chứa đường thẳng
:
x
d y t
z t = = − = +
và điểm M( 4;3;2).− Lời giải
Đường thẳng d qua điểm N(1;1;1) vectơ phương ud(0; 2;1)−
(5; 2; )
MN = − −
Mặt phẳng( )α chứa đường thẳng d điểm M nên ( )α có vectơ pháp tuyến là:
( )
, 4;5;10
d
n =u MN=
α
Phương trình mặt phẳng ( )α là: 4x+5y+10 19 0z− =
Ví dụ Trong khơng gian Oxyz, viết phương trình mặt phẳng( )P chứa đường thẳng
1
1 :
1
x
d y t
z t = = − = +
1 :
1
x t
d y t
z t = + = − = + Lời giải
Đường thẳng d1 qua điểm M1(1;1;1) vectơ phương u1(0; 2;1)−
Đường thẳng d2 qua điểm M2(1;1;1) vectơ phương u2(3; 2;1)−
Ta có u u1, 2 = (0;3;6)
, M M1 2 =(0;0;0)
Do M M u u1 2 1, 2 =
nên đường thẳng d d1, cắt
Mặt phẳng( )α chứa đường thẳng d d1, cắt nên ( )α có vectơ pháp tuyến là:
( ) ( )
1, 0;3;6 0;1;2
n =u u = =
α
Phương trình mặt phẳng ( )α là: y+2z− =3
Ví dụ 10 Trong khơng gian Oxyz, viết phương trình mặt phẳng ( )α chứa đường thẳng
1
1 :
1
x
d y t
z t = = − = +
4 :
1
x
d y t
z t = = − = + Lời giải
Đường thẳng d1 qua điểm M1(1;1;1) vectơ phương u1(0; 2;1)−
Đường thẳng d2 qua điểm M2(4;3;1) vectơ phương u2(0; 4;2− )
Ta có u u1, 2 =
, M M1 =(3;2;0 )
Do u u1, 2 =
nên đường thẳng d d1, song song
Mặt phẳng( )α chứa đường thẳng d d1, song song nên ( )α có vectơ pháp tuyến là:
( ) ( )
1, 2;3;6 2; 3;
n =u M M = − = − − −
α
(8)Ví dụ 11 Trong khơng gian Oxyz, viết phương trình mặt phẳng( )P qua điểm
(1;0; 2)
A − ( )P song song với hai đường thẳng
1 :
1
x
d y t
z t = = − = +
2: 1
1 2
x y z
d − = = − Lời giải
Đường thẳng d1 qua điểm M1(1;1;1) vectơ phương u1(0; 2;1)−
Đường thẳng d2 qua điểm M2(1;0;1) vectơ phương u2(1;2;2)
Ta có u u1, 2 = − ( 6;1;2)
Gọi n vectơ pháp tuyến mặt phẳng( )P , ta có:
1 n u n u ⊥ ⊥
nên n phương với u u1, 2
Chọn n= −( 6;1;2) ta phương trình mặt phẳng ( )P là:
6(x 1) 1(y 0) 2(z 2)
− − + − + + =
6x y 10 0z
⇔ − + + + =
Ví dụ 12 : Trong không gian Oxyz, viết phương trình mặt phẳng ( )P qua điểm
1
− −
M( ; ; ) vng góc với hai mặt phẳng ( ) :Q x+2y−3 0z+ =
( ) : 2R x−3y z+ + =1 0
Lời giải
VTPT ( )Q nQ(1;2; 3)−
, VTPT ( )R nR(2; 3;1).−
Ta có n n Q, R = − − − ( 7; 7; 7) nên mặt phẳng ( )P nhận n(1;1;1) VTPT ( )P qua điểm M( ; ; )− −1 nên có phương trình là: x y z+ + − =2
Ví dụ 13: Trong khơng gian Oxyz, viết phương trình mặt phẳng ( )P song song với mặt phẳng ( ) :Q x+2y−2z+ =1 cách ( )Q khoảng
Lời giải
Trên mặt phẳng ( ) :Q x+2y−2z+ =1 0chọn điểm M( ; ; )−1 0
Do ( )P song song với mặt phẳng ( )Q nên phương trình mặt phẳng (P) có dạng:
2
x+ y− z D+ = với D1 Vì d P Q(( ),( )) 3 d M P( ,( )) 3
2 2
| | 3
1 ( 2)
D
| D| 9
8 10 D D Vậy có hai mặt phẳng thỏa mãn yêu cầu toán: x+2y−2z− =8 0và x+2y−2z+10 0= Ví dụ 14 : Trong khơng gian Oxyz, viết phương trình mặt phẳng ( )P song song với mặt phẳng ( ) :Q x+2y−2z+ =1 ( )P cách điểm M( ; ; )1 1− khoảng
Lời giải
Do ( )P song song với mặt phẳng ( )Q nên phương trình mặt phẳng (P) có dạng:
2
x+ y− z D+ = với D1 Vì d M P( ,( )) 3
2 2
|1 | 3 ( 2)
D
| D| 9
4 14 D D
(9)Ví dụ 15: Trong khơng gian Oxyz, viết phương trình mặt phẳng ( )P song song với mặt phẳng ( ) :Q x+2y−2z+ =1 tiếp xúc với mặt cầu ( ) :S x2+y2+z2+2x−4y−2 0z− =
Lời giải
Mặt cầu ( )S có tâm I( 1;2;1) bán kính R ( 1)2 22 12 3 3
Do ( )P song song với mặt phẳng ( )Q nên phương trình mặt phẳng (P) có dạng:
2
x+ y− z D+ = với D1
Vì ( )P tiếp xúc với mặt cầu ( )S nên
( ,( ))
d I P R
2 2
| | 3 ( 2)
D
|1 D| 9
10
D D
Vậy có hai mặt phẳng thỏa mãn yêu cầu toán: x+2y−2 10 0z− = x+2y−2z+ =8 Ví dụ 16 : Trong mặt phẳng Oxyz, cho mặt phẳng ( )P đường thẳng d có phương trình ( )P x: +2y z− + =5 : 1
2
x
d + = + = −y z Viết phương trình mặt phẳng
( )Q chứa đường thẳng d tạo với mặt phẳng ( )P góc 600
Lời giải
Giả sử mặt phẳng ( )Q có dạng Ax By Cz D+ + + =0(A2+B2+C2 ≠0 )
Chọn hai điểm M(− −1; 1;3 ,) (N 1;0;4)∈d
Mặt phẳng ( )Q chứa d nên M N, ∈( )Q 1( ) ( )1 4
A B C D C A B
D A B
A B C D
− + − + + = = − −
⇒ ⇒ = +
+ + + =
Suy mặt phẳng có phương trình Ax By+ + −( 2A B z− ) +7A+4B=0 có VTPT ( ; ; )
Q
n = A B − A B−
( )Q tạo với mặt phẳng ( )P góc
0
60 2
0
2 2
2 cos(60 )
2 (2 ) ( 1)
(4 3) B
A B A B
A B A B
A
+ + +
⇒ = =
+ + + + + −
⇔ = ±
Cho B=1 ta đượcA=(4 3).± Vậy có phương trình mặt phẳng
( )
( )
(4 3) 32 14 (4 3) 32 14
x y z
x y z
− + + − + + − =
(10)B. BÀI TẬP
Câu 1. Chọn khẳng định sai
A Nếu n vectơ pháp tuyến mặt phẳng (P) kn k ( ∈) vectơ pháp tuyến mặt phẳng (P)
B Một mặt phẳng hoàn toàn xác định biết điểm qua vectơ pháp tuyến
C Mọi mặt phẳng khơng gian Oxyz có phương trình dạng:
2 2
0 ( 0)
Ax By Cz D+ + + = A B C+ + ≠
D Trong không gian Oxyz, phương trình dạng: Ax By Cz D+ + + =0 (A B C2+ 2+ ≠0)
đều phương trình mặt phẳng Câu 2. Chọn khẳng định
A Nếu hai vectơ pháp tuyến hai mặt phẳng phương hai mặt phẳng song song B Nếu hai mặt phẳng song song hai vectơ pháp tuyến tương ứng phương
C Nếu hai mặt phẳng trùng hai vectơ pháp tuyến tương ứng
D Nếu hai vectơ pháp tuyến hai mặt phẳng phương hai mặt phẳng trùng Câu 3. Chọn khẳng định sai
A Nếu hai đường thẳngAB,CD song song vectơ AB CD, vectơ pháp tuyến mặt phẳng (ABCD)
B Cho ba điểm A,B,C không thẳng hàng, vectơ AB AC, vectơ pháp tuyến mặt phẳng(ABC)
C Cho hai đường thẳng AB,CD chéo nhau, vectơ AB CD, vectơ pháp tuyến mặt phẳng chứa đường thẳng AB song song với đường thẳng CD
D Nếu hai đường thẳng AB,CD cắt vectơ AB CD, vectơ pháp tuyến mặt phẳng (ABCD)
Câu 4. Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng ( )α :Ax By Cz D+ + + =0 Tìm khẳng định sai mệnh đề sau:
A A=0,B≠0,C≠0,D≠0 ( )α song song với trục Ox B D=0 ( )α qua gốc tọa độ
C. A≠0,B=0,C≠0,D=0 ( )α song song với mặt phẳng (Oyz) D A=0,B=0,C≠0,D≠0 ( )α song song với mặt phẳng (Oxy)
Câu 5. Trong không gian với hệ toạ độ Oxyz, cho A a( ;0;0), B(0; ;0b ), C(0;0;c), (abc≠0) Khi phương trình mặt phẳng (ABC) là:
A x y z
a b c+ + = B
x y z b a c+ + =
C x y z
a c b+ + = D
x y z c b a+ + =
Câu 6. Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng ( )α :3x z− =0 Tìm khẳng định mệnh đề sau:
A ( )α / /Ox B ( ) (α / / xOz)
(11)Câu 7. Trong không gian với hệ toạ độ Oxyz Mặt phẳng (P) − +x 3z− =2 có phương trình song song với:
A Trục Oy B Trục Oz C Mặt phẳng Oxy D Trục Ox
Câu 8. Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P) có phương trình 3x+2y z− + =1 Mặt phẳng (P) có vectơ pháp tuyến là:
A (3;2;1)n B ( 2;3;1)n − C n(3;2; 1)− D (3; 2; 1)n − −
Câu 9. Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P) có phương trình − +2x 2y z− − =3 Mặt phẳng (P) có vectơ pháp tuyến là:
A.n(4; 4;2)− B ( 2;2; 3)n − − C ( 4;4;2)n − D (0;0; 3)n −
Câu 10. Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(1; 2;1− ), B(−1;3;3), C(2; 4;2− ) Một vectơ pháp tuyến n mặt phẳng (ABC) là:
A. n=(9;4; 1− ) B n =(9;4;1) C n=(4;9; 1− ) D n= −( 1;9;4)
Câu 11. Trong không gian với hệ toạ độ Oxyz Điểm sau thuộc mặt phẳng (P) − + − =2x y A ( 2;1;0)− B.( 2;1; 5)− − C (1;7;5) D ( 2;2; 5)− −
Câu 12. Trong không gian với hệ toạ độ Oxyz Phương trình mặt phẳng (P) qua điểm A( 1;2;0)− nhận n( 1;0;2)− VTPT có phương trình là:
A − +x 2y− =5 B − +x 2z− =5 C − +x 2y− =5 D − +x 0z− =
Câu 13. Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(3; 2; 2− − ), B(3;2;0), C(0;2;1) Phương trình mặt phẳng (ABC) là:
A.2x−3y+6z=0 B 4y+2z− =3
C 3x+2y+ =1 D 2y z+ − =3
Câu 14. Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(−1;0;1),B(−2;1;1) Phương trình mặt phẳng trung trực đoạn AB là:
A.x−y−2=0 B.x−y+1=0 C.x y− + =2 D.−x+ y+2=0 Câu 15. Trong không gian với hệ toạ độ Oxyz Mặt phẳng (P) qua điểm A( 1;0;0)− , B(0;2;0),
(0;0; 2)
C − có phương trình là:
A − + + − =2x y z B − − − + =2x y z
C − + − − =2x y z D − + − + =2x y z
Câu 16. Trong không gian với hệ trục toạ độ Oxyz, cho điểm A(−1;2;1) hai mặt phẳng ( )α : 2x+4y−6z− =5 ( )β :x+2y−3z=0 Tìm khẳng định đúng?
A Mặt phẳng ( )β qua điểm A song song với mặt phẳng ( )α ;
B Mặt phẳng ( )β qua điểm A không song song với mặt phẳng ( )α ; C Mặt phẳng ( )β không qua điểm A không song song với mặt phẳng ( )α ; D Mặt phẳng ( )β không qua điểm A song song với mặt phẳng ( )α ;
Câu 17. Trong không gian với hệ trục toạ độ Oxyz, cho điểm M(2; 1;3− ) mặt phẳng: ( )α :x− =2 0, ( )β :y+ =1 0, ( )γ :z− =3 Tìm khẳng định sai
(12)C ( ) (γ / / xOy) D ( ) ( )β ⊥ γ
Câu 18. Trong không gian với hệ trục toạ độ Oxyz Phương trình mặt phẳng qua A(2;5;1) song song với mặt phẳng (Oxy) là:
A 2x+5y z+ =0 B x− =2
C y− =5 D. z− =1
Câu 19. Trong không gian với hệ trục toạ độ Oxyz Mặt phẳng qua M(1;4;3) vng góc với trục
Oy có phương trình là:
A. y− =4 B x− =1
C z− =3 D x+4y+3z=0
Câu 20. Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng ( )α : 6x−3y−2z− =6 Khẳng định sau sai?
A Mặt phẳng ( )α có vectơ pháp tuyến u(−6,3,2) B.Khoảng cách từ O đến mặt phẳng ( )α
8 C Mặt phẳng ( )α chứa điểm A(1,2, 3− )
D Mặt phẳng ( )α cắt ba trục Ox Oy Oz, ,
Câu 21. Trong không gian với hệ trục toạ độ Oxyz Biết A B C, , số thực khác 0, mặt phẳng chứa trục Ozcó phương trình là:
A.Ax Bz C+ + =0 B Ax By+ =0
C.By Az C+ + =0 D Ax By C+ + =0
Câu 22. Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(5;1;3),B(1;2;6),C(5;0;4),D(4;0;6) Viết phương trình mặt phẳng qua D song song với mặt phẳng (ABC)
A.x+ y+z−10=0 B.x+y+z−9=0
C.x+ y+z−8=0 D x+2y+z−10=0
Câu 23. Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(5;1;3),B(1;2;6),C(5;0;4),D(4;0;6) Viết phương trình mặt phẳng chứa AB song song với CD
A.2x+5y z+ −18 0= B.2x−y+3z+6=0 C.2x− y+z+4=0 D.x y z+ + − =9
Câu 24. Trong không gian với hệ trục tọa độ Oxyz, gọi (P)là mặt phẳng chứa trục Ox vng góc với mặt phẳng (Q):x+y+z−3=0 Phương trình mặt phẳng (P) là:
A.y+z=0 B.y−z=0 C.y−z−1=0 D.y−2z=0
Câu 25. Trong không gian với hệ trục tọa độ Oxyz Phương trình mặt phẳng chứa trục Ox qua điểm I(2; 3;1− ) là:
A 3y z+ =0 B 3x y+ =0 C y−3z=0 D. y+3z=0
Câu 26. Trong không gian với hệ toạ độ Oxyz, cho ba điểm A2; 1;1 , 1;0;4 B và C0; 2; 1 Phương trình mặt phẳng qua A vng góc với đường thẳng BC là:
A.2x y 2z 5 B.x2y 3z C x2y 5z D.x2y5z 5
(13)A. 5x+3y−4z+ =9 B x+3y−5z+21 0= C x y+ +2z− =3 D 5x+3y−4z=0
Câu 28. Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng ( )α qua M(0; 2;3− ), song song với đường thẳng :
2
x y
d − = + =z
− vng góc với mặt phẳng ( )β :x y z+ − =0 có phương trình:
A 2x−3y−5z− =9 B 2x−3y+5z− =9 C 2x+3y+5z+ =9 D 2x+3y+5z− =9
Câu 29. Trong không gian với hệ trục tọa độ Oxyz Tọa độ giao điểm M mặt phẳng ( )P : 2x+3y z+ − =4 với trục Ox ?
A.M(0,0,4) B. 0, ,04
M
C.M(3,0,0) D M(2,0,0)
Câu 30. Trong không gian với hệ toạ độ Oxyz, gọi mặt phẳng qua hình chiếu 5;4;3
A lên trục tọa độ Phương trình mặt phẳng là:
A.12x15y20z60 0 B.12x15y20z60 0
C
5
x y z D. 60 0
5
x y z
Câu 31. Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng ( )α qua hai điểm A5; 2;0 , 3;4;1
B có vectơ phương a1;1;1 Phương trình mặt phẳng ( )α là: A 5x9y14z0 B.x y 7
C. 5x9y14z 7 D. 5x 9y14z 7
Câu 32. Trong không gian với hệ trục tọa độ Oxyz, có mặt phẳng song song với mặt phẳng ( ) :P x y z+ + − =6 0 tiếp xúc với mặt cầu (S):x2 +y2+z2 =12?
A B Khơng có C D
Câu 33. Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng ( )P x: −2y+4x− =3 0, ( )Q −2x+4y−8z+ =5 0, ( )R :3x−6y+12 10 0z− = , ( )W : 4x−8y+8 12 0z− = Có cặp mặt phẳng song song với
A.2 B. C.0 D.1
Câu 34. Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng ( )α :3x m+( −1)y+4z− =2 0, ( )β :nx m+( +2)y+2z+ =4 Với giá trị thực m n, để ( )α song song ( )β
A m=3;n= −6 B m=3;n=6 C m= −3;n=6 D.m= −3;n= −6 Câu 35. Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng ( )P x my m: + +( −1)z+ =2 0,
( )Q : 2x y− +3z− =4 Giá trị số thực m để hai mặt phẳng ( ) ( )P Q, vng góc
A.m=1 B
2
m= − C.m=2 D
2 m=
Câu 36. Trong không gian với hệ trục tọa độ Oxyz Cho hai mặt phẳng ( )α :x−2y+2z− =3 0, ( )β :x−2y+2z− =8 Khoảng cách hai mặt phẳng ( ) ( )α , β ?
A. (( ) ( ), )
d α β = B. (( ) ( ), ) 11
d α β = C.d(( ) ( )α , β )=5 D. (( ) ( ), )
(14)Câu 37. Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng ( )P x: +2y z− + =1 Gọi mặt phẳng ( )Q mặt phẳng đối xứng mặt phẳng ( )P qua trục tung Khi phương trình mặt phẳng ( )Q ?
A.x+2y z− − =1 B.x−2y z− + =1 C.x+2y z+ + =1 D.x−2y z− − =1 Câu 38. Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng ( )P : 2x−3y+5z− =4 Gọi mặt
phẳng ( )Q mặt phẳng đối xứng mặt phẳng ( )P qua mặt phẳng (Oxz) Khi phương trình mặt phẳng ( )Q ?
A ( )P : 2x−3y−5z− =4 B ( )P : 2x−3y+5z− =4 C ( )P : 2x+3y+5z− =4 D ( )P : 2x−3y+5z+ =4
Câu 39. Trong không gian với hệ toạ độ Oxyz, mặt phẳng qua điểm A2; 1;5 vng góc với hai mặt phẳng P :3x2y z 7 Q :5x4y 3z Phương trình mặt phẳng là:
A x2y z 5 B.2x4y2z 10 C.2x4y2z10 0 D.x2y z 5
Câu 40. Trong không gian với hệ toạ độ Oxyz,tọa độ điểm M nằm trục Oy cách hai mặt phẳng: ( )P x y z: + − + =1 ( )Q x y z: − + − =5 là:
A.M(0; 3;0− ) B.M(0;3;0) C.M(0; 2;0− ) D M(0;1;0)
Câu 41. Trong không gian với hệ toạ độ Oxyz, gọi ( )α mặt phẳng qua G(1;2;3) cắt trục , ,
Ox Oy Oz điểm A B C, , (khác gốc O) cho G trọng tâm tam giác
ABC Khi mặt phẳng ( )α có phương trình:
A.3x+6y+2 18 0z+ = B.6x+3y+2 18 0z− =
C.2x y+ +3z− =9 D.6x+3y+2z+ =9
Câu 42. Trong không gian với hệ toạ độ Oxyz, gọi ( )α mặt phẳng song song với mặt phẳng ( )β : 2x−4y+4z+ =3 cách điểm A(2; 3;4− ) khoảng k=3 Phương trình mặt phẳng ( )α là:
A.2x−4y+4z− =5 2x−4y+4 13 0z− = B x−2y+2z−25 0=
C.x−2y+2z− =7
D.x−2y+2z−25 0= x−2y+2z− =7
Câu 43. Trong không gian với hệ toạ độ Oxyz,cho hai đường thẳng d d1, 2lần lượt có phương trình 1:x22 y12 z33
d − = − = − , d2: x21 y 12 z41
− = − = −
− Phương trình mặt phẳng ( )α cách hai đường thẳng d d1, là:
A.7x−2y−4z=0 B.7x−2y−4z+ =3
(15)Câu 44. Trong không gian với hệ toạ độ Oxyz, cho A(1;0;0), B(0; ;0b ), C(0;0;c), (b>0,c>0) mặt phẳng ( )P y z: − + =1 Xác định b c biết mặt phẳng (ABC) vng góc với mặt phẳng
( )P khoảng cách từ O đến (ABC)
A ,
2
b= c= B. 1,
b= c= C 1,
2
b= c= D. ,
b= c=
Câu 45. Trong không gian với hệ toạ độ Oxyz,mặt phẳng qua điểm M5;4;3và cắt tia ,
Ox Oy, Oz đoạn có phương trình là:
A.x y z 12 B.x y z 0 C.5x4y 3z 50 0 D.x y z 0
Câu 46. Trong không gian với hệ trục tọa độ Oxyz, gọi (P)là mặt phẳng chứa trục Oy tạo với mặt phẳng y+z+1=0 góc 600 Phương trình mặt phẳng (P) là:
A.
= + = − 0 z x z x B. = + = − 0 y x y x
C. = − = − − 0 z x z x D. = + = − 0 z x z x
Câu 47. Trong không gian với hệ toạ độ Oxyz, cho hình cầu ( ) (S : x−1) (2+ y−2) (2+ −z 3)2 =1 Phương trình mặt phẳng ( )α chứa trục Oz tiếp xúc với ( )S
A.( )α : 4x−3y+ =2 B.( )α :3x+4y=0
C.( )α :3x−4y=0 D.( )α : 4x−3y=0
Câu 48. Trong không gian với hệ toạ độ Oxyz, tam giácABC cóA(1,2, 1− ),B(−2,1,0),C(2,3,2) Điểm G trọng tâm tam giác ABC Khoảng cách từ A đến mặt phẳng (OGB) ?
A.3 174
29 B
174 29 C. 174 29 D. 174 29
Câu 49. Trong không gian với hệ toạ độ Oxyz, cho hình cầu ( ) (S : x−1) (2+ y−2) (2+ −z 3)2 =16 Phương trình mặt phẳng ( )α chứa Oycắt hình cầu ( )S theo thiết diện đường trịn có chu vi 8π
A.( )α :3x z− =0 B.( )α :3x z+ =0
C.( )α :3x z+ + =2 D.( )α :x−3z=0
Câu 50. Trong không gian với hệ trục tọa độ Oxyz, gọi (P)là mặt phẳng song song với mặt phẳng Oxz
và cắt mặt cầu (x−1)2+(y+2)2+z2 =12theo đường trịn có chu vi lớn Phương trình
) (P là:
A.x−2y+1=0 B.y−2=0 C.y+1=0 D.y+2=0
Câu 51. Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1;2;3) Gọi ( )α mặt phẳng chứa trục Oy cách M khoảng lớn Phương trình ( )α là:
A.x+3z=0 B.x+2z=0 C x−3z=0 D.x=0
Câu 52. Trong không gian với hệ trục toạ độ Oxyz, cho mặt cầu ( ) (S : x−1) (2+ y−2) (2+ −z 3)2 =9, điểm A(0;0;2) Phương trình mặt phẳng ( )P qua A cắt mặt cầu ( )S theo thiết diện hình trịn ( )C có diện tích nhỏ ?
(16)C.( )P :3x+2y+2z− =4 D. ( )P x: −2y+3z− =6
Câu 53. Trong không gian với hệ toạ độ Oxyz, cho điểm N(1;1;1) Viết phương trình mặt phẳng ( )P
cắt trục Ox Oy Oz, , A B C, , (không trùng với gốc tọa độO) cho N tâm đường tròn ngoại tiếp tam giác ABC
A.( )P x y z: + + − =3 B.( )P x y z: + − + =1
C.( )P x y z: − − + =1 D.( )P x: +2y z+ − =4
Câu 54. Trong không gian với hệ toạ độ Oxyz, viết phương trình mặt phẳng ( )P qua hai điểm
(1;1;1)
A , B(0;2;2) đồng thời cắt tia Ox Oy, hai điểm M N, (không trùng với gốc tọa độO) cho OM =2ON
A.( )P : 2x+3y z− − =4 B.( )P x: +2y z− − =2
C.( )P x: −2y z− + =2 D.( )P :3x y+ +2z− =6
Câu 55. Trong không gian với hệ trục tọa độ Oxyz, cho tứ diện ABCD có đỉnh A(1;2;1), ( 2;1;3)
B − , C(2; 1;3− ) D(0;3;1) Phương trình mặt phẳng ( )α qua A B, đồng thời cách C D,
A.( )P1 : 4x+2y+7 15 0;z− = ( )P x2 : −5 y− +z 10 0=
B.( )P1 : 6x−4y+7z− =5 0;( )P2 :3x y+ +5 10 0z+ =
C.( )P1 : 6x−4y+7z− =5 0;( )P2 : 2x+3 0z− = . D ( )P1 :3x+5y+7z−20 0;= ( )P x2 : +3y+3 10 0z− =
Câu 56. Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(2;1;3 ; 3;0;2 ; 0; 2;1) (B ) (C − ) Phương trình mặt phẳng ( )P qua A B, cách C khoảng lớn ?
A.( )P :3x+2y z+ − =11 B.( )P :3x y+ +2 13 0z− = C.( )P : 2x y− +3 12 0z− = D.( )P x y: + − =3
Câu 57. Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng qua điểm M1;2;3 cắt trục
Ox, Oy, Oz A , B ,C ( khác gốc toạ độ O) cho M trực tâm tam giác ABC Mặt phẳng có phương trình là:
A.x2y 3z 14 B 1
x y z
C.3x2y z 10 D.x2y3z14 0
Câu 58. Trong không gian với hệ trục tọa độ Oxyz, cho điểm G(1;4;3) Viết phương trình mặt phẳng cắt trục Ox,Oy,Oz A,B,C cho G trọng tâm tứ diện OABC?
A.
4 16 12
x y+ + z = B. 1
12 16
4+ + =
z y
x C 1
9 12 + + =
z y
x D. 0
9 12 3+ + =
z y
x
Câu 59. Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1;2;3) Mặt phẳng(P) qua M cắt tia Ox,Oy,Oz A B C, , cho thể tích khối tứ diện OABC nhỏ có phương trình là:
(17)Câu 60. Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng có phương trình ( )P x+2y+2 0z− = ( )Q x: +2y z− − =3 mặt cầu ( ) (S : x−1) (2+ y+2)2 +z2 =5.Mặt
phẳng ( )α vuông với mặt phẳng ( ) ( )P Q, đồng thời tiếp xúc với mặt cầu ( )S A 2x y+ − =1 0;2x y+ + =9 B 2x y− − =1 0;2x y− + =9 C.x−2y+ =1 0;x−2y− =9 D.2x y− + =1 0; 2x y− − =9
Câu 61. Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng ( )P x: +2y−2 0z+ = , điểm (1;0;0 , ( 1;2;0))
A B − ( ) (S : x−1) (2+ y−2)2+z2 =25 Viết phương trình mặt phẳng ( )α vuông
với mặt phẳng ( )P , song song với đường thẳng AB, đồng thời cắt mặt cầu ( )S theo đường trịn có bán kính r=2
A 2x+2y+3 11 0; 2z+ = x+2y+3z−23 0= B 2x−2y+3 11 0; 2z+ = x−2y+3z−23 0= C 2x−2y+3 11 0; 2z− = x−2y+3z+23 0= D 2x+2y+3 11 0; 2z− = x+2y+3z+23 0=
Câu 62. Trong không gian với hệ trục toạ độ Oxyz,cho 3điểm A(1;1; 1− ),B(1;1;2),C(−1;2; 2− ) mặt phẳng ( )P x: −2y+2 0z+ = Lập phương trình mặt phẳng ( )α qua A, vng góc với mặt phẳng ( )P cắt đường thẳng BC I cho IB=2IC biết tọa độ điểm I số nguyên A ( )α : 2x y− −2z− =3 B ( )α : 4x+3y−2z− =9
C ( )α : 6x+2y z− − =9 D ( )α : 2x+3y+2z− =3
Câu 63. Trong không gian với hệ trục toạ độ Oxyz, cho hai mặt phẳng ( )P x y z+ + − =3 0, ( )Q : 2x+3y+4 0z− = Lập phương trình mặt phẳng ( )α qua A(1;0;1) chứa giao tuyến hai mặt phẳng ( ) ( )P Q, ?
A.( )α : 2x+3y z+ − =3 B.( )α : 7x+8y+9 16 0z− = C.( )α : 7x+8y+9 17 0z− = D.( )α : 2x−2y z+ − =3
Câu 64. Trong không gian với hệ trục toạ độ Oxyz,cho đường thẳng
1:2x y 11 1z
d = − =
− d2:x11 2y z11
− +
= = Viết phương trình mặt phẳng ( )α vng góc với d1,cắt
Oz A cắt d2 B ( có tọa nguyên ) cho AB=3
A.( )α :10x−5y+5 0z+ = B.( )α : 4x−2y+2 0z+ =
C.( )α : 2x y z− + + =1 D.( )α : 2x y z− + + =2
Câu 65. Trong không gian với hệ trục toạ độ Oxyz,cho tứ diện ABCD có điểm (1;1;1 , 2;0;2) ( )
A B ,C(− −1; 1;0 ,) (D 0;3;4) Trên cạnh AB AC AD, , lấy điểm ', ', '
B C D thỏa :
' ' '
AB AC AD
AB + AC + AD = Viết phương trình mặt phẳng (B C D' ' ') biết tứ diện
' ' '
AB C D tích nhỏ ?
(18)Câu 66. Trong không gian với hệ toạ độ Oxyz,cho ( )P x: +4y−2z− =6 ,( )Q x: −2y+4z− =6 Lập phương trình mặt phẳng ( )α chứa giao tuyến của( ) ( )P Q, cắt trục tọa độ điểm A B C, , cho hình chóp O ABC hình chóp
(19)C. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM
I – ĐÁP ÁN 8.3
1 10 11 12 13 14 15 16 17 18 19 20 A B A C A D A C A A B D A C C A A D A B 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
B A A B D C A D D A C C B C D A D C A A 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 B D D C A A C A A D A B A C D A A B B D 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
A A B C A B
II –HƯỚNG DẪN GIẢI Câu 1. Chọn khẳng định sai
A Nếu n vectơ pháp tuyến mặt phẳng )(P kn k ( ∈) vectơ pháp tuyến mặt phẳng )(P
B Một mặt phẳng hồn tồn xác định biết điểm qua vectơ pháp tuyến
C Mọi mặt phẳng không gian Oxyz có phương trình dạng:
2 2
0 ( 0)
Ax By Cz D+ + + = A B C+ + ≠
D Trong không gian Oxyz, phương trình dạng: Ax By Cz D+ + + =0 (A B C2+ 2+ ≠0)
đều phương trình mặt phẳng Câu 2. Chọn khẳng định
A Nếu hai vectơ pháp tuyến hai mặt phẳng phương hai mặt phẳng song song B Nếu hai mặt phẳng song song hai vectơ pháp tuyến tương ứng phương
C Nếu hai mặt phẳng trùng hai vectơ pháp tuyến tương ứng
D Nếu hai vectơ pháp tuyến hai mặt phẳng phương hai mặt phẳng trùng Câu 3. Chọn khẳng định sai
A Nếu hai đường thẳngAB,CD song song vectơ AB CD, vectơ pháp tuyến mặt phẳng (ABCD)
B Cho ba điểm A,B,C không thẳng hàng, vectơ AB AC, vectơ pháp tuyến mặt phẳng(ABC)
C Cho hai đường thẳng AB,CD chéo nhau, vectơ AB CD, vectơ pháp tuyến mặt phẳng chứa đường thẳng AB song song với đường thẳng CD
D Nếu hai đường thẳng AB,CD cắt vectơ AB CD, vectơ pháp tuyến mặt
phẳng (ABCD)
Câu 4. Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng ( )α :Ax By Cz D+ + + =0 Tìm khẳng định sai mệnh đề sau:
A A=0,B≠0,C≠0,D≠0 ( )α song song với trục Ox B D=0 ( )α qua gốc tọa độ
C. A≠0,B=0,C≠0,D=0 ( )α song song với mặt phẳng (Oyz)
(20)Câu 5. Trong không gian với hệ toạ độ Oxyz, cho A a( ;0;0), B(0; ;0b ), C(0;0;c), (abc≠0) Khi phương trình mặt phẳng (ABC) là:
A x y z
a b c+ + = B
x y z b a c+ + =
C x y z
a c b+ + = D
x y z c b a+ + =
Câu 6. Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng ( )α :3x z− =0 Tìm khẳng định mệnh đề sau:
A ( )α / /Ox B ( ) (α / / xOz)
C ( )α / /Oy D. ( )α ⊃Oy
Câu 7. Trong không gian với hệ toạ độ Oxyz Mặt phẳng (P) − +x 3z− =2 có phương trình song song với:
A Trục Oy B Trục Oz C Mặt phẳng Oxy D Trục Ox
Câu 8. Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P) có phương trình 3x+2y z− + =1 Mặt phẳng (P) có vectơ pháp tuyến là:
A n(3;2;1) B n( 2;3;1)− C n(3;2; 1)− D n(3; 2; 1)− −
Câu 9. Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P) có phương trình − +2x 2y z− − =3 Mặt phẳng (P) có vectơ pháp tuyến là:
A.n(4; 4;2)− B n( 2;2; 3)− − C n( 4;4;2)− D n(0;0; 3)−
Câu 10. Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(1; 2;1− ), B(−1;3;3), C(2; 4;2− ) Một vectơ pháp tuyến n mặt phẳng (ABC) là:
A. n=(9;4; 1− ) B n =(9;4;1) C n=(4;9; 1− ) D n= −( 1;9;4)
Hướng dẫn giải Phương pháp tự luận
Ta có AB= −( 2;5;2), AC=(1; 2;1− )
( )
, 9;4;
n AB AC
⇒ = = − Phương pháp trắc nghiệm
Sử dụng MTBT tính tích có hướng Có AB= −( 2;5;2), AC =(1; 2;1− ) Chuyển sang chế độ Vector: Mode
Ấn tiếp – 1: Nhập tọa độ AB vào vector A
Sau ấn AC Shift – – – – Nhập tọa độ AC vào vector B Sau ấn AC
Để nhân AB AC, ấn Shift – –3 – X Shift - – - =
Câu 11. Trong không gian với hệ toạ độ Oxyz Điểm sau thuộc mặt phẳng (P) − + − =2x y A ( 2;1;0)− B.( 2;1; 5)− − C (1;7;5) D ( 2;2; 5)− −
(21)Thay tọa độ điểm vào phương trình mặt phẳng, điểm làm cho vế trái điểm thuộc mặt phẳng
Phương pháp trắc nghiệm
Nhập phương trình mặt phẳng (P) vào máy tính dạng sau: −2X Y+ +0A− =5 0, sau dùng hàm CALC nhập tọa độ ( ; y; )x z điểm vào Nếu điểm thuộc mặt phẳng Câu 12. Trong khơng gian với hệ toạ độ Oxyz Phương trình mặt phẳng (P) qua điểm A( 1;2;0)−
nhận n( 1;0;2)− VTPT có phương trình là:
A − +x 2y− =5 B − +x 2z− =5 C − +x 2y− =5 D − +x 0z− =
Hướng dẫn giải
Mặt phẳng (P) qua điểm A( 1;2;0)− nhận n( 1;0;2)− VTPT có phương trình là: 1(x 1) 0(y 2) 2(z 0)
− + + − + − = ⇔ − − +x 2z=0⇔ − +x 0z− = Vậy − +x 0z− =
Phương pháp trắc nghiệm (nên có)
Từ tọa độ VTPT suy hệ số B=0, loại đáp án − +x 2y− =5 − +x 2y− =5 Chọn PT lại cách thay tọa độ điểm A vào
Câu 13. Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(3; 2; 2− − ), B(3;2;0), C(0;2;1) Phương trình mặt phẳng (ABC) là:
A.2x−3y+6z=0 B 4y+2z− =3
C 3x+2y+ =1 D 2y z+ − =3
Hướng dẫn giải Phương pháp tự luận
(0;4;2)
AB=
, AC= −( 3;4;3)
(ABC) qua A(3; 2; 2− − ) có vectơ pháp tuyến AB AC, = (4; 6;12− ) (=2 2; 3;6− ) (ABC): 2x 3y 6z
⇒ − + =
Phương pháp trắc nghiệm
Sử dụng MTBT tính tích có hướng
Hoặc thay tọa độ điểm A, B, C vào mặt phẳng xem có thỏa hay khơng?
Câu 14. Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(−1;0;1),B(−2;1;1) Phương trình mặt phẳng trung trực đoạn AB là:
A.x−y−2=0 B.x−y+1=0 C.x y− + =2 D.−x+ y+2=0 Hướng dẫn giải
Phương pháp tự luận +) AB= −( 1;1;0)
+) Trung điểm I đoạnAB ( ; ;1)3
2
I −
Mặt phẳng trung trực đọan AB ( 3) ( 1)
2
x y
− + + − = hay x y− + =2 0. Phương pháp trắc nghiệm
Do ( )α mặt phẳng trung trực AB nên ( )α ⊥AB
Kiểm tra mặt phẳng ( )α có nα =k AB
và chứa điểm I Cả đáp án thỏa điều kiện nα =k AB
(22)Cả PT chung dạng: x–y+0z+D=0, nên để kiếm tra PT thỏa tọa độ điểm I ta bấm máy tính: nhập A, B, C tọa độ I, D số hạng tự PT, làm chọn
Câu 15. Trong khơng gian với hệ toạ độ Oxyz Mặt phẳng (P) qua điểm A( 1;0;0)− , B(0;2;0), (0;0; 2)
C − có phương trình là:
A − + + − =2x y z B − − − + =2x y z C − + − − =2x y z D − + − + =2x y z
Hướng dẫn giải Phương pháp tự luận
Theo cơng thức phương trình mặt chắn ta có: 1 2
x + +y z =
− − ⇔ − + − − =2x y z 0. Vậy − + − − =2x y z 0
Phương pháp trắc nghiệm
Nhập phương trình mặt phẳng (P) vào máy tính, sau dùng hàm CALC nhập tọa độ ( ; y; )x z điểm vào Nếu tất điểm cho kết đó mặt phẳng cần tìm Chỉ cần điểm làm cho phương trình khác loại
Câu 16. Trong không gian với hệ trục toạ độ Oxyz, cho điểm A(−1;2;1) hai mặt phẳng ( )α : 2x+4y−6z− =5 ( )β :x+2y−3z=0 Tìm khẳng định đúng?
A Mặt phẳng ( )β qua điểm A song song với mặt phẳng ( )α ;
B Mặt phẳng ( )β qua điểm A không song song với mặt phẳng ( )α ; C Mặt phẳng ( )β không qua điểm A không song song với mặt phẳng ( )α ; D Mặt phẳng ( )β không qua điểm A song song với mặt phẳng ( )α ;
Hướng dẫn giải Có nα =(2;4; 6− )
, nβ =(1;2; 3− )
( ) ( )α / / β
⇒
Và A∈( )β
Câu 17. Trong không gian với hệ trục toạ độ Oxyz, cho điểm M(2; 1;3− ) mặt phẳng: ( )α :x− =2 0, ( )β :y+ =1 0, ( )γ :z− =3 Tìm khẳng định sai
A ( )α / /Ox B ( )β qua M C ( ) (γ / / xOy) D ( ) ( )β ⊥ γ
Câu 18. Trong không gian với hệ trục toạ độ Oxyz Phương trình mặt phẳng qua A(2;5;1) song song với mặt phẳng (Oxy) là:
A 2x+5y z+ =0 B x− =2
C y− =5 D. z− =1
Hướng dẫn giải Phương pháp tự luận
Mặt phẳng qua A(2;5;1) có vectơ pháp tuyến k=(0;0;1) có phương trình: z− =1 Phương pháp trắc nghiệm
(23)Câu 19. Trong không gian với hệ trục toạ độ Oxyz Mặt phẳng qua M(1;4;3) vng góc với trục
Oy có phương trình là:
A. y− =4 B x− =1 C z− =3 D x+4y+3z=0
Hướng dẫn giải Phương pháp tự luận
Mặt phẳng qua M(1;4;3) có vectơ pháp tuyến j=(0;1;0) có phương trình y− =4 Phương pháp trắc nghiệm
Mặt phẳng qua M vng góc với trục Oy có phương trình y y= M
Câu 20. Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng ( )α : 6x−3y−2z− =6 Khẳng định sau sai?
A Mặt phẳng ( )α có vectơ pháp tuyến u(−6,3,2) B Khoảng cách từ O đến mặt phẳng ( )α
8 C Mặt phẳng ( )α chứa điểm A(1,2, 3− )
D Mặt phẳng ( )α cắt ba trục Ox Oy Oz, ,
Hướng dẫn giải: Do ( ,( )) 6
7 36
d O α = =
+ + .
Câu 21. Trong không gian với hệ trục toạ độ Oxyz Biết A B C, , số thực khác 0, mặt phẳng chứa trục Ozcó phương trình là:
A.Ax Bz C+ + =0 B. Ax By+ =0
C.By Az C+ + =0 D Ax By C+ + =0
Hướng dẫn giải
Trục Oz giao tuyến mặt phẳng (Ozx Oyz) (, ) nên mặt phẳng chứa Oz thuộc chùm mặt phẳng tạo mặt (Ozx Oyz) (, )⇒Ax By+ =0
Vậy Ax By+ =0
Câu 22. Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(5;1;3),B(1;2;6),C(5;0;4),D(4;0;6) Viết phương trình mặt phẳng qua D song song với mặt phẳng (ABC)
A.x+ y+z−10=0 B.x+y+z−9=0
C.x+ y+z−8=0 D x+2y+z−10=0
Hướng dẫn giải Phương pháp tự luận
+)AB= −( 4;1;3), AC=(0; 1;1)− ⇒ AB AC, = (4;4;4)
+) Mặt phẳng qua Dcó VTPT n =(1;1;1)có phương trình: x+y+z−10=0 +) Thay tọa độ điểm A vào phương trình mặt phẳng thấy khơng thỏa mãn Vậy phương trình mặt phẳng thỏa mãn yêu cầu toán là: x+y+z−10=0 Phương pháp trắc nghiệm
(24)Sử dụng MTBT giải hệ bậc ẩn, nhập tọa độ điểmA B C, , vào hệ, chọn D=1 ta
1, 1,
9 9
A= B= C= (Trong trường hợp chọn D=1 vô nghiệm ta chuyển sang chọn D=0) Suy mặt phẳng(ABC) có VTPT n=(1;1;1)
Mặt phẳng qua Dcó VTPT n=(1;1;1)có phương trình: x+y+z−10=0 Thay tọa độ điểm A vào phương trình mặt phẳng thấy không thỏa mãn Vậy chọn A
Câu 23. Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(5;1;3),B(1;2;6),C(5;0;4),D(4;0;6) Viết phương trình mặt phẳng chứa AB song song với CD
A.2x+5y z+ −18 0= B.2x−y+3z+6=0 C.2x− y+z+4=0 D.x y z+ + − =9
Hướng dẫn giải Phương pháp tự luận
+) AB= −( 4;1;3), CD= −( 1;0;2) ⇒ AB CD, =(2;5;1)
+) Mặt phẳng quaA có VTPT n =(2;5;1)có phương trình là: 2x+5y z+ −18 0= +) Thay tọa độ điểm Cvào phương trình mặt phẳng thấy khơng thỏa mãn
Vậy phương trình mặt phẳng thỏa mãn yêu cầu toán là: 2x+5y z+ −18 0=
Phương pháp trắc nghiệm
+) Sử dụng MTBT kiểm tra tọa độ điểm A thỏa mãn phương trình hay khơng? thấy đáp án B, C không thỏa mãn
+) Kiểm tra điều kiện VTPT mặt phẳng cần tìm vng góc với véctơ CD ta loại đáp D
Vậy chọn A
Câu 24. Trong không gian với hệ trục tọa độ Oxyz, gọi (P)là mặt phẳng chứa trục Ox vng góc với mặt phẳng (Q):x+y+z−3=0 Phương trình mặt phẳng (P) là:
A.y+z=0 B.y−z=0 C.y−z−1=0 D.y−2z=0 Hướng dẫn giải
Phương pháp tự luận
+) Trục Ox véctơ đơn vị i=(1;0;0) Mặt phẳng ( )Q có VTPT n( )Q =(1;1;1)
Mặt phẳng (P)chứa trục Ox vng góc với (Q):x+ y+z−3=0nên (P) có VTPT
( )
, Q (0; 1;1)
n= i n = −
Phương trình mặt phẳng (P) là: y−z=0 Phương pháp trắc nghiệm
+) Mặt phẳng (P)chứa trục Ox nên loại đáp án C
+) Kiểm tra điều kiện VTPT mặt phẳng ( )Q vng góc với VTPT (P) ta loại tiếp đáp án B, D
Vậy chọn A
Câu 25. Trong không gian với hệ trục tọa độ Oxyz Phương trình mặt phẳng chứa trục Ox qua điểm I(2; 3;1− ) là:
A 3y z+ =0 B 3x y+ =0 C y−3z=0 D. y+3z=0
(25)Trục Ox qua A(1;0;0) có i=(1;0;0)
Mặt phẳng qua I(2; 3;1− ) có vectơ pháp tuyến n = i AI, =(0;1;3) có phương trình
y+ z=
Vậy y+3z=0
Câu 26. Trong không gian với hệ toạ độ Oxyz, cho ba điểm A2; 1;1 , 1;0;4 B và C0; 2; 1 Phương trình mặt phẳng qua A vng góc với đường thẳng BC là:
A.2x y 2z 5 B.x2y 3z C x2y 5z D.x2y5z 5
Hướng dẫn giải Ta có: CB1;2;5
Mặt phẳng qua A vng góc với đường thẳng BCcó VTPT CB1;2;5nên có phương trình là: x2y 5z
Vậy x2y 5z
Câu 27. Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng ( )α qua A(2; 1;4− ), B(3;2; 1− )
và vuông góc với mặt phẳng ( )Q x y: + +2z− =3 Phương trình mặt phẳng ( )α là: A. 5x+3y−4z+ =9 B x+3y−5z+21 0=
C x y+ +2z− =3 D 5x+3y−4z=0 Hướng dẫn giải
Phương pháp tự luận (1;3; 5)
AB= −
, nQ =(1;1;2)
Mặt phẳng ( )α qua A(2; 1;4− ) có vectơ pháp tuyến
( ) ( )
, Q 10; 6;8 5;3;
AB n
= − − = − −
có phương trình: 5x+3y−4z+ =9 Vậy 5x+3y−4z+ =9
Phương pháp trắc nghiệm Do ( ) ( )α ⊥ Q ⇒n nα Q =0
, kiểm tra mp ( )α có n nα Q =0
Vậy chọn A
Câu 28. Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng ( )α qua M(0; 2;3− ), song song với đường thẳng :
2
x y
d − = + =z
− vng góc với mặt phẳng ( )β :x y z+ − =0 có phương trình:
A 2x−3y−5z− =9 B 2x−3y+5z− =9 C 2x+3y+5z+ =9 D 2x+3y+5z− =9
Hướng dẫn giải Phương pháp tự luận
Ta có ud =(2; 3;1− )
, nβ =(1;1; 1− )
Mặt phẳng ( )α qua M(0; 2;3− ) có vectơ pháp tuyến nα =u nd, β=(2;3;5)
( )α : 2x 3y 5z
⇒ + + − =
(26)Do ( ) ( ) ( ) ( )
/ /
Q Q
n kn
d
Q n n
α α
α α
=
⇔
⊥ =
kiểm tra mp ( )α thỏa hệ Vậy chọn A
Câu 29. Trong không gian với hệ trục tọa độ Oxyz Tọa độ giao điểm M mặt phẳng ( )P : 2x+3y z+ − =4 với trục Ox ?
A.M(0,0,4) B. 0, ,04
M
C.M(3,0,0) D M(2,0,0) Hướng dẫn giải:
Gọi M a( ,0,0) điểm thuộc trục Ox Điểm M∈( )P ⇒2a− = ⇔ =4 a Vậy M(2,0,0) giao điểm ( )P Ox,
Phương pháp trắc nghiệm
Giải hệ PT gồm PT (P) (Ox):
2 0
0
x y z
y z
+ + − =
= =
; bấm máy tính
Câu 30. Trong không gian với hệ toạ độ Oxyz, gọi mặt phẳng qua hình chiếu 5;4;3
A lên trục tọa độ Phương trình mặt phẳng là:
A. 12x15y20z60 0 B.12x15y20z60 0
C
5
x y z D. 60 0
5
x y z
Hướng dẫn giải
Gọi M N P, , hình chiếu vng góc điểm A trục Ox Oy Oz, , Ta có: M5;0;0, N0;4;0, P0;0;3
Phương trình mặt phẳng qua M5;0;0, N0;4;0, P0;0;3là: 12 15 20 60
5
x y z x y z
Vậy 12x15y20z60 0
Câu 31. Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng ( )α qua hai điểm A5; 2;0 , 3;4;1
B có vectơ phương a1;1;1 Phương trình mặt phẳng ( )α là: A 5x9y14z0 B.x y 7
C. 5x9y14z 7 D. 5x 9y14z 7 Hướng dẫn giải
Ta có: AB8;6;1
Mặt phẳng ( )α qua hai điểm A5; 2;0 , B3;4;1 có vectơ phương a1;1;1 nên có VTPT là: n AB a, 5;9; 14
Mặt phẳng ( )α qua điểm A5; 2;0 có VTPT n5;9; 14 có phương trình là: 5x9y14z 7
Vậy 5x9y14z 7
Câu 32. Trong không gian với hệ trục tọa độ Oxyz, có mặt phẳng song song với mặt phẳng ( ) :P x y z+ + − =6 tiếp xúc với mặt cầu (S):x2 +y2+z2 =12?
A B Khơng có C D
(27)Phương pháp tự luận
+) Mặt phẳng ( )Q song song với mặt phẳng ( )P có dạng: x y z D+ + + =0 (D≠ −6)
+) Do mặt phẳng ( )Q tiếp xúc với mặt cầu (S):x2 +y2 +z2 =12 nên d I Q( ;( ))=R với Ilà tâm cầu, R bán kính mặt cầu
Tìm D=6 D= −6(loại) Vậy có mặt phẳng thỏa mãn
Câu 33. Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng ( )P x: −2y+4x− =3 0, ( )Q −2x+4y−8z+ =5 0, ( )R :3x−6y+12 10 0z− = , ( )W : 4x−8y+8 12 0z− = Có cặp mặt phẳng song song với
A.2 B. C.0 D.1
Hướng dẫn giải: Hai mặt phẳng song song
' ' ' '
a b c d
a =b = c ≠ d
Xét ( )P ( )Q : 4
− −
= = ≠
− − ⇒( ) ( )P Q Xét ( )P ( )R :
3 12 10
− −
= = ≠
− − ⇒( ) ( )P R ( ) ( )Q R
⇒
Xét ( )P ( )W : 4 8
−
= ≠
−
Xét ( )Q ( )W : 8
− = ≠ −
− Xét ( )R ( )W : 12
4 8 −
= ≠
−
Vậy có cặp mặt phẳng song song
Câu 34. Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng ( )α :3x m+( −1)y+4z− =2 0, ( )β :nx m+( +2)y+2z+ =4 Với giá trị thực m n, để ( )α song song ( )β
A m=3;n= −6 B m=3;n=6 C m= −3;n=6 D.m= −3;n= −6 Hướng dẫn giải:
Để ( )α song song ( )β 4 3; 2
m m n
n m −
⇒ = = ≠ ⇔ = − =
+ −
Vậy m= −3;n=6
Câu 35. Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng ( )P x my m: + +( −1)z+ =2 0, ( )Q : 2x y− +3z− =4 Giá trị số thực m để hai mặt phẳng ( ) ( )P Q, vng góc
A.m=1 B
2
m= − C.m=2 D
2 m= Hướng dẫn giải:
Để mặt phẳng ( ) ( )P Q, vng góc 1.2 1( ) ( 0)
p Q
n n m m m
⇒ = ⇔ + − + − = ⇔ = Vậy
2 m=
(28)A. (( ) ( ), )
d α β = B. (( ) ( ), ) 11
d α β = C.d(( ) ( )α , β )=5 D. (( ) ( ), )
d α β =
Hướng dẫn giải:
Lấy M(1,0,1) thuộc mặt phẳng ( )α Ta có (( ) ( )) ( ( ))
( )2 2
5
, ,
3
1 2
d α β =d M β = =
+ − +
Vậy (( ) ( ), )
d α β =
Câu 37. Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng ( )P x: +2y z− + =1 Gọi mặt phẳng ( )Q mặt phẳng đối xứng mặt phẳng ( )P qua trục tung Khi phương trình mặt phẳng ( )Q ?
A.x+2y z− − =1 B.x−2y z− + =1 C.x+2y z+ + =1 D.x−2y z− − =1 Hướng dẫn giải:
Gọi M x y z( , , ) điểm thuộc mặt phẳng ( )P Điểm M'(−x y z, ,− ) điểm đối xứng M qua trục tung ⇒( )Q :− +x 2y z+ + =1 mặt phẳng qua M' mặt phẳng đối xứng của( )P
Vậy x−2y z− − =1
Câu 38. Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng ( )P : 2x−3y+5z− =4 Gọi mặt phẳng ( )Q mặt phẳng đối xứng mặt phẳng ( )P qua mặt phẳng (Oxz) Khi phương trình mặt phẳng ( )Q ?
A ( )P : 2x−3y−5z− =4 B ( )P : 2x−3y+5z− =4 C ( )P : 2x+3y+5z− =4 D ( )P : 2x−3y+5z+ =4
Hướng dẫn giải
Gọi ( , , )M x y z điểm thuộc mặt phẳng ( )P Điểm M x y z' , ,( − ) điểm đối xứng M qua trục tung ⇒( )Q : 2x+3y+5z− =4 mặt phẳng qua M' mặt phẳng đối xứng ( )P
Vậy ( )P : 2x+3y+5z− =4
Câu 39. Trong không gian với hệ toạ độ Oxyz, mặt phẳng qua điểm A2; 1;5 vng góc với hai mặt phẳng P :3x2y z 7 Q :5x4y 3z Phương trình mặt phẳng là:
A x2y z 5 B.2x4y2z 10 C.2x4y2z10 0 D.x2y z 5
Hướng dẫn giải Mặt phẳng (P) có VTPT nP =(3; 2;1− )
Mặt phẳng (Q) có VTPT lànQ =(5; 4;3− )
Mặt phẳng vng góc với mặt phẳng P :3x2y z 7 0, Q :5x4y 3z nên có VTPT lànP =n nP, Q= − − −( 2; 4; 2)
(29)
Câu 40. Trong không gian với hệ toạ độ Oxyz,tọa độ điểm M nằm trục Oy cách hai mặt phẳng: ( )P x y z: + − + =1 ( )Q x y z: − + − =5 là:
A.M(0; 3;0− ) B.M(0;3;0) C.M(0; 2;0− ) D M(0;1;0)
Hướng dẫn giải Ta có M Oy∈ ⇒M(0; ;0m )
Giả thiết có d M P( ,( ))=d M Q( ,( ))
3
m+ − −m
⇔ = ⇔ = −m
Vậy M(0; 3;0− )
Câu 41. Trong không gian với hệ toạ độ Oxyz, gọi ( )α mặt phẳng qua G(1;2;3) cắt trục , ,
Ox Oy Oz điểm A B C, , (khác gốc O) cho G trọng tâm tam giác
ABC Khi mặt phẳng ( )α có phương trình:
A.3x+6y+2 18 0z+ = B.6x+3y+2 18 0z− =
C.2x y+ +3z− =9 D.6x+3y+2z+ =9 Hướng dẫn giải
Phương pháp tự luận
Gọi A a( ;0;0), B(0; ;0b ), C(0;0;c) giao điểm mặt phẳng ( )α trục Ox Oy Oz, , Phương trình mặt phẳng ( )α :x y z
a b c+ + = (a b c, , ≠0)
Ta có G trọng tâm tam giác ABC
1
3 3
2
3
9
3
a
a
b b
c c
=
=
⇒ = ⇔ =
=
=
( ): 18
3
x y z x y z
α
⇒ + + = ⇔ + + − =
Câu 42. Trong không gian với hệ toạ độ Oxyz, gọi ( )α mặt phẳng song song với mặt phẳng ( )β : 2x−4y+4z+ =3 cách điểm A(2; 3;4− ) khoảng k=3 Phương trình mặt phẳng ( )α là:
A.2x−4y+4z− =5 2x−4y+4 13 0z− = B x−2y+2z−25 0=
C.x−2y+2z− =7
D.x−2y+2z−25 0= x−2y+2z− =7
Hướng dẫn giải Vì ( ) ( ) ( )α / / β ⇒ α : 2x−4y+4z m+ =0(m≠3) Giả thiết có d A( ,( )α )=3 32
6
m +
⇔ = 14
50 m m
= −
⇔ = −
Vậy ( )α :x−2y+2z− =7 0, ( )α :x−2y+2z−25 0=
Câu 43. Trong không gian với hệ toạ độ Oxyz,cho hai đường thẳng d d1, 2lần lượt có phương trình 1:x22 y12 z33
d − = − = − , d2: x21 y 12 z41
− = − = −
(30)A.7x−2y−4z=0 B.7x−2y−4z+ =3
C 2x y+ +3z+ =3 D.14x−4y−8z+ =3
Hướng dẫn giải Ta có d1 qua A(2;2;3) có ud1 =(2;1;3)
, d2 qua B(1;2;1) có ud2 =(2; 1;4− )
( 1;1; ;) d1; d2 (7; 2; 4)
AB= − − u u = − −
;
1;
d d
u u AB
⇒ = − ≠ nên d d1, 2 chéo
Do ( )α cách d d1, nên ( )α song song với d d1, 2⇒nα =u ud1; d2=(7; 2; 4− − )
( )α
⇒ có dạng 7x−2y−4z d+ =0
Theo giả thiết d A( ,( )α )=d B( ,( )α ) 69 69
d d
d
− −
⇔ = ⇔ =
( )α :14x 4y 8z
⇒ − − + =
Câu 44. Trong không gian với hệ toạ độ Oxyz, cho A(1;0;0), B(0; ;0b ), C(0;0;c), (b>0,c>0) mặt phẳng ( )P y z: − + =1 Xác định b c biết mặt phẳng (ABC) vng góc với mặt phẳng
( )P khoảng cách từ O đến (ABC)
A ,
2
b= c= B. 1,
b= c= C 1,
2
b= c= D. ,
b= c=
Hướng dẫn giải
Phương trình mặt phẳng (ABC) có dạng 1
x y z bcx cy bz bc
b c
+ + = ⇔ + + − =
Theo giả thiết: ( ) ( ) ( )
( ) ( )2 2 2
0
1 1
1
, 3 3
3
c b b c
ABC P
bc b
d O ABC
bc c b b b
− =
=
⊥
⇔ − ⇔
= =
=
+ +
+
2
3b b 2b
⇔ = + 8 2
2
b b b
⇔ = ⇔ =
2
c
⇒ =
Câu 45. Trong không gian với hệ toạ độ Oxyz,mặt phẳng qua điểm M5;4;3và cắt tia ,
Ox Oy, Oz đoạn có phương trình là:
A.x y z 12 B.x y z 0 C.5x4y 3z 50 0 D.x y z 0
Hướng dẫn giải
Gọi A a ;0;0 , 0; ;0 , 0;0; B a C a(a≠0)là giao điểm mặt phẳng tia ,
Ox Oy, Oz.
Phương trình mặt phẳng qua A, B, C là:x y z
a a a
Mặt phẳng qua điểm M5;4;3 a 12
Ta có 12
12 12 12
x y z x y z
(31)A. = + = − 0 z x z x B. = + = − 0 y x y x
C. = − = − − 0 z x z x D. = + = − 0 z x z x
Hướng dẫn giải Phương pháp tự luận
+) Mặt phẳng (P)chứa trục Oy nên có dạng: Ax Cz+ =0 (A C2+ ≠0)
+) Mặt phẳng (P) tạo với mặt phẳng y+z+1=0 góc 600nên ( ) ( )
( ) ( ) cos60 P Q P Q n n n n = 2 2 2
2 2
C
A C C
A C
⇔ = ⇔ + =
+
2 0 A C
A C A C = ⇔ − = ⇔ = −
Phương trình mặt phẳng (P) là: = + = − 0 z x z x
Phương pháp trắc nghiệm
+) Mặt phẳng (P)chứa trục Oy nên loại đáp án B, C
+)Còn lại hai đáp án A, D chung phương trình thứ hai nên ta thử điều kiện góc phương trình thứ đáp án A thấy thỏa mãn
Câu 47. Trong khơng gian với hệ toạ độ Oxyz, cho hình cầu ( ) (S : x−1) (2+ y−2) (2+ −z 3)2 =1 Phương trình mặt phẳng ( )α chứa trục Oz tiếp xúc với ( )S
A.( )α : 4x−3y+ =2 B.( )α :3x+4y=0 C.( )α :3x−4y=0 D.( )α : 4x−3y=0
Hướng dẫn giải:
Mặt phẳng ( )α chứa trục Oz có dạng : Ax By+ =0 (A2+B2 ≠0)
Ta có : d I( ,( )) A2 2B2
A B
α = ⇔ + =
+
2
4AB B 4A B
⇔ + = ⇔ + = Chọn A=3,B= − ⇒4 ( )α :3x−4y=0
Câu 48. Trong không gian với hệ toạ độ Oxyz, tam giácABC cóA(1,2, 1− ),B(−2,1,0),C(2,3,2) Điểm G trọng tâm tam giác ABC Khoảng cách từ A đến mặt phẳng (OGB) ?
A.3 174
29 B
174 29 C. 174 29 D. 174 29 Hướng dẫn giải
Do G trọng tâm tam giác 1,2,1 3
ABC G
∆ ⇒
Gọi n vtpt mặt phẳng (OGB) 13, , 3
n OG OB
⇒ = ∧ = − −
Phương trình mặt phẳng (OGB x): +2y−13z=0⇒ ( ,( )) 174 29
d A OGB =
(32)A.( )α :3x z− =0 B.( )α :3x z+ =0 C.( )α :3x z+ + =2 D.( )α :x−3z=0
Hướng dẫn giải: Phương trình mặt phẳng ( )α :Ax Cz+ =0(A C2+ ≠0)
Ta có : 2πr=8π ⇔ =r Mà ( )S có tâm I(1,2,3 ,) R=4 Do R r= = ⇒ ∈4 I ( )α ⇔ +A C3 =0
Chọn A=3,C = − ⇒1 ( )α :3x z− =0
Câu 50. Trong không gian với hệ trục tọa độ Oxyz, gọi (P)là mặt phẳng song song với mặt phẳng Oxz
và cắt mặt cầu (x−1)2+(y+2)2+z2 =12theo đường trịn có chu vi lớn Phương trình
) (P là:
A.x−2y+1=0 B.y−2=0 C.y+1=0 D.y+2=0 Hướng dẫn giải
Phương pháp tự luận
Mặt phẳng (P) cắt mặt cầu (x−1)2 +(y+2)2 +z2 =12 theo đường tròn có chu vi lớn nên mặt phẳng (P) qua tâm I(1; 2;0)−
Phương trình mặt phẳng ( )P song song với mặt phẳng Oxz có dạng :Ay B+ =0 Do ( )P qua tâm I(1; 2;0)− có phương trình dạng: y+2=0
Phương pháp trắc nghiệm
+) Mặt phẳng (P) song song với mặt phẳng Oxz nên lọai đáp án D
+) Mặt phẳng (P)đi qua tâm I(1; 2;0)− nên thay tọa độ điểm Ivào phương trình loại đáp án B,C
Câu 51. Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1;2;3) Gọi ( )α mặt phẳng chứa trục Oy cách M khoảng lớn Phương trình ( )α là:
A.x+3z=0 B.x+2z=0 C x−3z=0 D.x=0 Hướng dẫn giải
Phương pháp tự luận
+) Gọi H K, hình chiếu vng góc M mặt phẳng( )α trục
Oy
Ta có : K(0;2;0) ( ,( ))
d M α =MH MK≤
Vậy khoảng cách từ M đến mặt phẳng( )α lớn mặt phẳng( )α qua K vuông góc vớiMK Phương trình mặt phẳng: x+3z=0
Oy M
K H
Câu 52. Trong không gian với hệ trục toạ độ Oxyz, cho mặt cầu ( ) (S : x−1) (2+ y−2) (2+ −z 3)2 =9, điểm A(0;0;2) Phương trình mặt phẳng ( )P qua A cắt mặt cầu ( )S theo thiết diện hình trịn ( )C có diện tích nhỏ ?
A.( )P x: +2y+3z− =6 B ( )P x: +2y z+ − =2
C.( )P :3x+2y+2z− =4 D. ( )P x: −2y+3z− =6
(33)Mặt cầu ( )S có tâm I(1,2,3 ,) R=3
Ta có IA R< nên điểm Anằm mặt cầu Ta có : d I P( ,( ))= R r2−
Diện tích hình trịn ( )C nhỏ ⇔ rnhỏ ⇔d I P( ,( )) lớn
Do d I P( ,( ))≤IA⇒maxd I P( ,( ))=IA Khi mặt phẳng( )P qua A nhận IA làm vtpt ( )P x: 2y z
⇒ + + − =
Câu 53. Trong không gian với hệ toạ độ Oxyz, cho điểm N(1;1;1) Viết phương trình mặt phẳng ( )P
cắt trục Ox Oy Oz, , A B C, , (không trùng với gốc tọa độO) cho N tâm đường tròn ngoại tiếp tam giác ABC
A.( )P x y z: + + − =3 B.( )P x y z: + − + =1
C.( )P x y z: − − + =1 D.( )P x: +2y z+ − =4
Hướng dẫn giải:
Gọi A a( ;0;0 , 0; ;0 , 0;0;) (B b ) (C c) giao điểm ( )P với trục Ox Oy Oz, ,
⇒( )P :x y z 1 , ,(a b c 0)
a b c+ + = ≠
Ta có:
( ) 1 1
1 3
1
N P a b c
NA NB a b a b c x y z
NA NC a c
+ + =
∈
= ⇔ − = − ⇔ = = = ⇒ + + − =
= − = −
Câu 54. Trong không gian với hệ toạ độ Oxyz, viết phương trình mặt phẳng ( )P qua hai điểm
(1;1;1)
A , B(0;2;2) đồng thời cắt tia Ox Oy, hai điểm M N, (không trùng với gốc tọa độO) cho OM =2ON
A.( )P : 2x+3y z− − =4 B.( )P x: +2y z− − =2
C.( )P x: −2y z− + =2 D.( )P :3x y+ +2z− =6
Hướngdẫn giải:
Gọi M a( ;0;0 ,) (N 0; ;0b ) giao điểm ( )P với tia Ox Oy, (a b, >0)
Do OM =2ON ⇔ =a 2b ⇒MN(−2 ; ;0b b )= −b(2; 1;0− ) Đặt u(2; 1;0− )
Gọi n môt vectơ pháp tuyến mặt phẳng ( )P ⇒n =u AB , = −( 1;2;1)
Phương trình măt phẳng ( )P x: −2y z− + =2
Câu 55. Trong không gian với hệ trục tọa độ Oxyz, cho tứ diện ABCD có đỉnh A(1;2;1), ( 2;1;3)
B − , C(2; 1;3− ) D(0;3;1) Phương trình mặt phẳng ( )α qua A B, đồng thời cách C D,
A.( )P1 : 4x+2y+7 15 0;z− = ( )P x2 : −5 y− +z 10 0=
B.( )P1 : 6x−4y+7z− =5 0;( )P2 :3x y+ +5 10 0z+ =
C.( )P1 : 6x−4y+7z− =5 0;( )P2 : 2x+3 0z− =
D ( )P1 :3x+5y+7z−20 0;= ( )P x2 : +3y+3 10 0z− =
(34)M C
O A
B
K
H
Trường hợp 1:CD P( )
( 6; 10; 14) 3;5;7( ) P
n =AB CD∧ = − − − = −
( )P :3x 5y 7z 20
⇒ + + − =
Trường hợp 2:( )P qua trung điểm I(1;1;2) CD
(1;3;3) ( ): 3 10
P
n =AB AI∧ = ⇒ P x+ y+ z− =
P P
C
D
C
D
I
Câu 56. Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(2;1;3 ; 3;0;2 ; 0; 2;1) (B ) (C − ) Phương trình mặt phẳng ( )P qua A B, cách C khoảng lớn ?
A.( )P :3x+2y z+ − =11 B.( )P :3x y+ +2 13 0z− = C.( )P : 2x y− +3 12 0z− = D.( )P x y: + − =3
Hướng dẫn giải:
Gọi H K, hình chiếu C lên mp( )P doạn thẳng AB
Ta có : CH d I P= ( ,( ))≤CK ⇒d C P( ,( )) lớn
H K≡ Khi mặt phẳng ( )P qua A B, vng với mặt phẳng (ABC)
Ta có np =AB AC, ∧AB= − − −( 9, 6, 3)
( )P :3x 2y z 11
⇒ + + − =
Câu 57. Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng qua điểm M1;2;3 cắt trục
Ox, Oy, Oz A , B ,C ( khác gốc toạ độ O) cho M trực tâm tam giác ABC Mặt phẳng có phương trình là:
A.x2y 3z 14 B 1
x y z
C.3x2y z 10 D.x2y3z14 0 Hướng dẫn giải
Cách 1:Gọi Hlà hình chiếu vng góc Ctrên AB , Klà hình chiếu vng góc B
AC.M trực tâm tam giác ABC M BK CH Ta có : AB CH AB COH AB OM(1)
AB CO
(1)
Chứng minh tương tự, ta có: AC OM (2) Từ (1) (2), ta có: OM ABC
Ta có: OM1;2;3
1;2;3 OM nên Mặt phẳng qua điểmM1;2;3và có VTPT
P A K
B C
(35)có phương trình là: x 1 2 y 2 3z 3 x 2y 3z 14 Cách 2:
+) Do A,B,C thuộc trục Ox,Oy,Oznên A a( ;0;0), (0; ;0), (0;0; )B b C c (a b c, , ≠0) Phương trình đoạn chắn mặt phẳng(ABC)là: x y z
a b c+ + =
+) Do M trực tâm tam giác ABC nên
( ) AM BC BM AC M ABC = = ∈
Giải hệ điều kiện ta đượca b c, , Vậy phương trình mặt phẳng:x+2y+3 14 0z− =
Câu 58. Trong không gian với hệ trục tọa độ Oxyz, cho điểm G(1;4;3) Viết phương trình mặt phẳng cắt trục Ox,Oy,Oz A,B,C cho G trọng tâm tứ diện OABC?
A.
4 16 12
x y+ + z = B. 1
12 16
4+ + =
z y
x C 1
9 12 + + =
z y
x D. 0
9 12 3+ + =
z y
x
Hướng dẫn giải Phương pháp tự luận
+) Do A,B,C thuộc trục Ox,Oy,Oznên A a( ;0;0), (0; ;0), (0;0; )B b C c
+) Do G trọng tâm tứ diện OABC nên
4 4
O A B C G
O A B C G
O A B C G
x x x x x
y y y y y
y y y y z + + + = + + + = + + + =
suy raa=4,b=16,c=12
+) Vậy phương trình đoạn chắn mặt phẳng(ABC)là: 12 16
4+ + =
z y
x
Câu 59. Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1;2;3) Mặt phẳng(P) qua M cắt tia Ox,Oy,Oz A B C, , cho thể tích khối tứ diện OABC nhỏ có phương trình là:
A.6x+3y+2z=0 B.6x+3y+2z−18=0 C.x+2y+3z−14=0 D.x+y+z−6=0
Hướng dẫn giải Phương pháp tự luận
+) Mặt phẳng(P) cắt tia Ox,Oy,Oz A B C, , nên
( ;0;0), (0; ;0), (0;0; )
A a B b C c (a b c, , >0) Phương trình mặt phẳng (P) x y z
a b c+ + =
+) Mặt phẳng(P) qua M nên
a b c+ + =
Ta có 1 33 abc 162
a b c abc
= + + ≥ ⇔ ≥
+) Thể tích khối tứ diện OABC 27
V = abc≥ Thể tích khối tứ diện OABC nhỏ
3
(36)Phương trình mặt phẳng(P)
x y z+ + = hay 6x+3y+2z−18=0
Câu 60. Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng có phương trình ( )P x+2y+2 0z− = ( )Q x: +2y z− − =3 mặt cầu ( ) (S : x−1) (2+ y+2)2 +z2 =5.Mặt
phẳng ( )α vuông với mặt phẳng ( ) ( )P Q, đồng thời tiếp xúc với mặt cầu ( )S A 2x y+ − =1 0;2x y+ + =9 B 2x y− − =1 0;2x y− + =9 C.x−2y+ =1 0;x−2y− =9 D.2x y− + =1 0; 2x y− − =9
Hướng dẫn giải
Mặt cầu ( ) (S : x−1) (2+ y+2)2+z2 =5 có tâm I(1; 2;0− ) bán kính R= 5
Gọi nα
vectơ pháp tuyến mặt phẳng ( )α Ta có : nα =nP ∧nQ⇒nα = −( 6;3;0)= −3 2; 1;0( − )= −3n1
Lúc mặt phẳng ( )α có dạng :2x y m− + =0
Do mặt phẳng ( )α tiếp xúc với mặt cầu ( )S ( ,( )) 5
m
d I α +
⇒ = ⇔ =
9 m m
=
⇔ = −
Vậy phương trình mặt phẳng ( )α :2x y− + =1 0hoặc 2x y− − =9
Câu 61. Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng ( )P x: +2y−2 0z+ = , điểm (1;0;0 , ( 1;2;0))
A B − ( ) (S : x−1) (2+ y−2)2+z2 =25 Viết phương trình mặt phẳng ( )α vng
với mặt phẳng ( )P , song song với đường thẳng AB, đồng thời cắt mặt cầu ( )S theo đường trịn có bán kính r=2
A 2x+2y+3 11 0; 2z+ = x+2y+3z−23 0= B 2x−2y+3 11 0; 2z+ = x−2y+3z−23 0= C 2x−2y+3 11 0; 2z− = x−2y+3z+23 0= D 2x+2y+3 11 0; 2z− = x+2y+3z+23 0=
Hướng dẫn giải
Mặt cầu ( ) (S : x−1) (2+ y−2)2+z2 =5 có tâm I(1;2;0) bán kính R= 5
Gọi nα
vectơ pháp tuyến mặt phẳng ( )α Ta có : nα =n ABP, ⇒nα =(4;4;6) (=2 2;2;3)=2n1
Lúc mặt phẳng ( )α có dạng :2x+2y+3z m+ =0 Gọi J hình chiếu I lên mặt phẳng ( )α
Ta có :R2 =r2+IJ2⇒IJ2 =17 ⇒d I( ,( )α )= 17⇔ +6 m =17⇔ =m 11hoặc m= −23
Vậy phương trình mặt phẳng ( )α :2x+2y+3 11 0z+ = 2x+2y+3z−23 0=
Câu 62. Trong không gian với hệ trục toạ độ Oxyz,cho 3điểm A(1;1; 1− ),B(1;1;2),C(−1;2; 2− ) mặt phẳng ( )P x: −2y+2 0z+ = Lập phương trình mặt phẳng ( )α qua A, vng góc với mặt phẳng ( )P cắt đường thẳng BC I cho IB=2IC biết tọa độ điểm I số nguyên A ( )α : 2x y− −2z− =3 B ( )α : 4x+3y−2z− =9
(37)Do I B C, , thẳng hàng IB=2IC
( 3;3; 6)
1 2; ;
2 3 3
I
IB IC
I
IB IC
− −
=
⇒ ⇒ − −
= −
Vì tọa độ điểm I số nguyên nên I(−3;3; 6− )
Lúc mặt phẳng ( )α qua A I, (−3;3; 6− ) vng góc với mặt phẳng ( )P
( )α : 2x y 2z
⇒ − − − =
Câu 63. Trong không gian với hệ trục toạ độ Oxyz, cho hai mặt phẳng ( )P x y z+ + − =3 0, ( )Q : 2x+3y+4 0z− = Lập phương trình mặt phẳng ( )α qua A(1;0;1) chứa giao tuyến hai mặt phẳng ( ) ( )P Q, ?
A.( )α : 2x+3y z+ − =3 B.( )α : 7x+8y+9 16 0z− = C.( )α : 7x+8y+9 17 0z− = D.( )α : 2x−2y z+ − =3
Hướng dẫn giải:
Gọi M N, điểm thuộc giao tuyến hai mặt phẳng ( ) ( )P Q, ,
M N thỏa hệ phương trình : 3
x y z
x y z
+ + − =
+ + − =
Cho
3 13
y z y
x
y z z
+ = − = −
= ⇒ ⇔
+ = − = −
⇒M(7; 3; 1)− −
Cho
3 11
y z x
y z
+ = −
= ⇒ + = −
1
y z
= − ⇔ = −
⇒N(6; 1; 2− − )
Lúc mặt phẳng ( )α chứa điểm A N M, , ⇒( )α : 7x+8y+9 16 0z− =
Câu 64. Trong không gian với hệ trục toạ độ Oxyz,cho đường thẳng
1:2x y 11 1z
d = − =
− d2:x11 2y z11
− +
= = Viết phương trình mặt phẳng ( )α vng góc với d1,cắt
Oz A cắt d2 B ( có tọa nguyên ) cho AB=3
A.( )α :10x−5y+5 0z+ = B.( )α : 4x−2y+2 0z+ =
C.( )α : 2x y z− + + =1 D.( )α : 2x y z− + + =2
Hướng dẫn giải Do mặt phẳng ( )α vng góc với d1 ⇒2x y z m− + + =0
Mặt phẳng ( )α cắt Oz A(0;0;−m) , cắt d2tại B m( +1,2 ,m m−1)
( 1,2 ,2 1)
AB m m m
⇒= + − 9 2 2 3 9 2 7 0 1,
9
m m m m m m
⇒ − + = ⇔ − − = ⇔ = = −
Vậy mặt phẳng ( )α : 2x y z− + + =1
Câu 65. Trong không gian với hệ trục toạ độ Oxyz,cho tứ diện ABCD có điểm (1;1;1 , 2;0;2) ( )
A B ,C(− −1; 1;0 ,) (D 0;3;4) Trên cạnh AB AC AD, , lấy điểm ', ', '
B C D thỏa :
' ' '
AB AC AD
AB + AC + AD = Viết phương trình mặt phẳng (B C D' ' ') biết tứ diện
' ' '
AB C D tích nhỏ ?
(38)Hướng dẫn giải:
Áp dụng bất đẳng thức AM GM− ta có : 33
' ' ' ' ' '
AB AC AD AB AC AD
AB AC AD AB AC AD
= + + ≥
' ' ' 27
64
AB AC AD AB AC AD
⇒ ≥ ⇒ ' ' ' ' ' ' 27
64
AB C D ABCD
V AB AC AD
V = AB AC AD ≥ ⇒VAB C D' ' ' ≥ 2764VABCD
Để VAB C D' ' ' nhỏ ABAB' = ACAC'= ADAD' 3= 4 AB' 34AB B' 74 4; ;
⇒ = ⇒
Lúc mặt phẳng (B C D' ' ') song song với mặt phẳng (BCD)và qua ' 7; ; 4
B
(B C D' ' ' :16) x 40y 44z 39
⇒ + − + =
Câu 66. Trong không gian với hệ toạ độ Oxyz,cho ( )P x: +4y−2z− =6 ,( )Q x: −2y+4z− =6 Lập phương trình mặt phẳng ( )α chứa giao tuyến của( ) ( )P Q, cắt trục tọa độ điểm A B C, , cho hình chóp O ABC hình chóp
A.x y z+ + + =6 B.x y z+ + − =6 C.x y z+ − − =6 D x y z+ + − =3 Hướng dẫn giải
Chọn M(6;0;0 ,) (N 2;2;2) thuộc giao tuyến của( ) ( )P Q,
Gọi A a( ;0;0 , 0; ;0 , 0;0;) (B b ) (C c) giao điểm ( )α với trục Ox Oy Oz, ,
⇒( ):x y z , ,(a b c 0)
a b c
α + + = ≠
( )α chứa M N, 2 2a 1
a b c
=
⇒
+ + =