1. Trang chủ
  2. » Hoá học lớp 11

Bài tập trắc nghiệm chuyên đề mũ và logarit - Đặng Việt Đông

64 15 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 64
Dung lượng 1,8 MB

Nội dung

 Khi giải các bất phương trình mũ ta cần chú ý tính đơn điệu của hàm số mũ. Ta có nghiệm. Ta có nghiệm.. Ta có nghiệm. Ta có nghiệm. Ta có nghiệm. Ta có nghiệm.. Ta có nghiệm. BPT vô n[r]

(1)

(2)

MỤC LỤC

LŨY THỪA

A – LÝ THUYẾT TÓM TẮT

B – BÀI TẬP

C – ĐÁP ÁN

HÀM SỐ LŨY THỪA

A – LÝ THUYẾT TÓM TẮT

B – BÀI TẬP

C – ĐÁP ÁN 12

LÔGARIT 13

A – LÝ THUYẾT TÓM TẮT 13

B – BÀI TẬP 13

C – ĐÁP ÁN 18

HÀM SỐ MŨ, HÀM SỐ LÔGARIT 19

A – LÝ THUYẾT TÓM TẮT 19

B – BÀI TẬP 19

C – ĐÁP ÁN 31

PH ƯƠNG TRÌNH MŨ 32

A – LÝ THUYẾT TÓM TẮT 32

B – BÀI TẬP 32

C – ĐÁP ÁN 38

PH ƯƠNG TRÌNH LƠGARIT 39

A – LÝ THUYẾT TÓM TẮT 39

B – BÀI TẬP 39

C – ĐÁP ÁN 44

BẤT PH ƯƠNG TRÌNH MŨ 45

A – LÝ THUYẾT TÓM TẮT 45

B – BÀI TẬP 45

C – ĐÁP ÁN 52

BẤT PH ƯƠNG TRÌNH LƠGARIT 53

A – LÝ THUYẾT TÓM TẮT 53

B – BÀI TẬP 53

C – ĐÁP ÁN 58

HỆ MŨ - LÔGARIT 59

A – PHƯƠNG PHÁP CHUNG 59

B – BÀI TẬP 59

C – ĐÁP ÁN 61

CÁC BÀI TOÁN ỨNG DỤNG THỰC TẾ 62

A – LÝ THUYẾT TÓM TẮT 62

B – BÀI TẬP 62

C – ĐÁP ÁN 64

(3)

LŨY THỪA

A – LÝ THUYẾT TÓM TẮT 1 Định nghĩa luỹ thừa

Số mũ Cơ số a Luỹ thừa a

*

n N

   a R a an a.a a(n thừa số a)

0

  a 0 a a01

*

n ( n N )

    a 0 n

n

1

a a

a    

*

m(m Z, n N ) n

    a 0 a amn na ( am n  b bn a)

* n n

lim r (r Q, n N )

    a 0 a lim arn

2 Tính chất luỹ thừa

 Với a > 0, b > ta có:

a a a

a a a ; a ; (a ) a ; (ab) a b ;

a b b

 

          

 

 

      

   a > : a a    ; < a < : a a    

 Với < a < b ta có:

m m

a b m 0 ; ambmm 0

Chú ý: + Khi xét luỹ thừa với số mũ số mũ nguyên âm số a phải khác + Khi xét luỹ thừa với số mũ khơng ngun số a phải dương

3 Định nghĩa tính chất thức

 Căn bậc n a số b cho bn a

 Với a, b  0, m, n  N*, p, q  Z ta có:

nab na bn ; n n n

a a(b 0)

b  b  ;  

p p

na  na (a 0) ; m na mna

p q

n m

p q

Nếu a a (a 0)

n m   ; Đặc biệt

m mn na  a

 Nếu n số nguyên dương lẻ a < b na nb

Nếu n số nguyên dương chẵn < a < b na nb

Chú ý:

+ Khi n lẻ, số thực a có bậc n Kí hiệu na

+ Khi n chẵn, số thực dương a có hai bậc n hai sốđối

B - BÀI TẬP

Câu 1: Cho x, y hai số thực dương m, n hai số thực tùy ý Đẳng thức sau sai ? A x xm n xm n B  n n n

xy x y C  xn m xnm D m n  m n

x y  xy  Câu 2: Nếu m số nguyên dương, biểu thức theo sau không với  24 m ?

A 4 2m B 2 2m  3m C 4 2m m D 2 4m

(4)

Câu 3: Giá trị biểu thức A 9 3 : 272 3 là:

A 9 B 34 3 C 81 D 34 12 3

Câu 4: Giá trị biểu thức

 

3

0

3

2 5 A

10 :10 0,1

 

 

 

 là:

A 9 B 9 C 10 D 10

Câu 5: Tính:    

1

2

4 0,25

0,5 625 19

4 

   

     

  kết là:

A 10 B 11 C 12 D 13

Câu 6: Giá trị biểu thức   

2 3 3

4 3

2 2

A

2

  

 là:

A 1 B 2 31 C 2 31 D 1

Câu 7: Tính:    

1 11

2

2 0

3

0,001  2  64 8  kết là: A 115

16 B

109

16 C

1873 16

D Đáp án khác

Câu 8: Tính:

1

3

0,75 1

81

125 32

 

     

   

    kết là:

A 80 27

B 352

27 C

80

27 D Đáp án khác

Câu 9: Trục thức mẫu biểu thức 3

3

1

5 ta được: A 325 310 34

3

  B 3532 C 37531534 D 3534

Câu 10: Rút gọn :  

4

3 12

a b a b

ta :

A a2 b B ab2 C a2 b2 D Ab Câu 11: Rút gọn :

2 2

3 9

a a a a

   

   

   

    ta :

A

1

a 1 B

4

a 1 C

4

a 1 D

1

a 1 Câu 12: Rút gọn :

2 2 1 a a        

  ta :

A a3 B a2 C a D a4

Câu 13: Với giá trị thực a 24

1 a a a

2

 ?

A a 0 B a 1 C a 2 D a 3

(5)

Câu 14: Rút gọn biểu thức 3 2

3

a b

T ab : a b

a b          

A 2 B 1 C 3 D 1

Câu 15: Kết

5

a a 0 là biểu thức rút gọn phép tính sau ?

A a a 5 B 3

3

a a

a C

5

a a D 4a5

a Câu 16: Rút gọn

4 1

2 3 3 2 3

a 8a b b

A a

a

a ab 4b

            

được kết quả:

A 1 B a + b C 0 D 2a – b

Câu 17: Giả sử với biểu thức A có nghĩa, giá trị biểu thức

3

2

1

2

a b a b a b

A

a b a b ab

                là:

A 1 B 1 C 2 D 3

Câu 18: Giả sử với biểu thức B có nghĩa, Rút gọn biểu thức

1

4 2

1 1

4 2

a a b b

B

a a b b

        ta được: A 2 B a b C a b D a2b2

Câu 19: Cho hai số thực a 0, b 0, a 1, b 1    , Rút gọn biểu thức

7

3 3

4

3 3

a a b b

B

a a b b

        ta được: A 2 B a b C a b D a2b2

Câu 20: Rút gọn biểu thức

1 1

2 2

1

2

a a a

M

a

a 2a a

                

(với điều kiện M có nghĩa) ta được:

A 3 a B a

2

C

a 1 D 3( a 1)

Câu 21: Cho biểu thức T =

x 2x

2 x

1

3 25

5

    Khi

x

2  giá trị biểu thức T là: A 9

2 B

5

2 C

9

2 D Đáp án khác

Câu 22: Nếu 1a a 

   giá trị  là:

A 3 B 2 C 1 D 0

Câu 23: Rút gọn biểu thức K =  x4x 1  x4x x   x 1  ta được:

A x2 + B x2 + x + C x2 - x + D x2 – Câu 24: Rút gọn biểu thức x4x : x2 4 (x > 0), ta được:

A 4x B 3x C x D x2

(6)

Câu 25: Biểu thức x x x x x x 0  viết dạng lũy thừa với số mũ hữu tỉ là: A

31 32

x B

15

x C

7

x D

15 16

x Câu 26: Rút gọn biểu thức:  

11 16

A x x x x : x , x 0 ta được:

A 8x B 6x C 4 x D x

Câu 27: Cho f(x) =

3

x x

x Khi f 13 10

 

 

  bằng:

A 1 B 11

10 C

13

10 D 4

Câu 28: Mệnh đề sau ?

A  3 2 4 3 2 B  11 2 6  11 2 C 2 2 3 2 24 D 4 2 3 4 24 Câu 29: Các kết luận sau, kết luận sai

I 17328 II

3

1

3

   

   

    III

5

4 4 IV 413523

A II III B III C I D II IV

Câu 30: Cho a 1 Mệnh đề sau ? A

5

1 a

a

  B a13  a C

2016 2017

1

a a D

3a2

1

a 

Câu 31: Cho a, b > thỏa mãn:

1

1

3

2

a a , b b Khi đó:

A a 1, b 1  B a > 1, < b < C 0 a 1, b 1   D 0 a 1, b 1   

Câu 32: Biết a 1 2 3 a 13 Khi ta kết luận a là:

A a 2 B a 1 C 1 a 2  D 0 a 1 

Câu 33: Cho số thực a, b thỏa mãn a 0, a 1, b 0, b 1    Chọn đáp án A am an m n B am an m n C a b an bn

n

  

 

D

n n

a b

a b

n

  

  

Câu 34: Biết 2x2x m với m 2 Tính giá trị M 4 x4x:

A M m 2  B M m 2  C M m 22 D M m 22

C - ĐÁP ÁN

1D, 2C, 3C, 4C, 5A, 6B, 7C, 8D, 9A, 10D, 11C, 12A, 13C, 14B, 15B, 16C, 17A, 18C, 19B, 20C, 21D, 22D, 23B, 24C, 25A, 26C, 27C, 28D, 29D, 30A, 31B, 32A, 33C, 34C

(7)

HÀM SỐ LŨY THỪA

A – LÝ THUYẾT TÓM TẮT 1) Hàm số luỹ thừa y x  ( số)

Số mũ Hàm số y x  Tập xác định D

 = n (n nguyên dương) y x n D = R

 = n (n nguyên âm n = 0) y x n D = R \ {0}

 số thực không nguyên y x  D = (0; +)

Chú ý: Hàm s

1 n

y x không đồng với hàm số y nx (n N*)

2) Đạo hàm

  x   x1 (x 0) ;  u  u u1 

Chú ý:  

   

  

 

n

n n

1 với x n chẵn

x với x n lẻ

n x

 n

n n

u u

n u 

  

B - BÀI TẬP

Câu 1: Hàm số sau có tập xác định R ? A yx240,1 B  1/2

y x 4 C

3

x y

x

 

   D yx22x 3 2

Câu 2: Hàm số y = 31 x có tập xác định là:

A [-1; 1] B (-; -1]  [1; +) C R\{-1; 1} D R Câu 3: Hàm số y = 4x214 có tập xác định là:

A R B (0; +) C R\ 1;

2

 

 

  D

1 ; 2

 

 

 

Câu 4: Hàm số y = xx21e có tập xác định là:

A R B (1; +) C (-1; 1) D R\{-1; 1}

Câu 5: Tập xác định D hàm số yx23x 4 3

A D R \ 1, 4   B D    ; 1 4;

C D  1;4 D D  1; 4 Câu 6: Tập xác định D hàm số y 3x 53

  tập:

A 2; B 5;

 

 

  C

5 ;

 



  D

5 R \

3

     

Câu 7: Tập xác định D hàm số  

1

3 4

y x 3x 2x

A   0;1  2; B R \ 0,1, 2  C ;0   1;2 D ;0  2;

(8)

Câu 8: Gọi D tập xác định hàm số  

1 3

y x x   Chọn đáp án đúng:

A  3 D B   3 D C 3;2D D D  2;3 Câu 9: Tập xác định D hàm số y2x 3 34 9 x

A 3; B  3;3 \

 

  

  C

3;3

 

 

  D

3;3

 

 

 

Câu 10: Tập xác định hàm số y2x x 3 2016 là:

A D   3;  B D   3; 

C D R \ 1;

 

   

  D  

3

D ; 1;

4

 

    

 

Câu 11: Tập xác định hàm số y2x2 x 65 là:

A D R B D R \ 2;

2

 

   

 

C D 3; 2

 

  

  D  

3

D ; 2;

2

 

    

 

Câu 12: Cho hàm số y3x222, tập xác định hàm số

A D ; 2;

3

 

 

       B D   ; 32    32;

C D 2;

3

 

  

  D

2 D R \

3

 

 

  

 

 

Câu 13: Tập xác định hàm số y2 x  là:

A D R \ 2   B D2; C D  ; 2 D D  ; 2 Câu 14: Hàm số yx21x xác định trên:

A 0; B 0; C 0;  \ D R Câu 15: Tập xác định hàm số yx 3 32 45 x là:

A D   3;   \ B D   3;  C D  3;5 D D  3;5 Câu 16: Tập xác định hàm số y5x 3x 6 2017 là:

A 2; B 2; C R D R \ 2 

Câu 17: Cho hàm số y x4

 , kết luận sau, kết luận sai: A Tập xác định D0;

B Hàm số luôn đồng biến với x thuộc tập xác định C Hàm số qua điểm M 1;1 

D Hàm số có tiệm cận Câu 18: Cho hàm số

3

y x  Khẳng định sau sai ?

(9)

A Là hàm số nghịch biến 0;

B Đồ thị hàm số nhận trục hoành làm tiệm cận ngang C Đồ thị hàm số nhận trục tung làm tiệm cận đứng D Đồ thị hàm số qua gốc tọa độ O 0;0  Câu 19: Cho hàm số  

3

2 4

y x 3x Khẳng định sau sai ? A Hàm số xác định tập D  ;0  3;

B Hàm số đồng biến khoảng xác định C Hàm số có đạo hàm là:  

2

2x 3

y '

4 x 3x

 

D Hàm số đồng biến khoảng 3; nghịch biến khoảng ;0 Câu 20: Trong hàm số sau đây, hàm số đồng biến khoảng xác định ?

A y = x-4 B y =

3

x C y = x4 D y = 3 x

Câu 21: Cho hàm số y x 1   5, tập xác định hàm số

A D R B D  ;1 C D1; D D R \ 1  

Câu 22: Hàm số y =  

3

4 x có tập xác định là:

A (-2; 2) B (-: 2]  [2; +) C R D R\{-1; 1} Câu 23: Hàm số y = xx21e có tập xác định là:

A R B (1; +) C (-1; 1) D R\{-1; 1}

Câu 24: Hàm số y = 3a bx có đạo hàm là:

A y’ =

3

bx

3 a bx B y’ =  

2 3

bx a bx

C y’ = 3bx23a bx D y’ =

3

3bx a bx

Câu 25: Đạo hàm hàm số y 7cos x là:

A

7

sin x cos x

B

7

sin x

7 cos x C

1

7 cos x D

sin x co s x

Câu 26: Hàm số hàm số lũy thừa: A

1

y x (x 0)  B y x

C y x (x 0) 1  D Cả câu A, B, C

Câu 27: Hàm số y = 3x212 có đạo hàm là:

A y’ =

3

4x

3 x 1 B y’ =  2 2

4x x 1

C y’ =

2x x 1 D y’ = 4x3x212

Câu 28: Hàm số y = 32x2 x 1 có đạo hàm f’(0) là:

A

B 1

3 C 2 D 4

Câu 29: Cho hàm số y = 42x x Đạo hàm f’(x) có tập xác định là:

A R B (0; 2) C (-;0)  (2; +) D R\{0; 2}

(10)

Câu 30: Hàm số y = 3a bx có đạo hàm là:

A y’ =

3

bx

3 a bx B y’ =  

2 3

bx

a bx C y’ =

3

2

3bx a bx D y’ =

2

3

3bx a bx

Câu 31: Cho f(x) = x23x2 Đạo hàm f’(1) bằng:

A 3

8 B

8

3 C 2 D 4

Câu 32: Cho f(x) = x

x

 Đạo hàm f’(0) bằng:

A 1 B 31

4 C

32 D 4

Câu 33: Trong hàm số sau đây, hàm số đồng biến khoảng xác định ?

A y = x-8 B y =

1

x C y = x2 D y = 3 x

Câu 34: Cho hàm số y = x 2 2 Hệ thức y y” không phụ thuộc vào x là:

A y” + 2y = B y” - 6y2 = C 2y” - 3y = D (y”)2 - 4y = Câu 35: Cho hàm số

1

y x , Trong mệnh đề sau, mệnh đề A Hàm số đồng biến tập xác định

B Hàm số nhận O 0;0  làm tâm đối xứng C Hàm số lõm ;0 lồi 0;

D Hàm số có đồ thị nhận trục tung làm trục đối xứng

Câu 36: Cho hàm số y = x-4 Tìm mệnh đề sai mệnh đề sau:

A Đồ thị hàm số có trục đối xứng B Đồ thị hàm số qua điểm (1; 1) C Đồ thị hàm số có hai đường tiệm cận D Đồ thị hàm số có tâm đối xứng Câu 37: Cho hàm số y x13, Các mệnh đề sau, mệnh đề sai

A  13 x

lim f x 

 

B Hàm số có đồ thị nhận trục tung làm trục đối xứng C Hàm số khơng có đạo hàm x 0

D Hàm số đồng biến ;0 nghịch biến 0;

Câu 38: Cho hàm số lũy thừa y x , y x , y x      có đồ thị hình vẽ Chọn đáp án đúng:

A      B     

C      D     

y

x y=xγ

y=xβ

y=xα

‐1 6

4

2

‐2 ‐1 O 1 2

(11)

Câu 39: Đạo hàm hàm số y 14 x x

 là:

A

4

5 y '

4 x

  B y ' 2 41

x x

C y ' 54x

4  D y ' x  

Câu 40: Đạo hàm hàm số y 3x x2 là:

A y '9 x B y ' 6x

6

C y ' 43x

3

D y ' 76

7 x

Câu 41: Đạo hàm hàm số y5 x38 là:

A   3x y '

5 x

  B 3x y '

2 x

  C 3x y '

5 x

D  

2 3x y '

5 x

Câu 42: Đạo hàm hàm số y5 2x35x 2 là:

A 6x y '

5 (2x 5x 2)

 

  B

2

5

6x y '

5 2x 5x

   C 6x y '

5 2x 5x

 

  D

2

5

6x

y '

2 2x 5x

 

 

Câu 43: Cho f(x) = x

x

 Đạo hàm f’(0) bằng:

A 1 B 31

4 C

32 D 4

Câu 44: Đạo hàm hàm số

 25

3

1 y

1 x x 

 

điểm x 1 là: A y ' 1 

3

  B y ' 1 

C y ' 1 1 D y' 1  1 Câu 45: Cho hàm số f x  x

x

 

 Kết f ' 0  là:

A f ' 0 

B f ' 0 

5

  C f ' 0 

D f ' 0 

5

 

Câu 46: Hàm số sau nghịch biến khoảng 0; ? A

1

y x B y x 2 C y x

x

D y x

Câu 47: Trên đồ thị hàm số y = x2



lấy điểm M0 có hồnh độ x0 =

2

2 Tiếp tuyến (C) điểm M0 có hệ số góc bằng:

A  + B 2 C 2 - D 3

Câu 48: Trên đồ thị (C) hàm số y = x2

lấy điểm M0 có hồnh độ x0 = Tiếp tuyến (C) điểm M0 có phương trình là:

A y = x

  B y = x 1

2

   C y =    x 1 D y = x 1

2

 

  

(12)

Câu 49: Trên đồ thị hàm số y = x2

 

lấy điểm M0 có hồnh độ x0 =

2

2 Tiếp tuyến (C) điểm M0 có hệ số góc bằng:

A  + B 2 C 2 - D 3

C - ĐÁP ÁN

1A, 2D, 3C, 4B, 5A, 6B, 7A, 8C, 9C, 10A, 11B, 12D, 13C, 14D, 15D, 16A, 17D, 18D, 19B, 20D, 21D, 22A, 23B, 24B, 25D, 26B, 27A, 28A, 29D, 30B, 31B, 32B, 33D, 34D, 35A, 36D, 37D, 38C, 39D, 40B, 41D, 42A, 43B, 44A, 45C, 46B, 47A, 48B, 49A

(13)

LƠGARIT

A – LÝ THUYẾT TĨM TẮT 1 Định nghĩa

 Với a > 0, a  1, b > ta có: log ba   a b Chú ý: log ba có nghĩa a 0, a

b

 

   

 Logarit thập phân: lg b log b log b  10

 Logarit tự nhiên (logarit Nepe): ln b log b e (với

n

1

e lim 2, 718281

n

 

     )

2 Tính chất

 log 0a  ; log a 1a  ; b a

log a b; alog ba b (b 0)

 Cho a > 0, a  1, b, c > Khi đó:

+ Nếu a > log b log ca  a  b c + Nếu < a < log b log ca  a  b c 3 Các qui tắc tính logarit

Với a > 0, a  1, b, c > 0, ta có:

 log (bc) log b log ca  a  a  loga b log b log ca a c

   

 

   log ba log ba

   4 Đổi số

Với a, b, c > a, b  1, ta có:

 a

b

a

log c log c

log b

 hay log b.log c log ca b  a

 a

b

1 log b

log a

  a a

1

log c  log c ( 0)

B - BÀI TẬP

Câu 1: Giá trị

9 125

log log log log log 27

25 49

P

3 

 

  là:

A 8 B 9 C 10 D 12

Câu 2:102 2lg 7 bằng:

A 4900 B 4200 C 4000 D 3800

Câu 3:

1

log 3log

4  bằng:

A 25 B 45 C 50 D 75

Câu 4: 4

log bằng: A 1

2 B

3

8 C

5

4 D 2

Câu 5: 2 4  1

2

3log log 16 log bằng:

A 2 B 3 C 4 D 5

Câu 6: Cho a > a  Tìm mệnh đề mệnh đề sau: A log x có nghĩa với a x B loga1 = a logaa =

(14)

C logaxy = logax logay D n

a a

log x n log x (x > 0,n  0) Câu 7: Cho a > a  1, x y hai số dương Tìm mệnh đề mệnh đề sau:

A a

a

a

log x x

log

y log y B a

a

1

log

x  log x C log x ya  log x log ya  a D log x log a.log xb  b a

Câu 8: Khẳng định đúng: A

3

2 2

3

log a 2log a B

3

2 2

3

log a 4log a C

3

2 2

3

log a 4log a D

3

2 2

3

log a 2log a Câu 9: Giá trị loga3 a với a 0,a 1   là:

A 3

2 B 6 C

1

6 D

2 Câu 10: Giá trị aloga4 với a 0,a 1   là:

A 16 B 8 C 4 D 2

Câu 11: Giá trị

2 a a

log log

1 a

   

  với a 0,a 1   là:

A 2

3 B

4

C 4

3 D

3 Câu 12:

1 a

log a (a > 0, a  1) bằng: A -7

3 B

2

3 C

5

3 D 4

Câu 13: Giá trị 8log 7a2

a với a 0,a 1   là:

A 7 2 B 7 4 C 7 8 D 7 16

Câu 14:

3

2

a 15 7

a a a

log

a

 

 

 

  bằng:

A 3 B 12

5 C

9

5 D 2

Câu 15: Giá trị a

log a a a a là: A

10 B 13 10 C D Câu 16: Cho số thực a 0, a 1  Giá trị biểu thức

3

2

a 4 3

a a a a A log

a

A 193

60 B 73 60 C 103 60 D 43 60 Câu 17: Giá trị  log log 8a a3

a  với a 0,a 1   là:

A 3 B 2 C D 8

Câu 18: Cho số thực dương a, b a 1 Khẳng định khẳng định sau: A  

a a

log a b 4 log b B  

a a

1

log a b log b

4

 

(15)

C log (aa b) log b  a D  

a a

1

log a b log b

4

 

Câu 19: Cho ba số thực dượng a, b, c khác thỏa log b log b log 2016.log ba  c  a c Khẳng định sau ?

A ab 2016 B bc 2016 C abc 2016 D ac 2016

Câu 20:a3 2log b a (a > 0, a  1, b > 0) bằng:

A a b3 2 B a b 3 C a b 2 D ab 2

Câu 21: Nếu log 243 5x  x bằng:

A 2 B 3 C 4 D 5

Câu 22: Nếu log xa 1log log log 2a a a

   (a > 0, a  1) x bằng: A 2

5 B

3

5 C

6

5 D 3

Câu 23: Nếu log xa 1(log 3log 4)a a

  (a > 0, a  1) x bằng: A 2 B 1

8 C

3

8 D 16

Câu 24: Nếu log x 5log a log b2  2  2 (a, b > 0) x bằng:

A a b 5 B a b 4 C 5a + 4b D 4a + 5b

Câu 25: Nếu

7 7

log x 8log ab 2 log a b (a, b > 0) x bằng:

A a b 4 B a b 2 14 C a b 6 12 D a b 8 14

Câu 26: Cho lg2 = a Tính lg25 theo a?

A 2 + a B 2(2 + 3a) C 2(1 - a) D 3(5 - 2a)

Câu 27: Cho lg5 = a Tính lg

64 theo a?

A 2 + 5a B 1 - 6a C 4 - 3a D 6(a - 1)

Câu 28: Cho lg2 = a Tính lg125

4 theo a?

A 3 - 5a B 2(a + 5) C 4(1 + a) D 6 + 7a

Câu 29: Nếu log a;log b12  12  log ?3 

A 3a ab

 

B

3a ab b

C

3ab b a

D Đáp án khác

Câu 30: Cho log a2  Khi log 500 tính theo a là: 4 A 3a + B 13a 2

2  C 2(5a + 4) D 6a –

Câu 31: Cho log a2  Khi log318 tính theo a là: A 2a

a

B

1

a b C 2a + D 2 - 3a

Câu 32: Nếu log a log 9000 bằng:

A a23 B 2a 3 C 2a 3 D a 3

Câu 33: Cho log 25 = 7  log = 2  Tính 35 49 log

8 theo  

(16)

A 12b 9a ab

B 12b 9a

ab

C 12b 9a ab  D 4b 3a

3ab

Câu 34: Cholog a, log b2  3  Khi log tính theo a b là: 6 A

a b B

ab

a b C a + b D

2

a b Câu 35: Cho a log 15, b log 10 3  3 log 50 ?3 

A 3 a b 1    B 4 a b 1    C a b 1  D 2 a b 1   

Câu 36: Cho log a, log b, lo g c27  8  2  Tính log 35 bằng: 12 A 3b 3ac

c

B

3b 2ac c

C

3b 2ac c

D

3b 3ac c

 

Câu 37: Cho log x 2,log x 3,log x 4a  b  c  Tính giá trị biểu thức: loga b c2 x A

13 B

24

35 C

1

9 D

12 13 Câu 38: Cho x2 + 4y2 = 12xy x > 0, y > Khẳng định là:

A log x log y log12  B log x 2y  log 1log x log y

   

C log x2log y2 log 12xy  D 2 log x log y log12 log xy  

Câu 39: Cho a 0; b 0  a2b2 7ab Đẳng thức sau đúng?

A log7a b 1log a log b7 7 

3

   B  

3 3

a b

log log a log b

2

  

C log3a b 1log a log b3 3 

7

   D  

7 7

a b

log log a log b

2

  

Câu 40: Cho x29y2 10xy, x 0, y 0  Khẳng định khẳng định sau:

A log x 3y  log x log y B log x 3y 1log x log y

4

   

 

 

C 2log x 3y   1 log x log y D 2log x 3y  log 4xy  Câu 41: Với giá trị x biểu thức  2

6

log 2x x có nghĩa?

A 0 < x < B x > C -1 < x < D x < Câu 42: Tập hợp giá trị x để biểu thức  

5

log x x 2x có nghĩa là:

A (0; 1) B (1; +) C (-1; 0)  (2; +) D (-; -1) Câu 43: Cho hai biểu thức 2 2 1 3 2 

4

M log 2sin log cos , N log log 4.log

12 12

 

   

     

    Tính

M T

N

A T

B T = C T 3 D T 1

Câu 44: Cho biểu thức A =

x 2x

2 x

1 3 3 9

3

    Tìm x biết log A 29 

A 2 log 2 3 B 1 log 2 3 C log3243

17 D 3 log 3

Câu 45: Cho log x2  Tính giá trị biểu thức

2

2

A log x log x log x

(17)

A

2 B

2

C D

Câu 46: Cho a 0, b 0;a 1, b 1, n R     , học sinh tính biểu thức

2 n

a a a

1 1

P

log b log b log b

    theo bước sau

I n

b b b

P log a log a    log a

II n

b

P log a.a a III n

b

P log a     IV P n n log a    b

Bạn học sinh giải sai bước

A I B II C III D IV

Câu 47: Cho:

2 k

a a a

1 1

M

log x log x log x

    M thỏa mãn biểu thức biểu thức sau:

A

a

k(k 1) M

log x

B

a

4k(k 1) M

log x

C

a

k(k 1) M

2 log x

D

a

k(k 1) M

3log x

 

Câu 48:

2 2011

1 1

A

log x log x log x log x

    

A logx2012! B logx1002! C logx2011! D logx2011 Câu 49: Tìm giá trị n biết

2 n

2 2 2 2

1 1 120

log x log x log x   log x log xluôn với x 0

A 20 B 10 C 5 D 15

Câu 50: Cho log0,2x log 0,2y Chọn khẳng định đúng:

A y x 0  B x y 0  C x y 0  D y x 0 

Câu 51: Nếu

17 15

3

a a logb 2 5logb 2 3

A a 1 , b 1 B 0 a 1  , b 1 C a 1 , b 1  D 0 a 1  , b 1 

Câu 52: Cho số thực a, b, c thỏa mãn a 0, a 1, b 0, c 0    Chọn đáp án A log b log ca  a  b c B log b log ca  a  b c C log b log ca  a  b c D Cả đáp án sai Câu 53: Chọn khẳng định

A ln x 0  x B 1

2

log b log c   0 b c C log x 02    0 x D log b log c  b c

Câu 54: Cho a, b số thự dương khác thỏa:

2

3

b b

7

a a , log log

5

  Khi khẳng định sau

đây ?

A 0 a 1; b 1   B a 1; b 1  C 0 a 1;0 b 1    D a 1;0 b 1  

Câu 55: Trong mệnh đề sau,mệnh đề sai? A Nếu a 1 log M log Na  a M N 0 

B Nếu a 1  log M log Na  a  0 M N

(18)

C Nếu M, N 0 a 1  log M.Na log M.log Na a D Nếu a 1  log 2007 log 2008a  a

C - ĐÁP ÁN

1B, 2A, 3D, 4B, 5A, 6D, 7D, 8B, 9C, 10A, 11D, 12B, 13A, 14A, 15B, 16A, 17B, 18C, 19D, 20A, 21B, 22C, 23C, 24A, 25B, 26C, 27D, 28A, 29D, 30B, 31A, 32B, 33B, 34B, 35D, 36A, 37B, 38B, 39A, 40B, 41A, 42C, 43B, 44C, 45B, 46D, 47C, 48C, 49D, 50D, 51D, 52C, 53B, 54B, 55C

-

(19)

HÀM SỐ MŨ, HÀM SỐ LÔGARIT

A – LÝ THUYẾT TÓM TẮT 1) Hàm số mũ y a x (a > 0, a  1)

 Tập xác định: D = R

 Tập giá trị: T = (0; +)

 Khi a > hàm số đồng biến, < a < hàm số nghịch biến

 Nhận trục hoành làm tiệm cận ngang

 Đồ thị:

2) Hàm số logarit y log x a (a > 0, a  1)

 Tập xác định: D = (0; +)

 Tập giá trị: T = R

 Khi a > hàm số đồng biến, < a < hàm số nghịch biến

 Nhận trục tung làm tiệm cận đứng

 Đồ thị:

3) Giới hạn đặc biệt

x

x

x x

1

lim(1 x) lim e

x

 

 

     

   x

ln(1 x)

lim

x 

   x

x

e

lim

x 

 

4) Đạo hàm

  ax  a ln ax ;  au  a ln a.uu 

 ex  ex;  eu  e uu 

  a 

1 log x

x ln a

  ;  a 

u log u

u ln a

  

0<a<1

y=logax

1 x

y

O

a>1

y=logax

1 y

x O

0<a<1

y=ax y

x

1

a>1

y=ax y

x

1

(20)

ln x

x

  (x > 0); ln u u u

 

B - BÀI TẬP

Câu 1: Tập xác định D hàm số  

y log x 2x 3

A D  1;3 B D    ; 1 3;

C D  1;3 D D    ; 1 3;

Câu 2: Hàm số y =  2

log 4x x có tập xác định là:

A (2; 6) B (0; 4) C (0; +) D R

Câu 3: Hàm số y = log 5

6 x có tập xác định là:

A (6; +) B (0; +) C (-; 6) D R

Câu 4: Gọi tập D tập xác định hàm số   34

5 x

y x log

x

 

  

 Khẳng định đúng?

A D  3;2 B D 2;5 C 3;2D D  2;5 D Câu 5: Tập xác định D hàm số

x x

2

y

3

 

A D0;  \ B D1;  \ C D0;  \ D D 1;   \ Câu 6: Tập xác định D hàm số

x

x y

4

 

A D 1;

 

 

  B

1

D ;

2

 

  

  C D R D

1

D ;

2

 

  

Câu 7: Tập xác định hàm số

y log x  x 12

A 4;3 B   ; 4 3; C   ; 4 3; D 4;3 Câu 8: Hàm số y = ln x2 5x 6  có tập xác định là:

A (0; +) B (-; 0) C (2; 3) D (-; 2)  (3; +) Câu 9: Hàm số y =

1 ln x có tập xác định là:

A (0; +)\ {e} B (0; +) C R D (0; e)

Câu 10: Hàm số y = ln x2  x x có tập xác định là:

A (-; -2) B (1; +) C (-; -2)  (2; +) D (-2; 2) Câu 11: Tập xác định D hàm số 0,8

2x

y log

x

 

A D 5;

 

   

  B

1 5

D ;

2 2

 

  

  C

5

D ;5

3

 

   D D  5;53

Câu 12: Tập xác định D hàm số 1 

2

y log x 2 1

A D 2;3 B D2; C (2; 4] D D 2;3

(21)

Câu 13: Tập xác định hàm số

2

1

y 2x 5x ln

x

    

A  1; B 1; 2 C  1;2 D 1; 2 Câu 14: Tìm tập xác định D hàm số  2

3

y x  x 2.log x

A D   3;  B D    3; 2 1;2 C D   2;  D D 1;3 Câu 15: Tập xác định D hàm số y log3 210 x

x 3x

 

 

A D1; B D  ;10

C D   ;1 2;10 D D2;10

Câu 16: Tập xác định D hàm số 4 2 1  8 3

2

y log x 1  log x log x 1

A D  ;3 B D  1;3 C D  1;3 \ 1   D D  1;3 \ 1   Câu 17: Cho hàm số y ln x 2 Tập xác định hàm số là:

A e ;2 

B

1 ; e

  

  C 0; D R

Câu 18: Tập xác định hàm số y 2017xx

e

 

 là:

A  1;   \ B  1;   \ C  1;   \ D  1;   \ Câu 19: Tập xác định hàm số

x 1

y

ln x

 

 là:

A R \ 4  B 1;5 \ 4   C 1;5 D 1;5 Câu 20: Tập xác định hàm số: y ln ln x   là:

A 1; B D0; C De; D D 0;1 Câu 21: Tập xác định D hàm số y logx 1 x

2 x 

 là:

A D1; B D 0;1 C D2; D D 1; Câu 22: Hàm số y = ln sin x có tập xác định là:

A R \ k2 , k Z

    

 

  B R \ k2 , k Z  

C R \ k , k Z

    

 

  D R

Câu 23: Tìm m để hàm số y 2x 2017 ln x    22mx 4  có tập xác định D R :

A m 2 B m 2 C m m

    

D. m < -2

Câu 24: Hàm số đồng biến tập xác định nó? A y =  0,5 x B y =

x

2

   

  C y =  

x

2 D y =

x

e

     

(22)

Câu 25: Hàm số nghịch biến tập xác định nó? A y = log x 2 B y = log x3 C y = log xe

D y = log x Câu 26: Trong hàm số sau,hàm số đồng biến:

A y (2016) 2x B y (0,1) 2x C

x

2015 y

2016

 

   D

x

3 y

2016

 

   

Câu 27: Hàm số y x ln x đồng biến khoảng nào?

A 0; B 1; e

 

 

  C  0;1 D

1 0;

e

 

 

 

Câu 28: Hàm số y x e x đồng biến khoảng nào?

A  0; B 2; C ;0 D ;0  2;

Câu 29: Cho hàm số yx23 e x Chọn đáp án

A Hàm số đồng biến khoảng ;1 B Hàm số nghịch biến khoảng 3;1 C Hàm số nghịch biến khoảng 1; D Hàm số đồng biến khoảng 1;3 Câu 30: Gọi D tập xác định hàm số  2

2

y log x  Đáp án sai?

A Hàm số nghịch biến 2; 2 B Hàm số đồng biến khoảng 2;0 C Hàm số có tập xác định D  2; 2 D Hàm số đạt cực đại x 0

Câu 31: Hàm số y x ln e    x nghịch biến khoảng nào? Chọn đáp án

A Nghịch biến R B Đồng biến khoảng ;ln 2 C Đồng biến R D Nghịch biến ln 2;

Câu 32: Hàm số y x ln x   1 x 2 1 x Mệnh đề sau sai

A Hàm số có tập xác định R B Hàm số có đạo hàm số: y/ ln x  1 x 2

C Hàm số đồng biến 0; D Hàm số nghịch biến 0;

Câu 33: Với điều kiện a đê hàm số y (2a 1)  x hàm số mũ:

A a 1;1 1; 

 

  

  B

1

a ;

2

 

 

  C a 1 D a 0

Câu 34: Với điều kiện a đê hàm số y (a 2 a 1)x đồng biến R:

A a 0;1 B a  ;0  1; 

C a 0;a 1  D a tùy ý

Câu 35: Xác định a để hàm số y2a 5 x nghịch biến R A 5 a

2  B

5 a 3

2  C a 3 D

5 x

2

Câu 36: Xác định a để hàm số ya23a 3 xđồng biến R

A a 4 B   1 a C a 1 D a 1 a 4

Câu 37: Xác định a để hàm số y log 2a 3 xnghịch biến 0;

(23)

A a

B 3 a

2  C a 2 D

3 a

2

Câu 38: Với điều kiện a đê hàm số y x (1 a)

 nghịch biến R:

A a 0;1 B a   1;  C 0; D a 1

Câu 39: Hàm số có đồ thị hình vẽ ỏ bên ?

A

x

1 y

3

 

    B

2

1 y

2

 

  

C y 3 x D y 2 x

Câu 40: Cho đồ thị hàm số

x x x

y a , y b , y c   (a,b,c dương khác 1) Chọn đáp án đúng:

A a b c  B b c a 

C b a c  D c b a 

y

x y=bx

y=cx

y=ax

‐1 6

4

2

‐2 ‐1 O 1 2

Câu 41: Cho đồ thị hai hàm số y a x

b

y log x hình vẽ: Nhận xét đúng?

A a 1, b 1  B a 1,0 b 1  

C 0 a 1, b 1    D 0 a 1, b 1  

y

x y=logbx

y=ax

‐1 4

2

‐2 ‐1O 1 2

Câu 42: Trong hình sau hình dạng đồ thị hàm số y a ax, 1

(24)

A (I) B (II) C (III) D (IV) Câu 43: Trong hình sau hình dạng đồ thị hàm số y ax, a 1 

A (I) B (II) C (IV) D (III)

Câu 44: Trong hình sau hình dạng đồ thị hàm số ylog ,ax a1

A (IV) B (III) C (I) D (II)

Câu 45: Trong hình sau hình dạng đồ thị hàm số ylog ,0ax  a

A (I) B (II) C (IV) D (III)

(25)

Câu 46: Đồ thị hình bên hàm số ? A y log x 1 2  B y log (x 1) 2 

C y log x 3 D y log (x 1) 3 

Câu 47: Đồ thị hình bên hàm số nào? A y ln x B y ln x

C y ln(x 1) D y ln x 1 

Câu 48: Tập giá trị hàm số y log x, a 1 a     là:

A 1; B 0; C 0; D R Câu 49: Tập giá trị hàm số y a , a 1 x     là:

A 1; B 0; C 0; D R Câu 50: Cho a 0, a 1  Tìm mệnh đề mệnh đề sau:

A Tập xác định hàm số y a x khoảng 0;

B Tập giá trị hàm số y log x a tập R C Tập xác định hàm số y log x a tập R

D Tập giá trị hàm số y a x

tập R Câu 51: Tìm phát biểu sai?

A Đồ thị hàm số y a a 0, a 1 x    nằm hồn tồn phía Ox

B Đồ thị hàm số y a a 0, a 1 x    qua điểm A 0;1 

C Đồ thị hàm số  

x

x

y a , y , a

a

 

    

  đối xứng qua trục Ox

D Đồ thị hàm số  

x

x

y a , y , a

a

 

    

  đối xứng qua trục Oy

Câu 52: Tìm mệnh đề mệnh đề sau:

A Hàm số y = ax với < a < hàm số đồng biến (-: +) B Hàm số y = ax với a > hàm số nghịch biến (-: +) C Đồ thị hàm số y = ax (0 < a  1) qua điểm (0; 1)

D Đồ thị hàm số y = ax y =

x

1 a

   

  (0 < a  1) đối xứng với qua trục tung

(26)

Câu 53: Cho a > Tìm mệnh đề sai mệnh đề sau: A ax > x >

B 0 < ax < x < C Nếu x1 < x2 ax1 ax2

D Trục tung tiệm cận đứng đồ thị hàm số y = ax Câu 54: Cho < a < Tìm mệnh đề sai mệnh đề sau:

A ax > x < B 0 < ax < x > C Nếu x1 < x2 ax1 ax2

D Trục hoành tiệm cận ngang đồ thị hàm số y = ax Câu 55: Tìm mệnh đề mệnh đề sau:

A Hàm số y = log x với < a < hàm số đồng biến khoảng (0 ; +a )

B Hàm số y = log x với a > hàm số nghịch biến khoảng (0 ; +a ) C Hàm số y = log x (0 < a a  1) có tập xác định R

D Đồ thị hàm số y = log x y = a 1

a

log x (0 < a  1) đối xứng với qua trục hoành Câu 56: Cho a > Tìm mệnh đề sai mệnh đề sau:

A log x > x > a B log x < < x < a

C Nếu x1 < x2 log xa 1log xa 2

D Đồ thị hàm số y = log x có tiệm cận ngang trục hoành a Câu 57: Cho < a < 1Tìm mệnh đề sai mệnh đề sau:

A log x > < x < a B log x < x > a

C Nếu x1 < x2 log xa 1log xa 2

D Đồ thị hàm số y = log x có tiệm cận đứng trục tung a

Câu 58: Cho a > 0, a  Tìm mệnh đề mệnh đề sau: A Tập giá trị hàm số y = ax tập R

B Tập giá trị hàm số y = log x tập R a

C Tập xác định hàm số y = ax khoảng (0; +) D Tập xác định hàm số y = log x tập R a Câu 59: Phát biểu sau không đúng?

A Hai hàm số y a x

a

y log x có tập giá trị B Hai đồ thị hàm số y a x

a

y log x đối xứng qua đường thẳng y x

C Hai hàm số y a x

a

y log x có tính đơn điệu D Hai đồ thị hàm số y a x

a

y log x có đường tiệm cận Câu 60: Khẳng định sau sai?

A Đồ thị hàm số y a x 0 a 1   nhận trục hoành làm tiệm cận cận ngang

B Đồ thị hàm số y log x a 0 a 1   cắt trục tung điểm

C Đồ thị hàm số y a x

a

y log x với a 1  hàm số đồng biến tập xác định D Đồ thị hàm số y a x

a

y log x , 0 a 1   hàm số nghịch biến tập xác định

(27)

Câu 61: Cho hàm số, Các mệnh đề sau, mệnh đề sai A Đố thị hàm số luon qua điểm M 0;1  N 1;a  B Đồ thị hàm số có đường tiệm cận y 0

C Đồ thị hàm số khơng có điểm uốn D Đồ thị hàm số tăng

Câu 62: Tập giá trị hàm số ylog (ax x0,a0,a1) là:

A (0;) B ;0 C D [0;)

Câu 63: Tìm

2x x

e

lim x 

ta được:

A 0 B 1

2 C 2 D 

Câu 64: Tìm

4x 2x

x

e e

lim x 

ta được:

A 0 B 1 C 2 D 3

Câu 65: Tìm

5x 3x x

e e

lim 7x 

ta được: A 2 B 2

7 C

3

7 D

5 Câu 66: Tìm

2x x

e

lim

x 

  ta được:

A 2 B 4 C 8 D 16

Câu 67: Tìm

x x

e cos x lim

x sin x 

 ta được:

A 0 B 1 C 3

2 D

1 Câu 68: Tìm

x

ln(1 5x) lim

x 

 ta được:

A 0 B 5 C 1 D 

Câu 69: Tìm  

x

ln 2016x lim

x 

ta được:

A 0 B 1 C 2016 D 

Câu 70: Tìm  

x

ln 2x lim

sin x 

ta được:

A 0 B 2 C 4 D 

Câu 71: Tìm  

x

ln 3x lim

tan x 

ta được:

A 1 B 1

3 C 0 D 3

Câu 72: Tìm

x

1 3x

lim ln

x x

 ta được:

A 0 B  C 2 D 3

Câu 73: Cho hàm số: f x x.ex ta có f 1/  là:

(28)

A 1 B e C 2e D e 1

Câu 74: Đạo hàm hàm y e x2x là:

A 2x e  x2x B 2x e  x C x2x e 2x 1 D 2x e  2x 1 Câu 75: Đạo hàm hàm số y e sin x2 là:

A cos xe2 sin x2 B sin x2

cos 2xe C sin 2xesin x2 D 2 sin x 12 sin x.e  Câu 76: Đạo hàm hàm yx22x e x là:

A x22x e  x B x22 e x C x2x e x D x22 e x

Câu 77: Đạo hàm hàm số y2x 3  xlà:

A 3 2x ln ln 3x    B 3 2x ln ln 3x    C 2.3x2x x.3  x 1 D 2.3 ln x

Câu 78: Đạo hàm hàm y ex x

 là:

A  

 

x

x e x

B  

x

xe

x 1 C

 

 

x

x e x

D

x

e x 1

Câu 79: Đạo hàm y 2 sin x cos x 1 là:

A sin x.cos x.2sin x.2cos x 1 B (cos x sin x)2 sin x cos x 1 .ln 2 C sin 2x.2 2sin x cos x 1 D Một kết khác

Câu 80: Cho hàm số f x ln x 25 đó:

A f 1/ 

6

B f 1/ 

3

C f 1/ ln 6 D f 1/ 0

Câu 81: Đạo hàm hàm y x ln x là:

A 2x ln x 1 B 2x ln x x C 2x ln x 2 D 2x ln x 1  

Câu 82: Đạo hàm hàm số f x   3 ln x ln x là: A 1 B 1

x x

  

 

  C

3 ln x x

D ln x

x

 

Câu 83: Đạo hàm hàm y ln x2 x

 là: A 1 ln x3

x

B

4

1 x ln x x

C

3

1 ln x x

D

4

x ln x x

Câu 84: Đạo hàm hàm số y ln x   x21 là:

A

2

1

x 1 B

x

x 1 C

1 x x

D

2x x

Câu 85: Đạo hàm hàm số y lnx x

 

 là:

A

 2

1

2 x 1 B

x x

C

2

x 1 D

2 x 1 Câu 86: Đạo hàm hàm số x

2

y log (x e )  là:

(29)

A

x

1 e ln

B x

x

1 e x e

C  x

1

x e ln 2 D  

x x

1 e x e ln

 

Câu 87: Đạo hàm cấp hàm số y ln(2x 2e )2

A y’= 2 4x

(2x e ) B y’= 2

x

(2x e ) C y’= 2

4x 2e (2x e )

D y’= 2

4x (2x e ) Câu 88: Đạo hàm hàm số    

5

f x log x  x là: A

 

2x x x ln

  B  

1

x  x ln C

2x

x x

  D Đáp án khác

Câu 89: Đạo hàm hàm số 2 

y log 2x 1  là:

A  

 

2 log 2x 2x ln

B

 

 

4 log 2x 2x ln

C

 

2

4 log 2x 2x

D  

2 2x ln 2

Câu 90: Hàm số f(x) = ln x

x x có đạo hàm là: A ln x2

x

B ln x

x C

ln x

x D Kết khác

Câu 91: Cho f(x) = ln sin 2x Đạo hàm f’

       bằng:

A 1 B 2 C 3 D 4

Câu 92: Cho hàm số y x.e x Chọn hệ thức đúng:

A y//2y/ 1 0 B y//2y/3y 0 C y//2y/ y 0 D y//2y/3y 0

Câu 93: Cho y = ln

1 x Hệ thức y y’ không phụ thuộc vào x là:

A y’ - 2y = B y’ + ey = C yy’ - = D y’ - 4ey = Câu 94: Cho hàm số y x[cos(ln x) sin(ln x)]  Khẳng định sau ?

A x y '' xy ' 2y 02    B x y '' xy ' 2y 02    C x y ' xy '' 2y 02    D x y '' xy ' 2y 02   

Câu 95: Cho hàm số y = esin x Biểu thức rút gọn K = y’cosx - yinx - y” là:

A cosx esinx B 2esinx C 0 D 1

Câu 96: Hàm số f(x) = ln x  x21 có đạo hàm f’(0) là:

A 0 B 1 C 2 D 3

Câu 97: Hàm số y = ln cos x sin x cos x sin x

 có đạo hàm bằng:

A

cos 2x B

2

sin 2x C cos2x D sin2x

Câu 98: Cho f(x) =  

log x 1 Đạo hàm f’(1) bằng: A

ln B 1 + ln2 C 2 D 4ln2

Câu 99: Hàm số y = e (a ax  0) có đạo hàm cấp n là:

A y n eax B y n a en ax C y n n!eax D y n n.eax

Câu 100: Hàm số y = lnx có đạo hàm cấp n là:

(30)

A  n n

n! y

x

B  n   n 

n

n !

y

x

 

 

C  n n

1 y

x

D  n

n

n! y

x 

Câu 101: Cho hàm số y f (x) x.e  x Khẳng định sau sai?

A Hàm số có tập xác định R B Hàm số nghịch biến 1;

C Hàm số đạt cực đại điểm 1;1 e

 

 

  D xlim f (x)   Câu 102: Giá trị cực đại hàm số y x e x bằng:

A e

4 B

4

e C

4

e D 2 e

Câu 103: Đồ thị hàm số y ln x x

 có điểm cực đại là:

A  1;e B  1;0 C  e;1 D e;1 e

 

 

 

Câu 104: Hàm số f(x) = x ln x đạt cực trị điểm: 2

A x = e B x = e C x =

e D x =

1 e Câu 105: Hàm số

x

e y

x

 Mệnh đề sau

A Hàm số có đạo hàm

 

x

e y '

x

B Hàm số đạt cực đại x 0

C Hàm số đạt tiểu x 0 D Hàm số nghịch biến 0;

Câu 106: Giá trị nhỏ hàm số x2 2x 2  

y e   / 0; là:

A 1 B e C

e D e

Câu 107: Giá trị nhỏ hàm số y 2 x 1 23 x là:

A 4 B 6 C 4 D Đáp án khác

Câu 108: Giá trị lớn hàm số y ln x x

 1;e2

 là:

A 0 B 1

e C

2

e D 0

Câu 109: Giá trị lớn hàm số y x e x 3;2là:

A M 4e B M 2e C M 3e D M 9e

Câu 110: Hàm số f (x) x.ln x 3x  trên 1;e2

  có giá trị lớn M giá trị nhỏ m là:

A M e , m  2e B M e , m  3 C M 4e , m  2 D M 3, m 2e2

Câu 111: Giá trị nhỏ hàm số f x x2ln 2x  trên 2;0 là:

A 0 B 4 ln 5 C 1 ln

4 D Giá trị khác

(31)

Câu 112: Gọi a b giá trị lơn bé hàm số y ln(2x 2e )2 trên [0 ; e]

đó: Tổng a + b là:

A 4+ln3 B 2+ln3 C 4 D 4+ln2

Câu 113: Hàm số f x x23 e x đoạn  0;2 có giá trị nhỏ giá trị lớn

m M Khi

2016

1013 2016

m

M

2  bằng:

A e2016 B 22016 C 2.e2016 D (2.e)2016

Câu 114: Giá trị lớn nhất, nhỏ hàm số y 2 x 2;2

A

[ 2;2]

max y

  , [ 2;2]min y 

B

[ 2;2]

max y

  , [ 2;2]min y  C

[ 2;2]

max y

  , [ 2;2]min y 

4 D max y 4[ 2;2]  , [ 2;2]min y 1  Câu 115: Tìm giá trị nhỏ hàm số: y 4 sin x2 4cos x2

A 2 B C 2 D 4

Câu 116: Cho hàm số y ln x   2(C) Hệ số góc tiếp tuyến với (C) điểm có hồnh độ

x  1bằng:

A ln B 1 C 1 D 1

2

Câu 117: Đồ thị (L) hàm số f(x) = lnx cắt trục hoành điểm A, tiếp tuyến (L) A có phương trình là:

A y = x - B y = 2x + C y = 3x D y = 4x –

Câu 118: Giả sử đồ thị  C hàm số  

x

2 y

ln

 cắt trục tung điểm A tiếp tuyến  C A cắt trục hồnh điểm B Tính diện tích tam giác OAB

A SOAB ln

B SOAB 12

ln

C SOAB 22

ln

D

OAB

S ln

C - ĐÁP ÁN

1B, 2B, 3C, 4B, 5A, 6A, 7C, 8C, 9A, 10C, 11B, 12C, 13D, 14B, 15D, 16C, 17B, 18B, 19D, 20A, 21D, 22A, 23C, 24C, 25B, 26A, 27B, 28C, 29B, 30A, 31C, 32C, 33A, 34B, 35D, 36D, 37B, 38C, 39A, 40C, 41B, 42A, 43D, 44D, 45C, 46D, 47A, 48B, 49B, 50B, 51C, 52C, 53B, 54C, 55D, 56D, 57D, 58B, 59A, 60B, 61D, 62D, 63C, 64C, 65B, 66C, 67C, 68B, 69C, 70B, 71D, 72C, 73C, 74A, 75C, 76B, 77B, 78B, 79B, 80B, 81B, 82C, 83D, 84A, 85D, 86D, 87A, 88A, 89B, 90A, 91B, 92C, 93B, 94C, 95C, 96B, 97A, 98A, 99B, 100B, 101D, 102B, 103D, 104D, 105C, 106B, 107A, 108B, 109A, 110A, 111C, 112, 113C, 114D, 115D, 116C, 117A, 118C

(32)

PHƯƠNG TRÌNH MŨ

A – LÝ THUYẾT TĨM TẮT

1 Phương trình mũ bản: Với a > 0, a  1: x

a

b

a b

x log b

 

   

2 Một số phương pháp giải phương trình mũ

a) Đưa số: Với a > 0, a  1: af (x )ag(x) f (x) g(x)

Chú ý: Trong trường hợp số có chứa ẩn số thì: aMaN (a 1)(M N) 0  

b) Logarit hoá: f (x) g(x)   a

a b f (x) log b g(x) c) Đặt ẩn phụ:

 Dạng 1: P(af (x)) 0  t af (x), t

P(t)

  

 

 , P(t) đa thức theo t  Dạng 2: a2f (x) (ab)f (x) b2f (x) 0

Chia vế cho b2f (x ), đặt ẩn phụ

f (x)

a t

b

     

 Dạng 3: af (x )bf (x) m, với ab 1 Đặt t af (x) bf (x)

t

  

d) Sử dụng tính đơn điệu hàm số Xét phương trình: f(x) = g(x) (1)

 Đốn nhận x0 nghiệm (1)

 Dựa vào tính đồng biến, nghịch biến f(x) g(x) để kết luận x0 nghiệm nhất:

f (x) g(x)

f (x) g(x) c

 

đồng biến nghịch biến (hoặc đồng biến nghiêm ngặt) đơn điệu số

 Nếu f(x) đồng biến (hoặc nghịch biến) f (u) f (v)  u v e) Đưa phương trình phương trình đặc biệt

Phương trình tích A.B =  A

B

   

 Phương trình

2 A

A B

B

 

   

 

f) Phương pháp đối lập

Xét phương trình: f(x) = g(x) (1) Nếu ta chứng minh được: f (x) M

g(x) M

 

 

 (1)

f (x) M

g(x) M

 

  

B - BÀI TẬP

Câu 1: Nghiệm phương trình 10log9 8x 5

A 1

2 B

5

8 C

7

4 D 0

Câu 2: Nghiệm phương trình

x

2x

1 125

25 

  

 

  là:

A 1 B 4 C

4

D

8

(33)

Câu 3: Số nghiệm phương trình 22x27x 5 1

A 2 B 1 C 3 D 0

Câu 4: Số nghiệm phương trình 22 x 22 x 15

A 3 B 2 C 1 D 0

Câu 5: Phương trình 4x2x2x2 x 13 có hiệu nghiệm

1

x x bằng:

A 2 B 1 C 0 D -1

Câu 6: Phương trình 3.2x4x 1  8 0có nghiệm x

1, x2 tổng x1+x2

A 2 B 3 C 4 D 5

Câu 7: Phương trình 9x3.3x 2 0có nghiệm x

1, x2 Giá trị A 2 x13x2

A 4 log B 2 C 0 D 3log

Câu 8: Nghiệm phương trình: 2 3 cos x 2 3cos x 4 là:

A x  k2 B x k2  C x k  D x   k

Câu 9: Tích nghiệm phương trình: 3 5 x 3 5x 3.2x là:

A 2 B 2 C 1 D 1

Câu 10: Tích nghiệm phương trình: 2 3 x 2 3x 14 là:

A 2 B 2 C 4 D 4

Câu 11: Giải phương trình  2 3 x 2 3x 4 Ta có số nghiệm là:

A 0 B 1 C 2 D 4

Câu 12: Gọi x , x nghiệm phương trình: 1 2 5.2x 7 10x 2.5x 2

1

x x bằng:

A 1 B 2 C 4 D 5

Câu 13: Tổng nghiệm phương trình:

x x

x x

2

 

    :

A 0 B 2 C 2 D 4

Câu 14: Tổng nghiệm phương trình: 15.25x34.15x15.9x 0 :

A 0 B 1 C 1 D 2

Câu 15: Tổng bình phương nghiệm phương trình : 8.3x3.2x 24 6 x là:

A 8 B 9 C 10 D Kết khác

Câu 16: Tổng nghiệm phương trình: 2x2x22 x x  5 là:

A 2 B 3 C 0 D 1

Câu 17: Phương trình 8.3x3.2x 24 6 xcó tích nghiệm

A 3 B 0 C 10 D 30

Câu 18: Phương trình 9x3.3x 2 0có nghiệm x1, x2 Giá trị

1

A 2x 3x

A 4 log B 2 C Đáp án khác D 3log

Câu 19: Phương trình  

3x

2x x

1

2.4

2 

    

 

  có nghiệm

A 0 B 1 C log 2 D log 2

Câu 20: Phương trình 32x 1 4.3x 1 0có nghiệm

x , x x < x Chọn phát biểu ?

A x1x2 2 B x12x2 1 C x x1 2  1 D 2x1x2 0

(34)

Câu 21: Số nghiệm phương trình 9x4.3x45 0 là:

A 0 B 1 C 2 D 3

Câu 22: Phương trình 9x3.3x 2 0 có hai nghiệm  

1 2

x , x x x Giá trị A 2x 13x2là:

A 0 B 4 log 2 C 2 D 3log 3

Câu 23: Phương trình: 31 x 31 x 10 Chọn đáp án đúng:

A Có hai nghiệm âm B Có hai nghiệm dương

C Có nghiệm trái dâu D Vơ nghiệm

Câu 24: Số nghiệm phương trình: 9x25.3x54 0 là:

A 3 B 0 C 2 D 1

Câu 25: Tập nghiệm phương trình: 3 2x 1 x222.4x là:

A  1 B 1;1 log 3  C 1;1 log 2  D 1;1 log 3 

Câu 26: Số nghiệm phương trình 6.9x13.6x6.4x 0 là:

A 0 B 1 C 2 D 3

Câu 27: Số nghiệm phương trình 3 2x x2 1 là:

A 0 B 1 C 2 D 3

Câu 28: Tập nghiệm phương trình

x x x

5 500

 là: A

5

x

x log

    

B

x x log

   

C

x x log

   

D

x 1 x log

2

     

Câu 29: Số nghiệm phương trình(x 3) 2x25x 1 là:

A 0 B 1 C 2 D 3

Câu 30: Tích nghiệm phương trình: 32 x 32 x 30 là:

A 2 B 2 C 1 D 1

Câu 31: Phương trình 3x33x2939x có nghiệm tập số thực là:

A x 33

1

B

3 x

1

 

C

3 x

1

D

3 x

1

  

Câu 32: Phương trình: 3x4x 5x có nghiệm là:

A 1 B 2 C 3 D 4

Câu 33: Phương trình 3x7x 48x 38 có nghiệm x1,x2 Giá trị 2

1

x x

A 3 B 4 C 5 D 6

Câu 34: Giải phương trình 9|x 1| 272x 2 Ta có tập nghiệm :

A. B.1

2 C. D

1

4

Câu 35: Phương trình

x

2x

0,125.4

8     

 

  số nguyên đứng liền trước nghiệm phương trình

là:

A 3 B 4 C 5 D 8

Câu 36: Phương trình: 3.4x3x 10 2  x  3 x 0 có nghiệm dạng a

log b

 Tìm a 2b :

A 4 B 6 C 8 D 10

(35)

Câu 37: Phương trình

x x

9 10

2 

 có số nghiệm

A 0 B 1 C 2 D 3

Câu 38: Phương trình 3 2x 1 x2 8.4x 2 có nghiệm

1

x , x x1  x1 ?

A Đáp án khác B log 13  C log 2 D log 3 Câu 39: Cho phương trình: 2x  2x26x 9 Tìm phát biểu sai:

A Phương trình có nghiệm trái dấu B Phương trình có hai nghiệm dương C Phương trình có nghiệm âm D Phương trình vơ nghiệm

Câu 40: Số nghiệm phương trình: x 3 2x25x 1 là:

A 1 B 2 C 3 D 0

Câu 41: Phương trình31 x 31 x 10

A Có hai nghiệm âm B Có nghiệm âm nghiệm dương

C Có hai nghiệm dương D Vơ nghiệm

Câu 42: Tích số nghiệm phương trình 6 35 x 6 35x 12 là:

A -4 B 1 C 2 D 29

Câu 43: Cho phương trình 4x3.2x 2 0, thỏa mãn t = 2x t > Thì giá trị biểu thức 2017t là:

A 2017 B -2017 C 4034 D – 4034

Câu 44: Phương trình 9x +x2 110.3x +x2 2 1 0

có tổng tất nghiệm là:

A 5 B 10 C 2 D -2

Câu 45: Tập nghiệm phương trình

1 1

x x x

9.4 5.6 4.9

   là:

A  1;3 B  1 C

   

  D

9 1;

4

 

 

 

Câu 46: Số nghiệm phương trình: 5x 1 53 x 26 là:

A 0 B 1 C 2 D 4

Câu 47: Phương trình

2x

x x

3 15

 có nghiệm dạng x log ba , với a b số nguyên dương lớn nhỏ Khi a 2b

A 10 B 8 C 13 D 5

Câu 48: Tích nghiệm phương trình 6.32x13.6x6.22x 0 là:

A –1 B 0 C 1 D –4

Câu 49: Số nghiệm phương trình 24x24x 1 24x 2 34x34x 1 34x 2 là:

A 0 B 1 C 2 D 4

Câu 50: Giải phương trình3.4x(3x 10).2 x  3 x 0 (*) Một học sinh giải sau:

Bước 1: Đặt t 2 x 0 Phương trình (*) viết lại là:

3.t (3x 10).t x (1)   

Biệt số  (3x 10) 212(3 x) 9x  248x 64 (3x 8)  

Suy phương trình (1) có hai nghiệm t 1& t x

  

Bước 2:

(36)

+Với t

 ta có x

5

1

5 x log

3

    

+Với t x  ta có 5x 2    3 x x 2 Bước 3:Vậy (*) có hai nghiệm x log51

  x 2

Bài giải hay sai? Nếu sai sai từ bước nào?

A Bước B Bước C Bước D Đúng

Câu 51: Giải phương trình 2sin x2 4.2cos x2 6

A k2 B k

  C

k2

  D

k2

 

Câu 52: Số nghiệm phương trình cos360 x cos720x 3.2xlà:

A 3 B 2 C 1 D 4

Câu 53: Cho phương trình 8x18x 2.27x có nghiệm , giá trị cos là:

A 0 B 1 C -1 D 1

2 Câu 54: Phương trình 3x x  

x x

1 12

2 6.2

2 

    có số nghiệm là:

A 0 B 1 C 2 D 3

Câu 55: Giải phương trình 12 9x - 35 6x + 18 4x = Ta có tập nghiệm :

A B. C. D

Câu 56: Giải phương trình 2x2x22 x x  5 Ta có số nghiệm :

A 0 B 1 C 2 D 4

Câu 57: Phương trình 32x 1 4.3 0x  có nghiệm ,

1

x x trong x1< x2 Chọn phát biểu đúng ?

A x x1 2 2 B x12x2  1 C x x1. 2 1 D 2x x1 20

Câu 58: Giải phương trình 7 3  x 3 2 3x  2 Ta có tổng nghiệm :

   D.

Câu 59: Giải phương trình 8x - 4x + 2x + 1 - = Ta có tập nghiệm :

  C. D.

Câu 60: Giải phương trình 3 5 x  3 5x 7.2x Ta có tổng nghiệm :

A 2 B 1 C 0 D Đáp án khác

Câu 61: Giải phương trình 4x2 (x27).2x2 12 4x 20 Ta có số nghiệm :

A 0 B 1 C 2 D 4

Câu 62: Phương trình 2 x x  2 sin  2 x x  22 cos x có số nghiệm là:

A Vô số nghiệm B 1 C 2 D 3

Câu 63: Giải phương trình 3x + 5x = 6x +

A Phương trình có nghiệm x = x = B Phương trình có nghiệm

C Phương trình có nghiệm x = D Phương trình vơ nghiệm

Câu 64: Giải phương trình 2x22x 3 Ta có tập nghiệm :

(37)

 log 3 2  log 3 2   log 3 2  log 3 2 

C  log 3 2  log 3 2  D. log 3 2  log 3 2 

Câu 65: Giải phương trinh 2x 2 18 2 x 6 Ta có tích nghiệm :

A log 12 2 B log 10 2 C 4 D log 14 2

Câu 66: Giải phương trình 2008x + 2006x = 2007x A Phương trình có nghiệm x = x = B Phương trình có nhiều nghiệm

C Phương trình có nghiệm

D Phương trình có nghiệm x =

Câu 67: Giải phương trình 2x 12 5x 1 Ta có tổng nghiệm :

A 2 - log B log C - log D - + log

Câu 68: Giải phương trình x2 2x + 4x + = x2 + x 2x + 2x + 1 Ta có số nghiệm

A 0 B 1 C 2 D 4

Câu 69: Giải phương trình 6x + = 2x + 1 + 3x Ta có tích nghiệm :

A log 3 B 2log 3 C 2log 2 D 2

Câu 70: Giải phương trình 22 x x  5.2 x 1  2x 4 0 Ta có tích nghiệm bằng:

A -18 B 6 C -6 D -2

Câu 71: Giải phương trình 34x 43x Ta có tập nghiệm : A. 3 3 

4

log log  B  2 3 

3

log log  C  4 4 

3

log log  D 4 3 

3

log log 

Câu 72: Giải phương trình 2x + 3 + 3x - 1 = 2x -1 + 3x Ta có tập nghiệm : A.

2

51

log   

  B.

3

4 45

log   

  C

3

45

log   

  D.

3

8 51

log   

 

Câu 73: phương trình 22x 3 m2 m 0 có nghiệm là:

A m 1 B 0 m 1  C m m 1   D m 0

Câu 74: Phương trình 22x 1 2x 3 2m 0 có hai nghiệm phân biệt khi:

A m 0 B m 4 C   4 m D m 4

Câu 75: Phương trình 4xm.2x 1 2m 0 có hai nghiệm phân biệt

1

x , x x1x23 khi:

A m 1 B m 5 C m = D m

2

Câu 76: Cho phương trình (2m 3)3 x2 3x  (5 2m)9x 1 Với giá trị m x = khơng phải nghiệm phương trình

A m = B m = C m

2

D m

2

Câu 77: Số nguyên dương lớn để phương trình 251 1 x2 m 5  1 1 x2 2m 0  có nghiệm

A 20 B 25 C 30 D 35

Câu 78: Xác định m để phương trình: 4x2m.2x  m 0 có hai nghiệm phân biệt là:

A m < B -2 < m < C m > D m  

Câu 79: Tìm m để phương trình h 9x2.3x 2 m có nghiệm thuộc khoảng 1; 2 là:

(38)

A 1 m

  B 1 m 65  C 1 m 45  D 13 m 65

9  

Câu 80: Tìm m để phương trình 4x - 2x + 3 + = m có nghiệm x 

A - 13 < m < - B 3 < m < C - < m < D - 13 < m < Câu 81: Tìm m để phương trình x x   14.2 x x    8 m có nghiệm

m  m  C.m  D m 

Câu 82: Tìm m để phương trình 9x - x 8.3x - x  4 m có nghiệm A m B  m 7

9 C m D. m 

13

9 

Câu 83: Tìm m để phương trình 9x - 3x + = m có nghiệm x 

A m > v m = B m 0 v m = - C m > v m = - D m 1 v m = - Câu 84: Tìm m để phương trình 4|x|2|x| 1  3 m có nghiệm

A m  B m - C m > - D m >

Câu 85: Tìm m để phương trình 4x - 2(m - 1) 2x + 3m - = có nghiệm x1, x2 cho x1 + x2 = A m =

2 B m = C

7

m D m =

Câu 86: Tìm m để phương trình 4x - 2(m + 1) 2x + 3m - = có hai nghiệm trái dấu A - < m < B m <

3 C

8

3 < m < D m <

Câu 87: Tìm m để phương trình 4x2 2x22 6 m có nghiệm

A m = B m = C m > D 2 < m <

Câu 88: Tìm m để phương trình 9x2 4.3x2 8 m có nghiệm x 

A 4 m 6245 B m 5 C m 4 D 5  m 6245 Câu 89: Tìm m để phương trình 4x - 2x + 3 + = m có nghiệm

A m > - 13 B m 3 C m = - 13v m 3 D m = - 13 v m > Câu 90: Tìm m để phương trình 4x - 2x + = m có nghiệm x

A m 8 B 8 m  18

C 8 < m < 18 D m = 23

4 v < m < 18

C - ĐÁP ÁN

1A, 2C, 3A, 4C, 5B, 6D, 7D, 8C, 9D, 10D, 11C, 12C, 13C, 14A, 15C, 16A, 17A, 18D, 19C, 20B, 21B, 22D, 23C, 24D, 25B, 26C, 27C, 28A, 29D, 30D, 31C, 32B, 33C, 34A, 35C, 36C, 37B, 38C, 39D, 40C, 41B, 42A, 43C, 44D, 45C, 46C, 47C, 48A, 49D, 50B, 51B, 52B, 53B, 54B, 55C, 56D, 57B, 58A, 59A, 60D, 61D, 62A, 63A, 64A, 65D, 66A, 67B, 68C, 69B, 70B, 71D, 72B, 73C, 74C, 75C, 76A, 77B, 78C, 79A, 80A, 81B, 82D, 83C, 84A, 85B, 86C, 87A, 88A, 89D, 90B

(39)

PHƯƠNG TRÌNH LƠGARIT

A – LÝ THUYẾT TĨM TẮT 1 Phương trình logarit bản

Với a > 0, a  1: b

a

log x b  x a 2 Một số phương pháp giải phương trình logarit

a) Đưa số

Với a > 0, a  1: log f (x) log g(x)a a f (x) g(x)

f (x) (hoặc g(x) 0)

 

  

 

b) Mũ hoá

Với a > 0, a  1: log f (x)a b

a

log f (x) b a a c) Đặt ẩn phụ

d) Sử dụng tính đơn điệu hàm số e) Đưa phương trình đặc biệt f) Phương pháp đối lập

Chú ý:

Khi giải phương trình logarit cần ý điều kiện để biểu thức có nghĩa

Với a, b, c > a, b, c 1: alog cb clog ab

B - BÀI TẬP

Câu 91: Số nghiệm phương trình

3

log (x - =6) log (x- +2) 1 là

A 3 B 2 C 1 D 0

Câu 92: số nghiệm phương trình: log x log x 34  4   là:

A 1 B 2 C 0 D  1;

Câu 93: Tập nghiệm phương trình: log 3 x 2  là:

A 3;2 B 4;2 C  3 D 10; 2 Câu 94: Tập nghiệm phương trình:  x 

2

log   1 là:

A 2 log 5 2  B 2 log 5 2  C log 52  D  2 log 52  Câu 95: Cho phương trình: log x log 22 x

2

  Chọn đáp án đúng:

A Có hai nghiệm dương B Có hai nghiệm trái dấu

C Có nghiệm âm D Vô nghiệm

Câu 96: Tập nghiệm phương trình: log x log x 12 26

log x

  

 là:

A 11 B 99 C 1010 D 22026

Câu 97: Số nghiệm phương trình: log x2 320 log x 0  là:

A 0 B 1 C 2 D 4

Câu 98: Tập nghiệm phương trình:  x   

2

log 4  x log 3 là:

A  1 B 1;4 C  4 D log 43 

Câu 99: Tổng nghiệm phương trình log log x log log x 24   là:

A 0 B 20 C 6 D 16

(40)

Câu 100: Giải phương trình log 22 x1 log 2 4 x 1 21 Ta có ttoongr nghiệm là:

A log 15 2 B -1 C log2154 D 3

Câu 101: Số nghiệm hương trình sau log (x 5) log (x 2) 32   2   là:

A 1 B 2 C 0 D 3

Câu 102: Số nghiệm hương trình sau 2

log (x 1) log  x 1  là:

A 2 B 3 C 1 D 0

Câu 103: Số nghiệm hương trình sau log x log x    là:

A 2 B 3 C 1 D 0

Câu 104: Giải phương trình

2

log x 3.log x 0   Ta có tổng nghiệm là:

A 6 B 3 C 5

2 D

9 Câu 105: Phương trình: ln x ln 3x 2    = có nghiệm ?

A 0 B 1 C 2 D 3

Câu 106: Phương trình ln x 1   ln x 3   ln x 7   có nghiệm?

A 0 B 1 C 2 D 3

Câu 107: Số nghiệm phương trình x

log (36 3  ) x  là:

A 0 B 1 C 2 D 4

Câu 108: Phương trình

log (x 4x 12) 2 

A Có hai nghiệm dương B Có nghiệm âm nghiệm dương

C Có hai nghiệm âm D Vơ nghiệm

Câu 109: Số nghiệm phương trình x

log (2   1)

A 0 B 1 C 2 D 3

Câu 110: Phương trình: ln x ln 3x 2    = có nghiệm?

A 0 B 1 C 2 D 3

Câu 111: Phương trình: log x log x log x 113  9  27  có nghiệm số mà tổng chữ số só là:

A 17 B 21 C 18 D 972

Câu 112: Cho phương trình 32 log x 81x có nghiệm dạng a

b a, b Z  Tính tổng a b

A 5 B 4 C 7 D 3

Câu 113: Cho ba phương trình,phương trình có tập nghiệm 1; 2

 

 

 

2

x log x x 2   (I)

2

2

(x 4)(log x 1) 0  (II)

2

0,5

x log (4x) log( )

8

  (III)

A Chỉ (I) B Chỉ (II) C Chỉ (III) D Cả (I), (II), (III) Câu 114: Phương trìnhlog x log 2,52  x 

(41)

A Có nghiệm âm nghiệm dương B Có hai nghiệm dương

C Có hai nghiệm âm D Vơ nghiệm

Câu 115: Phương trình:  

log x 4x 12 2 Chọn đá án đúng:

A Có hai nghiệm dương B Có hai nghiệm trái dấu

C Có nghiệm âm D Vơ nghiệm

Câu 116: Phương trình x x

2

log (4.3  6) log (9 6) 1 có nghiệm thuộc khoảng đây?

A  2;3 B 1;1 C 0;3

 

 

  D

3 ;0

 

 

 

Câu 117: Số nghiệm phương trình

2

x

log log (x 25)

x

   

 ?

A 2 B 4 C 3 D 1

Câu 118: Phương trình: log x log x log x 112  4  8  có nghiệm số mà tổng chữ số là:

A 6 B 9 C 10 D 11

Câu 119: Số nghiệm phương trình ln x 1   ln x 3   ln x 7  là:

A 0 B 1 C 2 D 3

Câu 120: Phương trình: lg x 26x 7 lg x 3   có số nghiệm là:

A 0 B 1 C 2 D 3

Câu 121: Giải phương trình    

3

log x  x log 2x 5 Ta có tổng nghiệm là:

A 4 B 7 C 3 D 2

Câu 122: Cho phương trình log x log x log x 23    Gọi  

1 3

x , x , x x x x ba nghiệm phương trình cho Tính giá trị M 1000x 110x2x3:

A 100 B 300 C 1000 D 3000

Câu 123: Cho phương trình

2

1 1

4 log x 2 log x  Gọi x , x x1 2 1x2là hai nghiệm phương

trình cho Tính giá trị Mx12x2: A 3

4 B 2 C

5

4 D 4

Câu 124: Hai phương trình log (35 x- + =1) log (235 x+1) và

2

2

2

log (x -2x- = -8) log (x+2)lần lượt có nghiệm x x1, 2là Tổng x1x2là

A 4 B 6 C 8 D 10

Câu 125: Giải phương trình log x log 33  x  Ta có tích nghiệm là:

A 3 B 1 C 2 D 27

Câu 126: Phương trình log x log 3x 03  3   có tổng nghiệm là:

A 81 B 77 C 84 D 30

Câu 127: Phương trình 1 1

3

log x log x 0   có tổng nghiệm A 14

23 B

28

81 C

3

8 D

11 23 Câu 128: Phương trình  

3

2(log x) 5log 9x  3 0có tích nghiệm là:

(42)

A 27

5 B 7 C 27 D

27 Câu 129: Số nghiệm phương trình 1log (5 x) 2log2 8 x

3     là:

A 0 B 1 C 2 D 3

Câu 130: Phương trình 4log x9 6.2log x9 2log 273 0 có hai nghiệm x1, x2

1

x x 

A 72 B 27 C 77 D 90

Câu 131: Phương trình 32(x log 2)  2 3x log 2 có nghiệm a, giá trị Đ = a2017 (a 1)3 là:

A 3 B 10 C 2 D 4

Câu 132: Khi giải phương trình 3log (1 x) 2log 27.log3 3 9 9x 3log3 3x

2     có nghiệm tập

số thực Một học sinh trình bày sau: Bước 1: Điều kiện: x

9

 

Phương trình cho tương đương 3log (1 x) 3log3   3x 3log 9x (1)

Bước 2: (1)log (1 x) 3x log3   3 9x hay (1 x) 3x  9x (2) Bước 3: Bình phương hai vế (2) rút gọn, ta 3

3

2

(x 2) 2x x

1

    

Trong bước giải

A Sai bước B Sai bước

C Cả bước D Chỉ có bước

Câu 133: Khi giải phương trình

3

3

2x 3x 45

log x log

x

 

  

 tập số thực, học sinh làm

như sau:

Bước 1: Với x 0 , phương trình viết lại: 2

3 3

log x log (2x 3x 45) log (x  1)(1)

Bước 2: Biến đổi

(1) 2 2

3

log x(2x 3x 45) log 27(x 1) x(2x 3x 45) 27(x 1)

          (2)

Bước 3: Rút gọn (2) ta phương trình (2x 3)(x 33x29x 9) 0 

Bước 4: Kết luận phương trình cho có nghiệm x

 Trong bước giải

A Sai bước B Sai bước C Các bước D Sai bước Câu 134: Phương trình 2

3

3

log (x 3x 1) log ( 3x  6x 2x) 0  tập số thực có nghiệm a, b thỏa a b giá trị S a 2017 (b 1)3 bằng:

A 1 B 32 1 C 3 D 2017

Câu 135: Phương trình 3log x4 xlog 54 2.x

A Có nghiệm B Vơ nghiệm

C Có nghiệm phân biệt D Có nhiều nghiệm

Câu 136: Giải phương trình x.log log 35  5 x2log 35 x 1 4 Ta có số nghiệm là:

A 0 B 1 C 2 D 3

Câu 137: Giải phương trình

2

2

2

x x

log x 4x

2x 3x

    

  Ta có nghiệm

(43)

A x = - v x = - B x = v x = - C x = v x = D x = - v x = Câu 138: Giải phương trình

3

log x (x 12) log x 11 x 0     Ta có tích nghiệm là:

A 3 B 3 C

3 D 27

Câu 139: Giải phương trình 3log x23 xlog x3 6 Ta có nghiệm

A 3 B 3 C 1 D 27

Câu 140: Giải phương trình log2 x log 2  2  x 4  Có số có nghiệm

A 0 B 1 C 2 D 3

Câu 141: Giải phương trình

2 2

2

log x 3.log x log x   2 Ta có số nghiệm là:

A 0 B 1 C 2 D 3

Câu 142: Giải phương trình log x.log x x.log x log x 3log x x2 3  3   2  3  Ta có tổng cá nghiệm:

A 5 B 9 C 35 D 10

Câu 143: Giải phương trình 2   

2

log 4x log 2x 5 Ta có tích hai nghiệm là:

A 16 B -3 C 1

4 D -

1

Câu 144: Giải phương trình log x log x3    Ta có nghiệm

A x = v x = 37 B x = C x = v x = 37 D x = Câu 145: Giải phương trình log log x3 log log x5  Ta có nghiệm

A x =

log log 55 3 3

 

 

 

B x = 53 C x = D x = 35

Câu 146: Giải phương trình log 23 x 2 log 23 x  1 log 23 x 2 6 Có số nghiệm là:

A 0 B 1 C 2 D 3

Câu 147: Giải phương trình 2 2

2 2x

log 2x log x 1 Ta có nghiệm A x = v x =

2 B x = C x = v x = D x = v x =

1

Câu 148: Giải phương trình3 2x 1 x2 8.4x 1 (*) Một học sinh giải sau: Bước 1:Ta có VT(*) 0 x VP(*) 0 x

Bước 2:Logarit hóa hai vế theo số Ta có: x x2 x

2

log (3 ) log (8.4   )

2

2 2

2

2

(x 1) log x log (x 2) log x (2 log 3)x log (1)

     

     

Bước 3:Giải phương trình (1) ta hai nghiệm x 1; x log 3   2 (thỏa mãn) Hai nghiệm hai nghiệm phương trình cho

Bài giải hay sai?Nếu sai sai từ bước nào?

A Bước B Bước C Bước D Đúng

Câu 149: Tìm m để phương trình

3

log x (m 2).log x 3m 0     có nghiệm x1, x2 cho x1 x2 = 27

A m = 28

3 B m =

4

3 C m = 25 D m =

(44)

Câu 150: Tìm m để phương trình log 42 xm x có nghiệm phân biệt

A 0 < m < B 0 < m < C - < m < D - < m < Câu 151: Tìm m để phương trình 2

2

log x log x  3 m có nghiệm x 

 m m C. m  D.m

Câu 152: Tìm m để phương trình   2 

log x 2 log mx có nghiệm A m > B 1 < m < C m > D m > Câu 153: Tìm m để phương trình h

2

log x log x m 0   có nghiệm thuộc khoảng  0;1 là: A m 1 B x 1 C x

4

D x

4

Câu 154: Tìm m để phương trình  

log x 3x m có nghiệm thực phân biệt A m < B 0 < m <1 C m > D m >

C ĐÁP ÁN

91C, 92B, 93B, 94D, 95A, 96C, 97C, 98B, 99D, 100C, 101A, 102C, 103A, 104A, 105B, 106C, 107C, 108C, 109B, 110B, 111C, 112B, 113A, 114B, 115C, 116A, 117A, 118C, 119B, 120C, 121D, 122B, 123C, 124C, 125D, 126C, 127B, 128D, 129C, 130A, 131A, 132C, 133C, 134C, 135C, 136B, 137C, 138D, 139B, 140B, 141B, 142A, 143C, 144B, 145A, 146B, 147B, 148B, 149D, 150C, 151A, 152C, 153D, 154B

(45)

BẤT PHƯƠNG TRÌNH MŨ

A – LÝ THUYẾT TÓM TẮT

 Khi giải bất phương trình mũ ta cần ý tính đơn điệu hàm số mũ

f (x ) g(x)

a f (x) g(x)

a a

0 a f (x) g(x)

  

 

 

    

 

 

 Ta thường sử dụng phương pháp giải tương tự phương trình mũ: – Đưa số

– Đặt ẩn phụ – …

Chú ý: Trong trường hợp số a có chứa ẩn số thì:

M N

a a (a 1)(M N) 0  

B - BÀI TẬP

Câu 1: Tập nghiệm bất phương trình

1 4

x

1

2

   

   

    là:

A S  ;0 B S 1;

 

   C S 0; D S2;

Câu 2: Giải bất phương trình

|x 1|

1

2

  

 

  Ta có nghiệm

A 0 < x < B - < x < C 0 < x < D 1 < x < Câu 3: Giải bất phương trình 2x2x 4 Ta có nghiệm

A -  x 1 B x 1 C x 2 D - x 2 Câu 4: Bất phương trình:

2 x x

3

4

   

   

    có tập nghiệm là:

A  1; B ; 2 C (0; 1) D

Câu 5: Số nghiệm nguyên bất phương trình

x 3x 10 x

1

3

  

   

   

    là:

A 0 B 1 C 9 D 11

Câu 6: Tập nghiệm bất phương trình

4x 15x 13 3x

1 2

2

 

  

 

  là:

A S R B S  C

3 S R \

2

 

  

  D

3

S ;

2

 

   

Câu 7: Nếu  

x

6  6

A x 1 B x 1 C x 1 D x 1 Câu 8: Tập nghiệm bất phương trình

x x

x x

(2 3) (2 3)

 

 

   là:

(46)

A B R C  ;1 3; D (1;3) Câu 9: Số nghiệm nguyên bất phương trình    

3 x x

x x

10 10

 

 

  

A 1 B 3 C 0 D 2

Câu 10: Nghiệm bất phương trình 52 x 5 51 55 x là:

A 0 x 1  B 0 x 1  C 0 x 1  D 0 x 1  Câu 11: Tìm số tự nhiên n bé cho

n

1 10

2

      

A 10 B 20 C 30 D 40

Câu 12: Tìm số tự nhiên n bé cho

n

5

1

100

   

 

 

A 10 B 15 C 20 D 25

Câu 13: Tập nghiệm bất phương trình:

x x 2x

1

0

2   

A  0;2 B ;1 C ;0 D 2; Câu 14: Nghiệm bất phương trình    

3

log x log x 2x

10 10

3

   

?

A x 3 B x 2 C 2 x 4  D x 4

Câu 15: Giải bất phương trình 2x2 2x 33x2 2x Ta có nghiệm

A x  - v x  B - x 3 C -  x  D x - v x 3 Câu 16: Bất phương trình: 9x3x 6 0 có tập nghiệm là:

A 1; B ;1 C 1;1 D Kết khác

Câu 17: Số nghiệm nguyên bất phương trình3x9.3x 10 là:

A 0 B 1 C 2 D Vơ số

Câu 18: Giải bất phương trình 9x - 3x + 1 + 27 0 Ta có nghiệm

A x 1 v x 2 B 1 x 2 C 3  x 9 D x 3 v x Câu 19: Giải bất phương trình

1 1 2 1

x x

2  2  9 Ta có nghiệm A - < x < v < x <

2 B x < - v x >

C 0 < x <

2 D - < x <

Câu 20: Tập nghiệm bất phương trình

2 1

x x

1

3 12

3

     

   

    là:

A S = (;0) B S = (  ; 1) (0;)

C S = (0;) D S = ( ; 1)

Câu 21: Giải bất phương trình 2x + 2 + 5x + 1 < 2x + 5x + 2 Ta có nghiệm A

2

20 x log

3

 

  

  B 25

20 x log

3

 

  

  C 25

20 x log

3

 

  

  D 52

20 x log

3

 

  

 

(47)

Câu 22: Giải bất phương trình 2 3 x 2 3x 14 Ta có nghiệm

A - x 1 B - x 2 C x - v x  D x - v x  Câu 23: Giải bất phương trình  3 2 x  3 2x 2 Ta có

A x 0 B x = C BPT vô nghiệm D x

Câu 24: Giải bất phương trình 3x 12 2x 1 Ta có nghiệm

A log - x B x 1 v x  + log

C 1 x 1 + log 3 D x log -1 v x 3 1 Câu 25: Giải bất phương trình

1 1 2 1

x x

2  2  9 Ta có nghiệm A x < - v x >

2 B - < x < v < x <

C - < x < D 0 < x <

2

Câu 26: Cho hàm số y 7 x2 x 2 Nghiệm bất phương tŕnh y/ < A 0 x

2

  B x 1

2

  C x 0 D x

2

Câu 27: Tập nghiệm bất phương trình

x

x x

4.3 9.2 5.6

A ;4 B 5; C 4; D ;5 Câu 28: Nghiệm bất phương trình 5.4x2.25x7.10x0

A 1 x 2  B   1 x C 0 x 1  D 0 x 1 

Câu 29: Tập nghiệm bất phương trình25x 1 9x 1 34.15x là:

A 2;0 B 0; C  ; 2 D   ; 2 0;

Câu 30: Tập nghiệm bất phương trình:6x 1 8x27x 1

A ;0 B  1;2 C D 3;

Câu 31: Tập nghiệm bất phương trình: 1  x 1 x2 0

A 1;1 B  ; 1 C  ; 1 1;  D 1;

Câu 32: Tập nghiệm bất phương trình:

1 1

x x x

2.4 6 9 A 0; B ;log23

2

 

 

  C

3 0;log

2

 

 

  D log 2;13 

Câu 33: Tập nghiệm bất phương trình:8x18x 2.27x

A ;0 B 0;1 C 1;1 D 0;

Câu 34: Tập nghiệm bất phương trình:

2

1

x x

1 1

3 12

3 3

         

   

A (-1; 0) B  ; 1 C  2;  D 0;

Câu 35: Tập nghiệm bất phương trình:9x2 x 1 10 3x2 x 2 1 0

A  0;1 B    ; 2 1; 

(48)

C    ; 2  1;0  1;  D    2; 1 1;  Câu 36: Tập nghiệm bất phương trình:4 x 2 16 10 2  x 2

A  3;11 B ;3  11; C 11; D   2;3  11;

Câu 37: 1 Tập nghiệm bất phương

trình:7 2  x 2    x3 1 2x 1 0

A  0;1 B ;0 C 1; D 2;0  1;  Câu 38: Giải phương trình:4x2x21 x 2x 121

A   ; 1  0;1 B ;0 C  0;1   1 D 1;

Câu 39: Tập nghiệm bất phương trình:5.3x3.2x 7.2x4.3x

A R B  ; 2 C  2;  D 0;

Câu 40: Tập nghiệm bất phương trình: 2x4 x 22x 3 0 là:

A  ;1  2;3 B   ; 1  2;3 C  2;3 D   ; 2  2;3 Câu 41: Tập nghiệm bất phương trình:5x5x 1 5x 2 3x 1 3x 1 3x 2

A R B ;2 C 2; D ;2 Câu 42: Tập nghiệm bất phương trình:

2x x

43 243x 9x

9

 

 

   là:

A \ 2; 8 B  ; 4 62; 41

 

   

 

C     ; 8  4;  D  4; 2 62;

41

 

   

 

Câu 43: Số nghiệm nguyên âm bất phương trình:

3x 6x 7

3 3

3 3 3 27

 

   

   

   

  là:

A 10 B 20 C 21 D 19

Câu 44: Tập nghiệm bất phương trình:42x 1 54x 3  5 102x2 3x 78

A 641 1; 641

4

   

 

 

  B

1 641

4

  

 

 

 

 

C 641;

  



 

 

  D R

Câu 45: Tập nghiệm bất phương trình:   

2x x

3x x

17 17

 

  

A R B Đáp án khác

C 5;

  

 

 

  D

1 5

;

6

   

 

 

Câu 46: Tập nghiệm bất phương trình:2x 2  2x 1  1 2x 1 1

A R B  ; 1 C  2;  D 0;

Câu 47: Tập nghiệm bất phương trình:x23x2 5x x23x 4

(49)

A  0;6 B ;0 C 6; D 0;

Câu 48: Tập nghiệm bất phương trình:2x 3 3x2 5x

A  0;2 B ;2 C 2 log 2;3 3  D 0;

Câu 49: Số nghiệm nguyên bất phương trình:

x x

x x

2.3

3

 

A 1 B 2 C 0 D 3

Câu 50: Nghiệm bất phương trình

x x

x x

4 8

2  

   là:

A x 1 B x 1 C x 2 D x 1 Câu 51: Tập nghiệm bất phương trình:12.3x3.15x5x 1 20

A R B  0;1 C (1;) D 0;  \ Câu 52: Tập nghiệm bất phương trình:4x2  x 3x 31 x 2x 32 x2x 6

A 1;3

 

 

  B  

3

; ;

2

 

    

C log 2;3

 

 

  D  

3

1;log ;

2

 

   

Câu 53: Tập nghiệm bất phương trình:4x x25 12 2x 1  x25 8 0

A 5;9

 

 

  B  ; 53;

C  ; 9;3

 

     

D Đáp án khác

Câu 54: Tập nghiệm bất phương trình: x x x x

3

27 27 16

3

  

     

 

A ;log3 21

  



 

 

  B ;1

C 1; D log3 21 3;log3 21

2

   

 

 

 

Câu 55: Tập nghiệm bất phương trình:2x2 2 2x2 1  2x12

A ;0 1;  B 0;1 C  1;2 D 0;

Câu 56: Tập nghiệm bất phương trình:9 11 2  x2 6  x2 3 2x 1 A ;0 B 0;1 C 1;1 D 0;

Câu 57: Tập nghiệm bất phương trình:

x x

2x

2

5

5

 

A 1;

 

 

  B

1 ;

2

 

 

 

C log 2;log5 5 20  D log 2;5 log5 20; 

2

   

 

 

(50)

Câu 58: Tập nghiệm bất phương trình:4log 2x2 xlog 62 2.3log 4x2 A 0;1

4

 

 

  B

1 ;

  

  C

1 0;

4

 

 

  D 1;

Câu 59: Tập nghiệm bất phương trình: x 4x 4x x

2

2.3  9  9 A 0;7

2

  

 

  B

7 ;

  

 

 

  C 16; D

7 1;

2

  

 

 

Câu 60: Tập nghiệm bất phương trình:32x8.3x x 4 9.9 x 4 0

A 4;0 B 0;1 C 1;1 D Đáp án khác

Câu 61: Tập nghiệm bất phương trình: x x x2 2x 3 1 x2 2x 3

4 3.2    4   0 A 3;7

2

 

 

  B

7 ;

  

  C 1;0 D  0;3

Câu 62: Số nghiệm bất phương trình: 5x 1 5x 3 52x log 2  2 5x 1 16 là:

A 3 B 2 C 0 D 1

Câu 63: Tập nghiệm bất phương trình:3x 5 2x

A R B ;1 C  ; 1 D 1;

Câu 64: Tập nghiệm bất phương trình:4x3x5x

A R B ;2 C ;0 D 2;

Câu 65: Số nghiệm nguyên dương bất phương trình:

x

x

2 3 1

A 3 B 2 C 0 D 1

Câu 66: Tập nghiệm bất phương trình:3x5x 6x 2

A R B ;0  1;  C ;0 D 1;

Câu 67: Tập nghiệm bất phương trình:x 9   x x 3    x 1 0

A ;0 B 1;0 C   ; 1 0; D 0;

Câu 68: Tập nghiệm bất phương trình:4x2 x2 7 2 x2 12 4x20

A    ; 1 1;  B  2;1 C  2; 1   1; D 0;

Câu 69: Tập nghiệm bất phương trình:x 52 x 1 3x 3 5x 1 x 5  x 1 3x0

A 1;1 B  ; 1 C ;1 1;  D 1;

Câu 70: Tập nghiệm bất phương trình:22x 1 32x52x 1 2x3x 1 5x 2

A ;0 B 1;0 C   ; 1 0; D 1;

Câu 71: Tập nghiệm bất phương trình:2x 1 2x2x x 1 2

A ;1 B C \{1} D 1;

Câu 72: Tập nghiệm bất phương trình:36 2 x33x3  9 8x 4.27x

A ;0 B 2;1 C    ; 2 1;  D 1;

Câu 73: Số nghiệm nguyên bất phương trình:2x2 3x 12x 2 x24x 0 

A 3 B 2 C 0 D 1

(51)

Câu 74: Tập nghiệm bất phương trình:2013 x23x 1 2013x 2  x23x x 0  

A ;0 B C  3 D 3;

Câu 75: Gọi (x;y) nghiệm nguyên phương trình: 11 10 x6x  3 y Khi đó: x+y nhận giá trị

bằng:

A 3 B 5 C 7 D 4

Câu 76: Tập nghiệm bất phương trình:x.3x 12 x21 3 x 1 x2x

A ;0 B 2;1 C.[0;) D 1; Câu 77: Tập nghiệm bất phương trình:3sin x 12  3cos x 12  x21 3 x2x 1 4x9

A ;0 B C  3 D  ;  Câu 78: Tập nghiệm bất phương trình:9 3x x2x2 8x x7x5 5x x2x

A  0;1 B  ; 1 C ;0 1;  D 1;

Câu 79: Tập nghiệm bất phương trình(2x4)(x22x 3) 0  là:

A   ; 1  2;3 B  ;1  2;3 C  2;3 D   ; 2  2;3 Câu 80: Cho bất phương trình3.52x 2.5x 1

5

    (*) Khẳng định sau đúng? A x 0 nghiệm (*) B Tập nghiệm (*) là;0 C Tập nghiệm (*) R \{0} D Tập nghiệm (*) (0;) Câu 81: Giải bất phương trình 23x 32x Ta có nghiệm

A  2 

3

x log log 3 B  2 

2

x log log 3 C  2 

2

x log log 3 D  2 

3

x log log 3 Câu 82: Giải bất phương trình x 2 x2  4x 8 x 2 2x Ta có tập nghiệm

AB C  D

Câu 83: Giải bất phương trình 5x + 3x > 8x Ta có nghiệm

A x < B x > C x < D x > Câu 84: Cho bất phương trình

2 1

x x

1 3. 12

3

     

   

    (*) Khẳng định sai?

A x 1 nghiệm (*) B Tập nghiệm (*) 1;0 C Tập nghiệm (*)  1;  D (*) khơng có nghiệm ngun Câu 85: Giải bất phương trình 6x + < 2x + 1 + 3x Ta có nghiệm

A log < x < 2 B 1 < x < log 2 C log < x < 3 D 1 < x < log 3 Câu 86: Giải bất phương trình 4x x 13.2x

2

 

  

 Ta có nghiệm

A - 1x 1 v x 2 B - < x 1 v x  C 1

2 < x  v x  D x < - v  x 2 Câu 87: Giải bất phương trình 4x x 1  5.2x x 1   16 0 Ta có nghiệm

A x = v  x  B x = v x 2 C 1  x 2 D x = v x =

(52)

Câu 88: Giải bất phương trình 3x 1 3x 2 Ta có nghiệm

A log 3 x  B x  C log 23  x 1 D x  Câu 89: Giải bất phương trình 3x2 x

x x

  

  Ta có nghiệm

A - < x < v x > B x < - v < x < C x < - v < x < D - < x < v x > Câu 90: Giải bất phương trình 2.9x 2x 4.6xx 24x 2x

3  

  

 Ta có nghiệm

A x < - v < x < B - < x < v x > C x < v < x < D - < x < v x > Câu 91: Giải bất phương trình 2x12  2x 2 22  x 1 5 Ta có nghiệm

A x > B x < C x < D x > Câu 92: Giải bất phương trình 22x 1 – 9.2 xx   22x 0  Ta có nghiệm

A x - v x  B x - v x = v x  C x - v x = v x  D x - v x 2 Câu 93: Gọi a nghiệm lớn bất phương trình

x 199 x

2

( 1) 2

 

   Khi 2a 1 A 2 22 1999 B 2 22 1996 C 2 22 1997 D 2199

Câu 94: Tìm m để bất phương trình 2x + 22 - x m có nghiệm

A m  B m  C m D m 4 Câu 95: Tìm m để bất phương trình 2x  2 2 x m có nghiệm

A m  B 0  m  2 C 2 m 4 D m 4 Câu 96: Tìm m để bất phương trình 9x - 3x - m 0 nghiệm  x 1; 2

A 3  m 63 B m 3 C m 63 D m 63 Câu 97: Tìm m để bất phương trình 2x  7 2x 2 m có nghiệm

A 0 m 3 B 3 m  C m  D m 3 Câu 98: Tìm m để bất phương trình 3x  3 3 x m nghiệm  xR

A m 2 B m 2 C m 4 D m 4 Câu 99: Tìm m để bất phương trình 4x + 2x - m  có nghiệm x 

A m 6 B m 20 C m 20 D 6 m 20

C - ĐÁP ÁN

1B, 2A, 3D, 4A, 5C, 6C, 7C, 8D, 9B, 10D, 11C, 12B, 13D, 14A, 15D, 16B, 17B, 18B, 19B, 20B, 21C, 22B, 23B, 24D, 25A, 26B, 27A, 28D, 29D, 30B, 31C, 32C, 33A, 34A, 35C, 36A, 37D, 38C, 39C, 40D, 41D, 42D, 43B, 44A, 45B, 46A, 47A, 48C, 49B, 50B, 51C, 52D, 53D, 54A, 55B, 56A, 57D, 58D, 59A, 60D, 61A, 62D, 63B, 64B, 65B, 66B, 67B, 68C, 69A, 70D, 71C, 72B, 73A, 74C, 75C, 76C, 77A, 78C, 79A, 80B, 81B, 82A, 83A, 84B, 85C, 86B, 87B, 88B, 89D, 90A, 91B, 92C, 93D, 94D, 95B, 96A, 97D, 98C, 99A

(53)

BẤT PHƯƠNG TRÌNH LƠGARIT

A – LÝ THUYẾT TĨM TẮT

 Khi giải bất phương trình logarit ta cần ý tính đơn điệu hàm số logarit

a a

a

f (x) g(x) log f (x) log g(x)

0 a f (x) g(x)

  

  

 

    

  

 

 Ta thường sử dụng phương pháp giải tương tự phương trình logarit: – Đưa số

– Đặt ẩn phụ – …

Chú ý: Trong trường hợp số a có chứa ẩn số thì:

a

log B 0 (a 1)(B 1) 0   ; a a

log A

0 (A 1)(B 1)

log B     

B - BÀI TẬP

Câu 100: Tập nghiệm bất phương trìnhlog 4x 32  là:

A  0;2 B ;2 C 2; D 0;

Câu 101: Tập nghiệm bất phương trình3 log x 4 2  là:

A 0;16 B 8;16 C 8; D R Câu 102: Cho log0,2x log 0,2y Chọn khẳng định đúng:

A y x 0  B x y 0  C x y 0  D y x 0 

Câu 103: Tập nghiệm bất phương trình log0,2x 1  0là

A S  ;2 B S 1;2 C S 1; 2 D S2;

Câu 104: Bất phương trình 3  1 

3

2 log 4x 3 log 2x 3 2 A 3;

4

 

 

  B

3 ;

 

 

  C

3 ;3

 

 

  D

3 ;3

 

 

 

Câu 105: Bất phương trình: log 3x 22  log 5x2   có tập nghiệm là: A (0; +) B 1;6

5

 

 

  C

1;3

 

 

  D 3;1

Câu 106: Bất phương trình: log x 74  log x 12   có tập nghiệm là:

A  1;4 B 5; C (-1; 2) D (-; 1)

Câu 107: Bất phương trình log x log x log x log x2    20 có tập nghiệm

A 1; B 0;1 C  0;1 D 1;

Câu 108: Tập nghiệm bất phương trình

0,8 0,8

log (x x) log ( 2x 4)   là:

A    ; 4 1;  B 4;1 C   ; 4  1;2 D Một kết khác Câu 109: Nghiệm bất phương trình 3 1

3

2log (4x 3) log (2x 3) 2    là:

(54)

A x>4

3 B

8 x 3

3

   C 4 x

3  D Vơ nghiệm

Câu 110: Nghiệm bất phương trình log (x 1) 2log (5 x) log (x 2)2      

A 2 x 5  B   4 x C 1 x 2  D 2 x 3 

Câu 111: Bất phương trình: log x 74  log x 12   có tập nghiệm là:

A ;1 B 1;2 C 5; D  1;4

Câu 112: Tập nghiệm bất phương trình:log 2x 13   

A ;5

 

 

  B

1 ;

 

 

  C

5 ;

 

 

  D

1 ;

 

 

 

Câu 113: Tập nghiệm bất phương trình:log x 22   log x 22  2 A  ; 2  2; B 2 :

C 2;2  D 2 2; 2 

Câu 114: Tập nghiệm bất phương trình:log x 22x 3  log x 3   log x 1   0

A    4; 2 1;  B 2;1 C 1; D

Câu 115: Giải phương trình:

3

2

3

3 x

log log x log log x

x   2

A 0; B 0; 1; 

 

 

 

 

  C

3 ;1

 

 

 

  D  0;1

Câu 116: Tập nghiệm bất phương trình:  

2

log x 3x 2  1

A ;0  3; B  0;1 C 2; D 0;1  2;3 Câu 117: Tập nghiệm bất phương trình:log33x

x

 

A  ; 1 B  1;  C 1;5

 

 

  D

5 ;

 

 

 

Câu 118: Tập nghiệm bất phương trình: 3  1 

3

2 log 4x 3 log 2x 3 2 là: A ;

8

  

 

  B 3; C

3 ;3

 

 

  D 4;

Câu 119: Tập nghiệm bất phương trình

2

1

2

x x

log log

x

  

  

  là:

A S    4; 3 8; B S8;

C S     ; 4  3;8 D S    4; 3 8; Câu 120: Tập nghiệm bất phương trình

1

3

3

log x log x log (3x ) 3 là:

A   ; 2 3; B ; 2 C 2;3 D 3;

(55)

Câu 121: Tập nghiệm bất phương trình log0,2x 1  log0,23 x là:

A. S ( 1;1)  B S ( 1;0)  C S ( 2;1)  D S ( 1;5) 

Câu 122: Tập nghiệm bất phương trình log x log 2x 12  2   là:

A

1

S ;0

2

 

  

  B S  C S 1;3 D S   ; 1

Câu 123: Gọi S tập nghiệm bất phương trình  x x

5

log  36  2 Giá trị lớn hàm số y 6 x S:

A 4 B 1 C 5 D 3

Câu 124: Tập nghiệm bất phương trình 1 3

2

3x

log log

x

  

 

   ?

A  ; 2 3;

 

   

  B

3;2

 

 

  C

3 2;

2

 

 

  D

3;

 

 

 

Câu 125: Để giải bất phương trình: ln 2x

x 1 > (*), học sinh lập luận qua ba bước sau:

Bước1: Điều kiện: 2x x 1  

x x

     (1)

Bước2: Ta có ln 2x

x 1 >  ln

2x

x 1 > ln1 

2x 1

x 1  (2)

Bước3: (2)  2x > x -  x > -1 (3) Kết hợp (3) (1) ta x

x

   

  

Vậy tập nghiệm bất phương trình là: (-1; 0)  (1; +) Hỏi lập luận hay sai? Nếu sai sai từ bước nào? A Lập luận hoàn toàn B Sai từ bước

C Sai từ bước D Sai từ bước

Câu 126: Bất phương trình  

2

3 1

3

1

log x 5x log x log x

2

     

có nghiệm là:

A x 5 B x 10 C 3 x 5  D x 3

Câu 127: Giải bất phương trình: x

x

log (log (9 72)) 1 ta được:

A x 2 B x

x

  

 

C log 72 x 29   D log 73 x 29  

Câu 128: Nghiệm bất phương trình  

x x

2

log 7.10 5.25 2x 1

là:

A 1;0 B 1;0 C 1;0 D 1;0 Câu 129: Bất phương trình log (22 x 1) log (43 x2) 2 có tập nghiệm:

A [0;) B (;0) C 0; D (;0] Câu 130: Bất phương trình  x   x

9

3

2 log  9 log 28 2.3 x có tập nghiệm là: A   ; 1 2;log 143  B  ;1 2;log 143 

(56)

C  ; 1 2;12

 

     D ;log 143 

Câu 131: Tổng nghiệm nguyên bất phương trình

3

log x 25 log x 750 0 là :

A 925480 B 985385 C 852378 D 977388

Câu 132: Tìm tập xác định hàm số sau:

2

2

3 2x x f (x) log

x

 

A

3 13 13

D ; ;

2

      

    

    B D      ; 3 1; 

C

3 13 13

D ; ;1

2

     

     

    D

3 13 13

D ; ;1

2

     

    

   

Câu 133: Bất phương trình: xlog x 42  32

có tập nghiệm: A

1 ; 4 10

 

 

  B

1 ; 2 10

 

 

  C

1 ; 4 32

 

 

  D

1 ; 2 32

 

 

 

Câu 134: Số nghiệm nguyên bất phương trình x lg x   0

A 0 B 1

C 2 D Vô số nghiệm nguyên

Câu 135: Giải bất phương trình x log x 1 

A x 2 B x 0 C 0 x 2  D x 1

Câu 136: Nghiệm bất phương trình

2

2

x

log x log

4

 

là:

A  

1

0; 4;

2

   

 

  B

1 x

2

 

C x 0 D x 4

Câu 137: Số nghiệm bất phương trình:   

x

x 4x log 8x 2x

5 x

        là:

A 0 B 2 C 1 D vô số

Câu 138: Tập nghiệm bất phương trình: x 12

1

log

4

  là:

A ;0 B 1; C 0;3 5;

4

   

   

    D  0;1

Câu 139: Tập nghiệm bất phương trình:   x

log 5x 8x 3 2

A 1;5 B ( ;3 )

2 

C  0;1 D ( ;1 )

2  Câu 140: Tập nghiệm bất phương trình: x

5 x log

5 x 0

2 3x

 

 

A ;0 B 5; C  0;3 D 5;0   1;3

(57)

Câu 141: Tập nghiệm bất phương trình :

 2  3

1

2

log x log x

0 x

  

 khoảng có độ dài:

A 1 B 2 C 3 D 4

Câu 142: Tập nghiệm bất phương trình:

2

1

3

1

log (x 1)

log 2x 3x 1  

A 0;1 1;3 5; 

2

    

   

    B  

1

1;0 0; 1;

2

   

    

   

C 3;

 

 

  D 1;

Câu 143: Cho 0<a<1 Tập nghiệm bất phương trình:xlog xa a tập tập sau:

A  0;a B a;1 a

 

 

  C

1; a

 

 

  D  0;a

Câu 144: Cho (x;y) nghiệm bất phương trình: logx2y2(x y) 1.  Giá trị lớn tổng: S x 2y  giá trị sau đây:

A 3 B 4 C 3 10

2

D 5 10

2

Câu 145: Tập nghiệm bất phương trình:  2  

3x 2x

log  12x 4x  log  6x 23x 21 4 A 3;

2

 

 

  B

1;

 

 

  C  

3; \ 1

2

   

 

  D 1;0

Câu 146: Số nghiệm nguyên bất phương trình:2log x log 125 15  x 

A 1 B 9 C 0 D 11

Câu 147: Số nghiệm nguyên bất phương trình:log x log 27 33  3x 

A 9 B 0 C 5 D 11

Câu 148: Tập nghiệm bất phương trình:log x 12  logx 12 

  

A 3; B ; 1 

C ( 1; 1) [3;   ) \ {0} D  1;3 

Câu 149: Mọi nghiệm bất phương trình:  

x x

4

4

3

log log

16

  

   

  nghiệm bất

phương trình sau đây:

A x(x23x 2) 0  B x(x23x 2) 0  C x(x23x 2) 0  D x(x23x 2) 0 

Câu 150: Số nghiệm nguyên bất phương trình:    

9

log 3x 4x 2  1 log 3x 4x 2

A 1 B 2 C 0 D 3

Câu 151: Tập nghiệm bất phương trình:   

1

2

x log x  2x log x 0   là: A 1 Khoảng có độ dài B 1 Nửa khoảng có độ dài C 1 Đoạn có độ dài D 1 Đoạn có độ dài Câu 152: Tập nghiệm bất phương trình:log 64 log 16 32x  x2 

(58)

A 0;1

 

 

  B

1 ;4

 

 

  C 4; D  

1

; 1;4

2

  

 

 

Câu 153: Cho0<a<1, tập nghiệm bất phương trình: a a2 a2 a a log log x log log x log

2

  là:

A a ;2 

B a ;12  C a ;12  D 1;

C - ĐÁP ÁN:

100A , 101B, 102D, 103B, 104C, 105B, 106C, 107D, 108D, 109C, 110D, 111B, 112B, 113B, 114D, 115B, 116D, 117D, 118C, 119D, 120D, 121A, 122B, 123C, 124A, 125D, 126A, 127B, 128B, 129A, 130A, 131A , 132D, 133D, 134D, 135D, 136A, 137C, 138C, 139B, 140D, 141, 142, 143, 144, 145, 146D, 147A, 148C, 149A, 150B, 151A , 152B, 153A

(59)

HỆ MŨ-LÔGARIT

A – PHƯƠNG PHÁP CHUNG

Khi giải hệ phương trình mũ logarit, ta dùng phương pháp giải hệ phương trình học như:

 Phương pháp

 Phương pháp cộng đại số

 Phương pháp đặt ẩn phụ

B – BÀI TẬP

Câu 154: Tập nghiệm hệ phương trình:

x x y

x x y

2

2 5

  

  

 

 là:

A   1;0 , log 5;log log 52 5  2  B   1;0 , log 2;log log 55 5  2 

C   2;1 , log 5;log log 52   D   1;0 , log 5;log log 22  

Câu 155: Giải hệ phương trình:

x y

x y

6 2.3

6 12

  

 

 ta được:

A x y

   

B

x y log

   

C

x y log 20

   

D

6

x log y

    

Câu 156: Nghiệm hệ phương trình:

 

x y

5

3 1152

log x y

 

  

 là:

A x y      B x y       C x y       D x y     

Câu 157: Biết hệ phương trình:

2

x y

2

3 81

log x log y 

 

 

 

 có nghiệm x ; y0 0 Tính M x 0y0:

A M 1 B M 0 C M 2 D M 1 Câu 158: Biết hệ phương trình:

2

2log x log y

x 5y

 

  

 có nghiệm x ; y0 0 Tính

0

M x y :

A M 6 B M 1 C M 2 D M 1 Câu 159: Số nghiệm hệ phương trình:

2

2log x log y

x 5y

 

  

 là:

A 0 B 1 C 2 D 3

Câu 160: Số nghiệm hệ phương trình:

x

y x y

3 x

1 e e           là:

A 0 B 1 C 2 D 3

(60)

Câu 161: Số nghiệm hệ phương trình:

2x y y

x 2

3 8 77

3 8 7

         là:

A 0 B 1 C 2 D Vô số nghiệm

Câu 162: Tập nghiệm hệ phương trình:

x 2y

x y 2y

3 81

e  e e

 

 

 là:

A 2;3 B 2;3 & 3; 2    C 3; 2  D Kết khác Câu 163: Số nghiệm hệ phương trình:

x y

3

x y

  

  

 là:

A 1 B 2 C 3 D vô nghiệm

Câu 164: Tập nghiệm hệ phương trình:

x y

9 81

log(x y) l ogx 2log

 

   

 là:

A   1;2 , 16; 28  B   2;0 , 16; 28  C    0;4 , 2;0 D 2;8 , 1;2   Câu 165: Hệ phương trình:

   

2

3

x 2y 4x

2log x log y

   

    

 có nghiệm x ; y0 0 Tính tổng

0

x y :

A -4 B 7

2 C 4 D 18 Câu 166: Biết hệ phương trình:

2

log x log y log y log x

   

 

  

 có nghiệm x ; y0 0 Tính tổng x02y0:

A. B. C. D. 39 Câu 167: Giải hệ phương trình 32 32 ( )( 8)

8

y

x y x xy

x y

    

 

 

 Ta có nghiệm

A (4; 4), (- 4; - 4) B (2; 2), (- 2; - 2) C (1; 1), (- 1; - 1) D (3; 3), (- 3; - 3) Câu 168: Giải hệ phương trình

2

2

3

y

x y x

x xy y

   

 

  

 Ta có nghiệm

A (- 2; - 2) B (3; 3) C (2; 2) D (1; 1), (- 1; - 1) Câu 169: Giải hệ phương trình 36

3 36

y x y x     

 Ta có nghiệm x ; y0 0 Tính tổng x0y0

A 2 B 3 C 4 D 5

Câu 170: Giải hệ phương trình 11

3 11

x y x y y x         

 Ta có nghiệm

A (1; 1) B (2; 3), (3; 2) C (2; 1), (1; 2) D (2; 2) Câu 171: Tìm m để hệ phương trình

2

2

4 24

y x y x m m m         

 có nghiệm

A m = B m = C m = - v m = D m = - v m =

(61)

Câu 172: Tìm m để hệ phương trình

2

y x

y x

m m

  

 

 

 có nghiệm

A m - v m 3 B – m 3 C m 3 D m 2 Câu 173: Tìm m để hệ phương trình

2x 2y x y m  

 

 có nghiệm phân biệt

A m 4 B m C m < D m >

Câu 174: Tập nghiệm hệ phương trình

x 2x

4x x

4 8

3 27

 

 

 

 

 là:

A [2; +) B [-2; 2] C (-; 1] D [2; 5]

Câu 175: Tập nghiệm hệ phương trình    

   

2

0,5 0,5

log 2x log x

log 3x log 2x

   

   

 là:

A [4; 5] B [2; 4] C (4; +) D

C - ĐÁP ÁN

154A, 155B, 156C, 157B, 158C, 159C, 160C, 161B, 162A, 163B, 164A, 165C, 166A, 167B, 168D, 169B, 170D, 171B, 172A, 173C, 174B, 175A

(62)

CÁC BÀI TOÁN ỨNG DỤNG THỰC TẾ

A – PHƯƠNG PHÁP CHUNG 1) Bài toán lãi suất

a) Gửi vào ngân hàng số tiền a đồng, với lãi suất hàng tháng r% n tháng Tính vốn lẫn lãi T sau n tháng?

Gọi A tiền vốn lẫn lãi sau n tháng ta có: Tháng (n = 1): A = a + ar = a(1 + r)

Tháng (n = 2): A = a(1 + r) + a(1 + r)r = a(1 + r)2 ………

Tháng n (n = n): A = a(1 + r)n – 1 + a(1 + r)n – 1.r = a(1 + r)n Vậy T = a(1 + r)n (*)

Trong đó: a tiền vốn ban đầu, r lãi suất (%) hàng tháng, n số tháng, A tiền vốn lẫn lãi sau n tháng Từ công thức (*) T = a(1 + r)n ta tính đại lượng khác sau:

1)  

T ln

a n

ln(1 r); 2)  n  T

r

a ; n

T a

(1 r)

 

b) Một người, hàng tháng gửi vào ngân hàng số tiền a (đồng) Biết lãi suất hàng tháng m% Hỏi sau n tháng, người có tiền?

Cuối tháng thứ I, người có số tiền là: T1= a + a.m = a(1 + m) Đầu tháng thứ II, người có số tiền là:

a(1 + m) + a = a[(1+m)+1] = a [(1+m) -1] 2

[(1+m)-1] =

2

a

[(1+m) -1] m

Cuối tháng thứ II, người có số tiền là: T2= a [(1+m) -1]

m +

2

a

[(1+m) -1]

m m =

2

a

[(1+m) -1]

m (1+m)

Cuối tháng thứ n, người có số tiền gốc lẫn lãi Tn:

2) Bài toán tăng dân số 3) Bài toán chất phóng xạ 4) Các tốn khác liên quan B - BÀI TẬP

Câu 1: Lãi suất ngân hàng 6%/năm Lúc ông A, bắt đầu học lớp 10 ông gởi tiết kiệm 200 triệu Hỏi sau năm ông A nhận vốn lẫn lãi bao nhiêu?

A 233,2 triệu B 238,2 triệu C 228,2 triệu D 283,2

triệu

n n

T m a

(1 m ) (1 m )

 

 

    

n

T m

Ln ( m ) a

n

Ln (1 m )

 

  

Tn = a [(1+m) -1] n

m (1+m)

(63)

Câu 2: Một người gửi 15 triệu đồng vào ngân hàng theo thể thức lãi kép kỳ hạn quý với lãi suất 1,65% q Hỏi sau tháng người có 20 triệu ?

A 15 B 18 C 17 D 16

Câu 3: Anh An mua nhà trị giá năm trăm triệu đồng theo phương thức trả góp Nếu anh An muốn trả hết nợ năm phải trả lãi với mức 6%/năm tháng anh phải trả tiền? (làm trịn đến nghìn đồng)

A 9892000 B 8333000 C 118698000 D 10834000

Câu 4: Ông An gửi 100 triệu vào tiết kiệm thời gian lâu mà không rút với lãi suất ổn định chục năm qua 10%/ năm Tết năm ông kẹt tiền nên rút hết để gia đình đón Tết Sau rút vốn lẫn lãi, ơng trích gần 10 triệu để sắm sửa đồ Tết nhà ơng cịn 250 triệu Hỏi ông gửi tiết kiệm lâu ?

A 19 năm B 17 năm C 15 năm D 10 năm

Câu 5: Bạn Ninh gửi 100 triệu đồng vào ngân hàng thời gian 10 năm với lãi suất 5%

năm Hỏi bạn Ninh nhận số tiền nhiều hay ngân hàng trả lãi suất %

5

12 tháng?

A Ít 1611487,091 đồng B Nhiều 1611487,091 đồng C Nhiều 1811487,091 đồng D Ít 1811487,091 đồng

Câu 6: Một người, tháng gửi vào ngân hàng a đồng theo thể thức lãi kép với lãi suất 0,6% tháng Biết sau 15 tháng người nhận triệu đồng Hỏi a bao nhiêu?

A 65500 B 60530 C 73201 D 63531

Câu 7: Một nghiên cứu cho thấy nhóm học sinh xem danh sách loài động vật kiểm tra lại xem họ nhớ % tháng Sau t tháng, khả nhớ trung bình nhóm học sinh tính theo cơng thức M(t) 75 20 ln(t 1), t 0    ( đơn vị %) Hỏi khoảng số học sinh nhớ danh sách 10%?

A Khoảng 24 tháng B Khoảng 22 tháng C Khoảng 25 tháng D Khoảng 32 tháng Câu 8: Các loại xanh trình quang hợp nhận lượng nhỏ cacbon 14 ( đồng vị cacbon ) Khi phận xanh bị chết tượng quang hợp dừng khơng nhận thêm cacbon 14 Lượng cacbon 14 phận phân hủy cách chậm chạp chuyển hóa thành nitơ 14 Biết gọi N t  số phân trăm cacbon 14 lại phận sinh trưởng từ t năm trước N t  tính theo cơng thức

     500t

N t 100 0,5 % Phân tích mẫu gỗ từ cơng trình kiến trúc cổ, người ta thấy lượng cacbon 14 lại mẫu gỗ 65% Hãy xác định niên đại cơng trình

A 315 năm B 357 năm C 313 năm D 311 năm

Câu 9: Tiêm vào người bệnh nhân lượng nhỏ dung dịch chứa phóng xạ 24

11Na có độ phóng xạ

4.10 Bq Sau tiếng người ta lấy 1cm máu người thấy lượng phóng xạ lúc H= 0,53 3

Bq/cm , biết chu kì bán rã Na24 15 (giờ) Thể tích máu người bệnh 3

A 6 lít B 5 lít C 5,5 lít D 6,5 lít

Câu 10: Một tượng gỗ có độ phóng xạ 0,77 lần độ phóng xạ khúc gỗ khối lượng lúc chặt, biết chu kì bán rã C14 5600 năm Tính tuổi tượng gỗ

A Xấp xỉ 2112 năm B Xấp xỉ 2800 năm C Xấp xỉ 1480 năm D Xấp xỉ 700 năm Câu 11: Số lượng số loài vi khuẩn sau t (giờ) xấp xỉ đẳng thức Q = Q0e0.195t, Q0 số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu 5000 sau có 100.000

A 24 B 3.55 C 20 D 15,36

(64)

Câu 12: Một khu rừng có lượng lưu trữ gỗ 4.105(m3) Biết tốc độ sinh trưởng khu rừng năm 4% Hỏi sau năm khu rừng có mét khối gỗ ?

A 4,8666.10 (5 m3) B 4,6666.10 (5 m3) C 4,9666.10 (5 m3) D 5,8666.10 (5 m3) Câu 13: Cường độ trận động đất M cho công thức M = logA – logA0, với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác gần đo 7.1 độ Richter Hỏi trận động đất San Francisco có biên độ gấp trận động đất

A 1,17 B 2,2 C 15,8 D 4

Câu 14: Một lon nước soda 800F đưa vào máy làm lạnh chứa đá 320F Nhiệt độ soda phút thứ t tính theo định luật Newton cơng thức T t( ) 32 48.(0.9)  t Phải làm mát soda để nhiệt độ 500F?

A 1,56 B 9,3 C 2 D 4

Câu 15: Cường độ trận động đất M (richter) cho công thức M = logA – logA0, với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ

A 2,075 độ Richter B 33.2 độ Richter C 8.9 độ Richter D 11 độ Richter Câu 16: Theo hình thức lãi kép người gửi 100 triệu đồng vào ngân hàng theo kỳ hạn năm với lãi suất 1,75% (giả sử lãi suất hàng năm khơng thay đổi) sau hai năm người thu số tiền

A 103,351 triệu đồng B 103,531 triệu đồng C 103,530 triệu đồng D 103,500 triệu đồng

C - ĐÁP ÁN

1B, 2B, 3A, 4D, 5C, 6D, 7C, 8D, 9A, 10A, 11D, 12A, 13C, 14B, 15C, 16B.

Ngày đăng: 23/02/2021, 13:36

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w