1. Trang chủ
  2. » Giáo Dục - Đào Tạo

luận văn thạc sĩ một số bài toán truyền sóng trong môi trường phức tạp liên quan đến tỷ số h v​

188 11 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 188
Dung lượng 1,04 MB

Nội dung

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN _ Trương Thị Thùy Dung MỘT SỐ BÀI TỐN TRUYỀN SĨNG TRONG MƠI TRƯỜNG PHỨC TẠP LIÊN QUAN ĐẾN TỶ SỐ H/V LUẬN ÁN TIẾN SĨ CƠ HỌC Hà Nội - 2020 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN _ Trương Thị Thùy Dung MỘT SỐ BÀI TOÁN TRUYỀN SĨNG TRONG MƠI TRƯỜNG PHỨC TẠP LIÊN QUAN ĐẾN TỶ SỐ H/V Chuyên ngành: Cơ học vật rắn Mã số: 9440109.02 LUẬN ÁN TIẾN SĨ CƠ HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: TS Trần Thanh Tuấn GS TS Phạm Chí Vĩnh Hà Nội - 2020 LÕI CAM OAN Tấi xin cam oan Ơy l cấng trẳnh nghiản cu riảng ca tấi CĂc kát quÊ ềc trẳnh b y luên Ăn l trung thác v cha tng ềc cấng bậ bĐt k cấng trẳnh n o kh¡c Nghi¶n c˘u sinh i LÕI CƒM ÌN Nh˙ng dÃng Ưu tiản luên Ăn, tấi muận gi lèi cÊm ẽn chƠn th nh nhĐt tểi hai thƯy hểng dăn ca tấi, TS TrƯn Thanh TuĐn v GS TS PhÔm Chẵ Vắnh ThƯy  truyÃn cho tấi niÃm am mả nghiản cu khoa hc, tiáp cho tấi thảm la v ẻng lác gip tấi kiản trẳ trản èng nghiản cu, ng thèi thƯy cung cĐp kián thc v ˜a nh˙ng lÌi khuy¶n giÛp tÊi tr˜ ng th nh hẽn quĂ trẳnh hc têp, nghiản cu v ho n th nh luªn ¡n n y TÊi xin gi lèi cÊm ẽn chƠn th nh tểi cĂc thƯy, cÊ gi¡o BỴ mÊn CÏ hÂc, Khoa To¡n - CÏ - Tin hc, PhÃng sau Ôi hc, Trèng Ôi hc Khoa hc Tá nhiản, Trung tƠm Vêt l l thuyát quậc tá ICTP  trang b kián thc, tÔo mấi trèng nghiản cu tật v tÔo iÃu kiằn gip tấi quĂ trẳnh hc têp Tấi xin cÊm ẽn cĂc th nh viản nhm nghiản cu ca thƯy PhÔm Chẵ Vắnh  chia s kinh nghiằm, nhiằt tẳnh gip Ô tÊi TÊi xin b y t‰ s¸ bi¸t Ïn án gia ẳnh tấi  luấn ng hẻ, ẻng viản, gip ễ tấi quĂ trẳnh hc têp v thác hiằn luên Ăn H Nẻi, thĂng 12 nôm 2020 Nghiản c˘u sinh Tr˜Ïng Th‡ ThÚy Dung ii Mˆc lˆc Danh s¡ch b£ng Danh s¡ch h¼nh v³ M– ƒU TÊNG QUAN Giểi thiằu phẽng phĂp t sậ Tẳnh hẳnh nghiản cu và ph luên Ăn nghiản cu giÊi quyá Mc tiảu v cĂc nẻi dung chẵ 1.1 1.2 1.3 CỈNG THŸC T SÈ H/V C’A SÂNG MƒT RAYLEIGH TRONG BƒN KHỈNG GIAN TR‹C H ŒNG PH’ MËT LŒP TR‹C H ŒNG 2.1 2.2 2.3 2.4 C¡c ph˜Ïng tr¼nh cÏ b£n Ma trªn chuyºn cıa lÓp b i to¡n s‚ng m°t Ra CÊng th˘c t sË H/V cıa s‚ng m°t Rayleigh 2.3.1 2.3.2 2.3.3 T½nh to¡n minh hÂa sË v b i to¡n ng˜Òc 2.4.1 2.4.2 2.4.3 iii CỈNG THŸC XƒP Xƒ TƒN SÈ CËNG H – NG C’A COMPOSITE LŒP TR‹C H ŒNG 3.1 3.2 3.3 3.4 CỈNG THŸC TƒN SÈ CËNG H –NG CÌ BƒN Vƒ Hƒ SÈ KHUƒCH ƒI C’A LŒP ƒN NHŒT 4.1 4.2 4.3 4.4 B i to¡n Ph˜Ïng tr¼nh xĂc nh tƯn sậ tểi hÔn 3.2.1 3.2.2 T½nh to¡n sË 3.3.1 3.3.2 Kát luên chẽng GiĨi thi»u v· mÊi tr˜Ìng n nhĨt B i to¡n 4.2.1 4.2.2 T½nh to¡n minh hÂa sË Kát luên chẽng BƒI TOƒN TRUYƒN SÂNG MƒT RAYLEIGH TRONG BƒN KHỈNG GIAN TR‹C H ŒNG MICROPOLAR 5.1 5.2 5.3 5.4 S‚ng Rayleigh v biºu di¹n Stroh Tr˜Ìng hỊp vªt li»u ¯ng h˜Ĩng Tr˜Ìng hỊp tr¸c h˜Óng 5.3.1 5.3.2 5.3.3 T½nh to¡n minh hÂa sË 5.4.1 5.4.2 iv 101 vªn tËc s‚ng v t sË H/V cıa s‚ng m°t Rayleigh v o tham sË micropolar cıa b¡n khÊng gian ˜Ịc th¸c hi»n C¡c giĂ tr tẵnh toĂn sậ cho thĐy rơng ẻ lằch t˜Ïng Ëi lĨn nh§t gi˙a gi¡ tr‡ cıa t sË H/V cıa tr˜Ìng hỊp b¡n khÊng gian c‚ t½nh micropolar so vĨi tr˜Ìng hỊp b¡n khÊng gian khÊng c‚ t½nh micropolar c giĂ tr xĐp x bơng vểi giĂ tr cıa h» sË micropolar " C¡c cÊng th˘c x§p x¿ chẵnh xĂc nhên ềc chẽng n y c th ˜Ịc s˚ dˆng º t½nh to¡n h» sË micropolar cıa mấi trèng t cĂc sậ liằu o Ôc ca t sậ H/V v Kát quÊ liản quan án trèng hềp b¡n khÊng gian micropolar ¯ng h˜Ĩng cıa Ch˜Ïng ¢ ềc ông trản Tuyn têp Hẻi ngh Cẽ hc to n quậc lƯn th X, H Nẻi TrƯn Thanh TuĐn, Trẽng Th Thy Dung, Nguyạn Th Loan v ẩ XuƠn TÚng (2017), "T sË H/V (ellipticity) cıa s‚ng m°t Rayleigh bĂn khấng gian micropolar ng hểng", Tuyn têp Hẻi ngh‡ CÏ hÂc to n quËc l¦n th˘ X, H Nẻi, Têp 3, Quyn 2, pp 1381-1387 102 KT LUN B¬ng vi»c kh£o s¡t b i to¡n truy·n s‚ng m°t Rayleigh v truy·n s‚ng khËi SH c¡c mÊi tr˜Ìng phc tÔp hẽn mấi trèng n hi ng hểng, c thº l c¡c mÊi tr˜Ìng n hÁi tr¸c h˜Ĩng, n nhểt v n hi micropolar, luên Ăn  thu ềc mẻt sậ kát quÊ chẵnh sau: Tẳm ềc cấng th˘c t sË H/V cıa s‚ng m°t Rayleigh b¡n khấng gian trác hểng nn ềc ph mẻt lểp trác h˜Ĩng n²n ˜Ịc CÊng th˘c n y ˜Ịc s˚ dˆng b i to¡n ng˜Òc º ¡nh gi¡ tham sË ca vêt liằu trác hểng t d liằu o Ôc gi£ ‡nh cıa t sË H/V T¼m ˜Ịc cÊng thc xĐp x ca ca tƯn sậ im Ôi cıa ˜Ìng cong phÍ t sË H/V cıa s‚ng m°t Rayleigh mấ hẳnh phƠn lểp trác hểng Cấng thc n y ˜Ịc s˚ dˆng º ¡nh gi¡ t¦n sË cỴng h˜ ng Ëi vĨi s‚ng SH cıa composite lĨp trác hểng Tẳm ềc cấng thc xĐp x ca tƯn sậ cẻng h ng cẽ bÊn v hằ sậ khuách Ôi ca composite lểp n nhểt t trản bĂn khấng gian c tẵnh án hằ sậ cÊn nhểt T¼m ˜Ịc ph˜Ïng tr¼nh t¡n sc v cÊng th˘c t sË H/V cıa s‚ng m°t Rayleigh truy·n b¡n khÊng gian n hi micropolar trác hểng CĂc kát quÊ nghiản cu luên Ăn l cĂc kát quÊ mểi v c‚ thº ˜Ịc ¡p dˆng v o mỴt sË b i toĂn thác tá vẵ d nh b i to¡n ng˜Ịc x¡c ‡nh tham sË vªt li»u, b i to¡n ¡nh gi¡ ˜Ĩc l˜Ịng £nh h˜ ng cıa s‚ng Îng §t KIƒN NGHÀ Vƒ NH⁄NG NGHIƒN CŸU TIƒP Trong quan iºm cıa Nakamura v· h m ph£n ˘ng ca lểp a tƯng mÃm ch xt án sng SH iÃu n y l hềp l vẳ cĂc nghiản cu tẵnh toĂn sậ ậi vểi mấ hẳnh mẻt lểp thẳ hằ sậ khuách Ôi sng P ca lểp a tƯng mÃm c giĂ tr gƯn bơng mẻt v ềc coi l hơng sậ Tuy nhiản mấ hẳnh nhiÃu lểp, hằ sậ khuách Ôi sng P c th c giĂ tr bián i Ăng k xung quanh tƯn sậ cẻng h ng nản cƯn c nhng nghiản cu xt án £nh h˜ ng cıa s‚ng P Do ‚, luªn ¡n c th phĂt trin hểng tẳm cĂc cấng thc xĐp x ca tƯn sậ cẻng h ng ca lểp c x²t th¶m b i to¡n truy·n s‚ng P cÚng vĨi b i to¡n truy·n s‚ng SH Khi ‚ c¡c k¸t quÊ s c thảm hằ sậ Ênh h ng án t¯ gi¡ tr‡ cıa h» sË Poisson cıa vªt li»u Danh mˆc cÊng tr¼nh khoa hÂc cıa t¡c gi£ liản quan án luên Ăn P.C Vinh, T.T Tuan, L.T Hue, V.T.N Anh, T.T.T Dung, N.T.K Linh, P Malischewsky (2019), "Exact formula for the H/V ratio of Rayleigh waves in compressible orthotropic half-space coated by an orthotropic elastic layer", The Journal of the Acoustical Society of America , 146(2), 1279-1289 T.T.T Dung, T.T Tuan, P.C Vinh and G.K Trung (2020), "An approximate formula of first peak frequency of ellipticity of Rayleigh surface waves in orthotropic layered half-space model", Journal of Mechanics of Materials and Structures, Vol 15, No 1, pp 61-74 T.T Tuan, P.C Vinh, A Aoudia, T.T.T Dung, D Manu-Marfo (2018), "Approximate Analytical Expressions of the Fundamental Peak Frequency and the Amplification Factor of S-wave Transfer Function in a Viscoelastic Layered Model", Pure and Applied Geophysics , 176 (4), 1433-1443 TrƯn Thanh TuĐn, Trẽng Th Thy Dung, Nguyạn Th Loan v ẩ XuƠn Tng (2017), "T sË H/V (ellipticity) cıa s‚ng m°t Rayleigh b¡n khấng gian micropolar ng hểng", Tuyn têp Hẻi ngh Cẽ hc to n quậc lƯn th X, H Nẻi, Têp 3, Quyºn 2, pp 1381-1387 T i li»u tham kh£o [1] L¶ Th‡ Hu» (2019), T sË H/V Ëi vểi bĂn khấng gian n hi , luên Ăn tián sắ, H Nẻi [2] PhÔm Th H Giang (2017), CĂc cấng thc vên tậc sng mt Ray Stoneley v mẻt sậ vĐn à liản quan , luên Ăn tián sắ, H NỴi [3] Achenbach J.D (1973), Wave Propagation in Elastic Solids , North-H Amsterdam [4] Aki and Richard (2002), Quantitative Seismology, 2nd edn, Sausalito, CA: University Science Books [5] Bard P Y (1998), "Microtremor measurements: a tool for site effect esti- mation?", Proceeding of the Second International Symposium on the Effects of Surface Geology on Seismic Motion, Yokohama, Japan , pp 1251-1279 [6] Bard P Y and Gariel J C (1986), "The seismic response of two dimensional sedimentary deposits with large vertical velocity gradients", Bulletin of the Seismological Society of America , 76, pp 343-366 [7] Bensalem R., Chatelain J.L., Machane D., Oubaiche E.H., Hellel M., Guil- lier B., Djeddi M., and Djadia L (2010), "Ambient vibration techniques applied to explain heavy damages caused in Corso (Algeria) by the 2003 Boumerdes earthquake: understanding seismic amplification due to gentle slopes", Seismological Research Letters , 81(6), pp 928-940 [8] Bonnefoy-Claudet S., Cotton F., Bard P Y., Cornou C., Ohrnberger M., and Wathelet M (2006), "Robustness of the H/V ratio peak frequency to 106 estimate 1D resonance frequency", In 3rd Symposium on Effects of Surface Geology on Seismic Motion , pp 361-370 [9] [10] Bonnefoy-Claudet S., K ohler A., Cornou C., Wathelet M., and Bard P.Y (2008), "Effects of Love waves on microtremor H/V ratio", Bull Seismol Soc Am., 98(1), pp 288-300 Borcherdt R.D (1977), "Reflection and refraction of type-II S waves in elas-tic and anelastic media", Bulletin of the Seismological Society of America , 67(1), pp 43-67 [11] Borcherdt R.D (1982), "Reflectionrefraction of general P-and type-I S- waves in elastic and anelastic Geophysical Journal International , solids", 70(3), pp 621-638 [12] Borcherdt R.D (2009), Viscoelastic Waves in Layered Media , Cambridge University Press [13] Borcherdt R.D and Wennerberg L (1985), "General P, type-I S, and type-II S waves in anelastic solids; inhomogeneous wave fields in low-loss solids", Bulletin of the Seismological Society of America , 75(6), pp 1729-1763 [14] Carcione, J M., Picotti, S., Francese, R., Giorgi, M., and Pettenati, F (2017), "Effect of soil and bedrock anelasticity on the S-wave amplification function", Geophysical Journal International , 208(1), pp 24431 [15] Chang, C T., Bostwick, J B., Steen, P H and Daniel, S (2013), "Sub- strate constraint modifies the Rayleigh spectrum of vibrating sessile drops", Physical Review E, 88(2), 023015 [16] Chirit«, S., and Ghiba, I D (2012), "Rayleigh waves in Cosserat elastic materials", International Journal of Engineering Science , 51, pp 117-127 [17] Eringen, A C (1999), Microcontinuum Field Theories , New York: Springer [18] Every A.G (2002), "Measurement of the near-surface elastic properties of solids and thin supported films", Meas Sci Technol., 13, R2139 107 [19] Fah D., Kind F., and Giardini D (2001), "A theoretical investigation of average H/V ratios", Geophys J Int 145.2, pp 535-549 [20] Field, E H and Jacob, K (1993), "The theoretical response of sedimentary layers to ambient seismic noise" Geophys Res Lett 20(24), pp 2925-2928 [21] Flores Estrella, H C., 2009 The wave feld in the LakeTexcoco zone: impli- cations for the study of seismic risc in the lake zone of the Mexico basin (in Spanish), PhD thesis, UNAM [22] Jason P Chang, Sjoerd A L de Ridder, Biondo L Biondi (2016), "High- frequency Rayleigh-wave tomography using traffic noise from Long Beach", California Geophysics , 81 (2), pp B43B53 [23] Junge M., Qu J., Jacobs L.J (2006), "Relationship between Rayleigh wave polarization and state of stress", Ultrasonics, 44, 233-237 [24] Gauthier, R D (1982), "Experimental investigations of micropolar media In O Brulin and R K T Hsieh (Eds.)", Mechanics of MicroPolar Media , (pp 395463), Singapore: World Scientific [25] Haskell N A (1960), "Crustal reflection of plane SH waves", Journal of Geophysical Research , 65(12), pp 4147-4150 [26] Kaufman A A., Levshin A L (2005), Acoustic and elastic waves fields in geophysics, III (Elsevier, Amsterdam-Boston-HeidelbergLondon-New York-Oxfort) [27] Kumar R and Choudhary S (2004), "Response of orthotropic micropolar elastic medium due to time harmonic source", Sadhana, 29(1), 83-92 [28] Lachet C., and Bard P Y (1994), "Numerical and theoretical investigations on the possibilities and limitations of Nakamura's technique", Journal of Physics of the Earth, 42(4), pp 377-397 [29] Lesan, D (2004), Thermoelastic Models of Continua , London: Kluwer Aca-demic Publishers 108 [30] Love A.E.H (1911), Some Problems of Geodynamics , Cambridge University Press, Cambridge (republished by Dover, New York, 1967) [31] Lunedei, E., Albarello, D (2010), "Theoretical HVSR from the full wave field modelling of ambient vibrations in a weakly dissipative layered", Earth.Geophys.J.Int 181, pp 1093-1108 [32] Makarov S., Chilla E., Frohlich H.J (1995), "Determination of elastic con-stants of thin films from phase velocity dispersion of different surface acous-tic wave modes", J Appl Phys., 78, pp 5028-5034 [33] Malischewsky P G., Wuttke F., Ziegert A (2002), "The use of surface acous- tic waves for non-destructive testing", Schriftenreihe Werkstoffwissenschaf- fen 17, Verlag Dr Koster, Berlin , pp 135-140 (in German) [34] Malischewsky P G and Scherbaum F (2004), "Love's formula and H/V-ratio (ellipticity) of Rayleigh waves", Wave Motion, 40, pp 57-67 [35] Malischewsky P G., Schnapp J D., Ziegert A (2006), "The ellipticity of Rayleigh waves and nondestructive testing", ECNDT Berlin 2006, We 2.4.3 [36] Malischewsky P G., Scherbaum F., Lomnitz C., Tuan T T., Wuttke F., and Shamir G (2008), "The domain of existence of prograde Rayleigh-wave particle motion for simple models", Wave Motion, 45(4), pp 556-564 [37] Maurer H R., Van der Veen M., Giudici J., and Springman S (1999), "Determining elastic soil properties at small strains", Proc Sympos on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP) [38] Munirova L M., Yanovskaya T B (2001), "Spectral ratio of the horizontal and vertical Rayleigh wave components and its application to some problems of seinology Izvestiya", Phys Solid Earth, 37, pp 709-716 (Translated from Fizika Zemli 9(2001) 10-18) 109 [39] Mucciarelli, M (1998), "Reliability and applicability of Nakamura's tech-nique using microtremors: an experimental approach", J Earthq Engrg 2, pp 625-638 [40] Nakamura Y (1989), "A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface", Quarterly Report of RTRI, Railway Technical Research Institute (RTRI) , 30 (1), pp 25-33 [41] Nakamura Y (2000), "Clear identification of fundamental idea of Naka-muras technique and its applications", 12WCEE, 2656 [42] Nakamura Y (2008), On the H/V spectrum, Proceedings of the 14th World Conference on Earthquake Engineering , Beijjing, China [43] Nam N.T., Merodio J., Ogden R.W., Vinh P.C (2016), "The effect of initial stress on the propagation of surface waves in a layered half-space", Inter- national Journal Solids and Structures , 88-89, pp 88-100 [44] Nogoshi, M and T Igarashi, (1970), "On the propagation characteristics of microtremors", J Seism Soc Japan, 23, pp 264-280 [45] Nogoshi, M and Igarashi, T (1971), "On the Amplitude Characteristics of Microtremor (Part 2) (in Japanese with English abstract), Jour Seism Soc Japan, 24, pp 26-40 [46] Nowacki, W (1986), Theory of Asymmetric Elasticity , Oxford: Pergamon Press [47] Ogden R.W and Pham Chi Vinh (2004), "On Rayleigh waves in incom- pressible orthotropic elastic solids", J Acoust Soc Am., 115, pp.530-533 [48] Oubaiche E.H., Chatelain J.L., Bouguern A., Bensalem R., Machane D., Hellel M., Khaldaoui F and Guillier B (2012), "Experimental relationship between ambient vibration H/V peak amplitude and shearwave velocity contrast", Seismological Research Letters , 83(6), pp 1038-1046 [49] Oubaiche E.H Chatelain, J.L., Hellel M., Wathelet M., Machane D., Ben- salem R and Bouguern A (2016), "The Relationship between Ambient 110 Vibration H/V and SH Transfer Function: Some Experimental Results", Seismological Research Letters , 87(5), pp 1112-1119 [50] Paolucci R (1999), "Shear resonance frequencies of alluvial valleys by Rayleigh's method", Earthquake Spectra, 15(3), pp 503-521 [51] Parolai S, Bormann P, Milkereit C (2001), "Assessment of the natural fre-quency of the sedimentary cover in the Cologne area (Germany) using noise measurements", J Earthq Engrg 5, pp 541-564 [52] Poggi, V and Fah, D (2010), "Estimating Rayleigh wave particle motion from three-component array analysis of ambient vibrations", Geophysical Journal International , 180(1), 251-267 [53] Peter M Shearer (2009), Introduction to Seismology , 2nd ed, Institution of Oceanography, University of California, San Diego [54] Rayleigh Lord (1885), "On waves propagated along the plane surface of an elastic solid" Proceedings of the London Mathematical Society , 17, pp 411 [55] Roberto Villarvede (2009), Fundamental Concepts of Earthquake Engineer-ing, CRC Press [56] S¡nchez-Sesma F.J., Rodr½guez M., Iturrarn-Viveros U., Luz‚n F., Campillo M., Margerin L., Garc½a-Jerez A., Suarez M., Santoyo M.A., and Rodr½guez-Castellanos A (2011), "A theory for microtremor H/V spectral ratio: ap-plication for a layered medium", Geophys J Int., 186(1), pp 221-225 [57] Scherbaum F., Hinzen K G., Ohmberger M (2003), "Determination of shal-low shear wave velocity profiles in the Cologue Germany area using ambient vibration", Geophys J Int., 152, pp 597-612 [58] Singh B (2007), "Wave propagation in an orthotropic micropolar elastic solid", International Journal of Solids and Structures , 44(11-12), 3638-3645 [59] Shuvalov A L (2000), "On the theory of anisotropic plates", Proc R Soc Lond A, 456, pp 2197-2222 111 [60] Sotiropolous D.A (1999), "The effect of anisotropy on guided elastic waves in a layered half-space", Mech Mater, 31, pp 215-233 [61] Stephenson W R (2003), "Factors bounding prograde Rayleigh-wave par-ticle motion in a soft-soil layer", Pacific Conference on Earthquake Engi- neering, 13-15 February, Christchurch, New Zealand [62] Stroh A N (1962), "Steady state problems in anisotropic elasticity" Jour-nal of Mathematical Physics , 41, pp 77103 [63] Ting T.C.T (1996), Anisotropic Elasticity, Theory and Applications , Ox- ford Unversity Press NewYork [64] Tolstoy, I., and Usdin, E (1953), "Dispersive properties of stratified elastic and liquid media: A ray theory", Geophysics, 18(4), 844-870 [65] Tuan T T (2009),The ellipticity H/V-ratio of Rayleigh surface waves , Dissertation in GeoPhysics, Friedrich-Schiller University Jena, Germany [66] Tuan T T., Scherbaum F., Malischewsky P G (2011), "On the relationship of peaks and troughs of the ellipticity (H/V) of Rayleigh waves and the transmission response of single layer over half-space models", Geophys J Int., 184, pp 793-800 [67] Tuan T T and Trung T N., The dispersion of Rayleigh waves in or-thotropic layered half-space using matrix method, Vietnam J Mech, 38:1 (2016), 2738 [68] Tuan T.T., Vinh P.C., Ohrnberger M., Malischewsky P and Aoudia A (2016), "An improved formula of fundamental resonance frequency of a lay-ered half-space model used in H/V ratio technique", Pure and Applied Geo-physics, 173(8), pp 2803-2812 [69] Tuan T T., Vinh P C., Malischewsky P., and Aoudia A (2016), "Approx-imate formula of peak frequency of H/V ratio curve in multilayered model and its use in H/V ratio technique", Pure and Applied Geophysics , 173(2), pp 487-498 112 [70] Truesdell, C., and Noll, W (1965) The Nonlinear Field Theories of Mechan- ics, In S Flugge (Ed.), Handbuch de Physik (vol III/3), Berlin: Springer-Verlag [71] Van Der Baan M (2009), "The origin of SH-wave resonance frequencies in sedimentary layers", Geophys J Int, 178.3, pp 1587-1596 [72] Valerio Poggi, Donat Fah, Jan Burjanek, Domenico Giardini (2012), "The use of Rayleigh-wave ellipticity for site-specific hazard assessment and microzonation: application to the city of Lucerne, Switzerland", Geophysical Journal International , Volume 188, Issue 3, March 2012, Pages 11541172 [73] J Verbeke, L Boschi, L Stehly, E Kissling, A Michelini (2012), "High-resolution Rayleigh-wave velocity maps of central Europe from a dense ambient-noise data set", Geophysical Journal International , Volume 188, Issue 3, March 2012, pp 11731187 [74] Vinh P C and Ogden R.W (2004), "On formulas for the Rayleigh wave speed", Wave Motion, 39, pp 191-197 [75] Vinh P.C., and Ogden R.W (2004), "Formulas for the Rayleigh wave speed in orthotropic elastic solids", Ach Mech., 56, pp 247-265 [76] Vinh P C and Ogden R W (2005), "On a general formula for the Rayleigh wave speed in orthotropic elastic solid", Meccanica, 40, pp 147-161 [77] Vinh P C, Malischewsky Peter G (2007), "An improved approximation of Bergmann form for the Rayleigh wave velocity", Ultrasonics, 47, 49-54 [78] Vinh P C, Malischewsky P.G (2007), "An approach for obtaining approx- imate formulas for the Rayleigh wave velocity", Wave Motion, 44, 549-562 [79] Vinh P C, Malischewsky P.G (2008), "Improved approximations of the Rayleigh wave velocity", J Thermoplast Comp Mater , 21, pp 337-352 [80] Vinh P.C (2009), "Explicit secular equations of Rayleigh waves in elastic media under the influence of gravity and initial stress", Appl Math Compt., 215, pp 395-404 113 [81] Vinh P C (2010), "On formulas for the velocity of Rayleigh waves in pre-strained incompressible elastic solids", ASME J Appl Mech., 77, 021006 (7 pages) [82] Vinh P C and Giang P T H (2010), "On formulas for the Rayleigh wave velocity in pre-strained elastic materials subject to an isotropic internal constraint", Int J Eng Sci., 48, pp 275-289 [83] Vinh P C (2011), "On formulas for the Rayleigh wave velocity in pre-stressed compressible solids", Wave Motion, 48, pp 613-624 [84] Vinh P.C., Linh N T K (2012), "An approximate secular equation of Rayleigh waves propagating in an orthotropic elastic half-space coated by a thin orthotropic elastic layer", Wave Motion, 49, pp 681-689 [85] Vinh P C., Linh N T K., Anh V T N (2014), "Rayleigh waves in an incompressible orthotropic half-space coated by a thin elastic layer", Arch Mech, 66, pp 173-184 [86] Vinh P C., Hue T T T (2014), "Rayleigh waves with impedance boundary conditions in anisotropic solids", Wave Motion, 51(7), 1082-1092 [87] Vinh P C., Tuan T T., and Capistran M A (2015), "Explicit formulas for the reflection and transmission coefficients of one-component waves through a stack of an arbitrary number of layers", Wave Motion, 54, pp 134-144 [88] Vinh P.C., Anh V.T.N., Linh N T K (2016), "On a technique for deriving the explicit secular equation of Rayleigh waves in an orthotropic half-space coated by an orthotropic layer", Waves in Random and Complex Media , 26, pp 176-188 [89] Vinh P C., Aoudia A., Giang P T H (2016), "Rayleigh waves in orthotropic fluid-saturated porous media" Wave Motion, 61, 73-82 [90] Vinh P C., Tuan T T., Anh V., Hue L T (2018), "Formulas for the H/V ratio of Rayleigh waves in compressible prestressed hyperelastic halfspaces", Journal of Mechanics of Materials and Structures , 13(3), 247-261 114 [91] Vinh P C., Tuan T T., Hue L T (2018), "Formulas for the H =V ratio of Rayleigh waves in incompressible pre-stressed halfspaces", Archives of Mechanics, 70(2), 131-150 [92] Vinh P.C., Tuan T.T., Hue L.T (2019), "Formulas for the H =V ratio (el- lipticity) of Rayleigh waves in orthotropic elastic half-spaces", Waves in Random and Complex Media , 29(4), pp 759-774 [93] Xiao X., and You X.-Y (2007), "The determination for the adhesion of film and substrate by surface acoustic waves", Surf Coat Technol., 201, pp 9594-9597 [94] Wang Y and R K N D Rajapakse (1994), An exact stiffness method for elastodynamics of a layered orthotropic half-plane, J Appl Mech, 61:2 , pp 339348 [95] Zaslavsky, Y., G Ataev, M Gorstein, M Kalmanovich, N Perelman and A Shapira, ()2008), "Assessment of site specifc earthquake hazards in urban areas A case study: the town Afula, Israel, and neighbouring settlements", Bollettino di Geofsica Teorica ed Applicata , 49, 93-108 [96] Zschau, J and S Parolai, (2004), "Studying earthquake site effects in urban areas: the example of Cologne (Germany)", Taller Humboldt para la Coop- eraci‚n M²xico-Alemania (Humboldt-Workshop) , Juriquilla, Qto., Mexico 2004 115 ... ĐẠI H? ??C QUỐC GIA H? ? NỘI TRƯỜNG ĐẠI H? ??C KHOA H? ??C TỰ NHIÊN _ Trương Thị Thùy Dung MỘT SỐ BÀI TỐN TRUYỀN SĨNG TRONG MƠI TRƯỜNG PHỨC TẠP LIÊN QUAN ĐẾN TỶ SỐ H/ V Chuyên ngành: Cơ h? ??c vật... d‡ch theo ph˜Ïng ngang, ph˜Ïng th¯ng ˘ng v ˜Ìng cong phÍ t sË H/ V (Nakamura, 2000) H? ?nh 1.2: H? ?nh minh h? ?a v· ph˜Ïng ph¡p t sË H/ V (Nakamura, 2008) 10 H/ V ca sng nhiạu chẵnh l o h? ?? sậ khuách Ôi... khấng gian) hoc mấi trèng ẽn giÊn c tẵnh chĐt n hi ng h? ??ng Vểi nhng mấ h? ??nh phc tÔp h? ??n hoc mấi trèng c tẵnh chĐt phc tÔp h? ??n nh d h? ??ng, n nhểt, n hi micropolar thẳ nhng b i toĂn văn cÃn ng

Ngày đăng: 21/02/2021, 09:56

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w