Nghiên cứu chế tạo vật liệu composit oxit sắtcác bon định hướng ứng dụng trong tích trữ năng lượng

282 18 0
Nghiên cứu chế tạo vật liệu composit oxit sắtcác bon định hướng ứng dụng trong tích trữ năng lượng

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

BỘ GIÁO DỤC VÀ ĐÀO TẠO        - 2020 BỘ GIÁO DỤC VÀ ĐÀO TẠO      LUẬN ÁN TIẾN SỸ KHOA HỌC VẬT LIỆU Ngành: Khoa học vật liệu Mã số: 9440122 : PGS.TS Bùi Thị Hằng TS Doãn Hà Thắng  - 2020 LỜI CẢM ƠN Lời đầu tiên, em xin bày tỏ biết ơn sâu sắc tới TS Bùi Thị Hằng - Viện Đào tạo Quốc tế Khoa học Vật liệu (ITIMS) - Đại học Bách khoa học Hà Nội, TS Doãn Hà Thắng - Bộ Khoa học Cơng nghệ Thầy tận tình giúp đỡ hướng dẫn em nghiên cứu tạo điều kiện thuận lợi cho em suốt thời gian hoàn thành luận án Em xin chân thành cảm ơn thầy cô giáo Viện Đào tạo Quốc tế Khoa học Vật liệu (ITIMS) - Đại học Bách khoa Hà Nội gia đình bạn bè giúp đỡ suốt q trình học tập hồn thành luận án Do thời gian có hạn nên luận án khơng tránh khỏi sai sót, em mong nhận góp ý thầy bạn để luận án hoàn thiện Nghiên cứu sinh TRỊNH TUẤN ANH i LỜI CAM ĐOAN Tôi xin cam đoan cơng trình nghiên cứu tơi Luận án khơng có chép tài liệu, cơng trình nghiên cứu người khác mà khơng rõ mục tài liệu tham khảo Những kết số liệu luận án chưa cơng bố hình thức Tơi hồn toàn chịu trách nhiệm trước nhà trường cam đoan Hà Nội, ngày 20 tháng năm 2020 Thay mặt tập thể hướng dẫn BÙI THỊ HẰNG Nghiên cứu sinh TRỊNH TUẤN ANH ii MỤC LỤC LỜI CẢM ƠN i LỜI CAM ĐOAN ii MỤC LỤC iii DANH MỤC CÁC KÝ HIỆU, CÁC CHỮ VIẾT TẮT DANH MỤC CÁC BẢNG DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ Lý chọn đề tài Phương pháp nghiên cứu Các đóng góp luận án Bố cục luận án 10 Kết luận 11 CHƯƠNG 1: TỔNG QUAN……………………………………………… 11 1.1 GIỚI THIỆU CHUNG VỀ PIN 12 1.2 MỘT SỐ KHÁI NIỆM CƠ BẢN 14 1.2.1 Dung lượng lý thuyết 14 1.2.2 Năng lượng lý thuyết 15 1.2.3 Năng lượng riêng mật độ lượng pin thực tế 15 1.3 TỔNG QUAN VỀ PIN KIM LOẠI - KHÍ 16 1.4 PIN Fe - KHÍ 19 1.4.1 Nguyên lý hoạt động đặc trưng pin Fe - khí 19 1.4.2 Điện cực sắt 21 1.4.3 Những thách thức điện cực sắt 23 1.4.4 Phương pháp khắc phục .24 1.4.5 Điện cực khí 26 1.4.6 Dung dịch điện ly .27 iii 125 electrodes for iron-air battery anodes,” J Power Sources, vol 150, no 1–2, pp 261–271 [45] B T Hang, T Watanabe, M Egashira, I Watanabe, S Okada, and J Yamaki (2006), “The effect of additives on the electrochemical properties of Fe/C composite for Fe/air battery anode,” J Power Sources, vol 155, no 2, pp 461–469 [46] B T Hang, Yoon S.-H., Okada S., and Yamaki J (2007), “Effect of metalsulfide additives on electrochemical properties of nano-sized Fe2O3-loaded carbon for Fe/air battery anodes,” J Power Sources, vol 168, no 2, pp 522–532 [47] N V Long, Y Yang, C M Thi, B T Hang, Y Cao, and M №gami (2014), “Controlled synthesis and characterization of iron oxide micro-particles for Fe-air battery electrode material,” Colloid Polym Sci., vol 293, no 1, pp 49–63 [48] N V Long, Y Yang, C Minh Thi, Y Cao, and M №gami (2014), “Ultrahigh stability and durability of iron oxide micro- and nano-structures with discovery of new three-dimensional structural formation of grain and boundary,” Colloids Surfaces A Physicochem Eng Asp., vol 456, no 1, pp 184–194 [49] C A Caldas, M C Lopes, I A Carlos, (1998), “The Role of FeS and (NH4)2CO3 Additives on The Pressed Type Fe Electrode”, J Power Sources, vol 74 no 1, pp 108−112 [50] M K Ravikumar, A Sundar Rajan,S Sampath, K R Priolkar, and A K Shukla “In Situ Crystallographic Probing on Ameliorating Effect of Sulfide Additives and Carbon Grafting in Iron Electrodes” Journal of The Electrochemical Society, 162 (12) A2339-A2350 (2015) [51] B T Hang, T V Dung, N T Nga, D H Thang (2015), “Electrochemical properties of Fe/C electrode in alkaline solution with LiOH additive applying for Fe-air battery anode”, Jounal of Science and Technology, vol 108, pp 115-119 [52] A S Rajan, M K Ravikumar, K R Priolkar, S Sampath, and A K Shukla (2014), “Carbonyl-Iron Electrodes for Rechargeable-Iron Batteries”, Electrochem Energy Technol., vol 1, pp 2–9 [53] Cerny, J Jindra, K Micka, (1993), “Comparative study of porous iron electrodes”, J Power Sources, vol 45, pp 262 - 267 126 [54] H A Figueredo-Rodrıguez, R D McKerracher, M Insausti, A Garcia Luis, C Ponce de Leon, C Alegre, V Baglio, A S Arico, ` and F C Walsh (2017), “A Rechargeable, Aqueous Iron Air Battery with Nanostructured Electrodes Capable of High Energy Density Operation”, Journal of The Electrochemical Society, vol 164, no 6, pp 1148-1157 [55] B Yang, S Malkhandi, A K Manohar, G K Surya Prakash and S R Narayanan (2014), “Organo-sulfur molecules enable iron - based battery electrodes to meet the challenges of large-scale electrical energy storage”, Energy Environ Sci., vol 7, pp 2753–2763 [56] S Narayanan, G S Prakash, A Manohar, B Yang, S Malkhandi, A Kindler (2012), “Materials challenges and technical approaches for realizing inexpensive and robust iron–air batteries for large-scale energy storage”, Solid State Ionics, vol 216, pp 105-109 [57] A Inoishi, Y W Ju, S Ida, T Ishihara (2013), “Fe-air rechargeable battery using oxide ion conducting electrolyte of Y2O3 stabilized ZrO 2”, Journal of Power Sources, vol 229, pp 12-15 [58] X Zhao, Y Gong, X Li, N Xu, K Huang (2013), “Performance of solid oxide iron-air battery operated at 550°C”, J Electrochem Soc., vol 160, pp 12411247 [59] K F Blurton and A F Sammells (1979), “Metal/air batteries: Their status and potential — a review,” J Power Sources, vol 4, no 4, pp 263–279 [60] J Černý and K Micka (1989), “Voltammetric study of an iron electrode in alkaline electrolytes,” J Power Sources, vol 25, no 2, pp 111–122 [61] A K Shukla, M K Ravikumar., T S Baasubramanian (1994), “Nickel/iron batteries”, J Power Sources, vol 51, pp 29-36 [62] C A C Souza, s I A Carlo, M C Lopes, G A Finazzi, M R H de Almeida (2004), “Self-discharge of Fe–Ni alkaline batteries”, J Power Sources, vol 132, pp 288-290 [63] Q Fang, C M Berger, N H Menzler, M Bram, and L Blum (2016), “Electrochemical characterization of Fe-air rechargeable oxide battery in planar solid oxide cell stacks,” J Power Sources, vol 336, pp 91–98 127 [64] A Ito, L Zhao, S Okada, and J I Yamaki (2011), “Synthesis of nano-Fe3O4loaded tubular carbon nanofibers and their application as negative electrodes for Fe/air batteries”, J Power Sources, vol 196, no 19, pp 8154–8159 [65] A K Manohar, C Yang, S Malkhandi, G K S Prakash, Narayanan, S R (2013), “Enhancing the Performance of the Rechargeable Iron Electrode in Alkaline Batteries with Bismuth Oxide and Iron Sulfide Additives”, J Electrochem Soc., vol 160, no 11, pp 2078−2084 [66] K Micka, Z Zabransky (1987), “Study of iron oxide electrodes in an alkaline electrolyte” J Power Sources, vol 19, pp 315-323 [67] L Öjefors (1976), “Self-discharge of the alkaline iron electrode,” Electrochim Acta, vol 21, no 4, pp 263–266 [68] A K Manohar, S Malkhandi, B Yang, C Yang, G K S Prakash, S R Narayanan (2012), “A High-Performance Rechargeable Iron Electrode for LargeScale Battery-Based Energy Storage” J Electrochem Soc vol 159, no 8, pp 1209−1214 [69] M Jayalakshmi, B.N Begumi, V.R Chidambaram, R Sabapathi, V.S Muralidharan (1992), “Role of activation on the performance of the iron negative electrode in nickel/iron cells”, J Power Sources, vol 39, pp 97-113 [70] A K Manohar, C Yang, S Malkhandi, B Yang, G K S Prakash, S R Narayanan (2012), Understanding the Factors Affecting the Formation of Carbonyl Iron Electrodes in Rechargeable Alkaline Iron Batteries J Electrochem Soc Vol 159, no 12, pp 2148−2155 [71] D W Shoesmith, P Taylor, M G Bailey and B Ikeda (1978), “Electrochemical behaviour of iron in alkaline sulphide solutions”, Electrochim Acta, vol 23, pp 903-916 [72] P Periasamy, B.R Babu, S.V Iyer (1996), “Electrochemical behaviour of Teflon-bonded iron oxide electrodes in alkaline solutions”, J Power Sources, vol 63, pp.79-85 [73] K Vijayamohanan, T S Balasubramanian, A K Shukla (1991), “Rechargeable alkaline iron electrodes”, J Power Sources, vol 34, pp 269-285 128 [74] K Vijayamohanan, A K Shukla and S Sathyanarayana (1990), “Role of Sulfide Additives on the Performance of Alkaline Iron Electrodes”, J Electroanal Chem vol 289, pp 55-68 [75] Z K Manohar, C Yang, and S R Narayanan (2015), “The Role of Sulfide Additives in Achieving Long Cycle Life Rechargeable Iron Electrodes in Alkaline Batteries”, Journal of The Electrochemical Society, vol 162 № 9, pp 1864-1872 [76] G J Offer, D Howey, M Contestabile, R Clague, and N P Brandon (2010), “Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system,” Energy Policy, vol 38, no 1, pp 24– 29 [77] Lars Ojefors (1976), “Temperature Dependence of Iron and Cadmium Alkaline Electrodes” J Electrochem Soc., vol 123, pp 1139-1144 [77] G P Kalaignan, V S Muralidharan and K I Vasu (1987), “Triangular potential sweep voltammetric study of porous iron electrodes in alkali solutions”, J Appl Electrochem Vol 17, pp 1083-1092 [78] H Kitamura, L Zhao, B T Hang, S Okada, J I Yamaki (2012), “Effect of Charge Current Density on Electrochemical Performance of Fe/C Electrodes in Alkaline Solutions, J Electrochem Soc., vol 159, no 6, pp 720-726 [79] Lars Ojefors (1976), “An iron—air vehicle battery”, J Electrochem Soc., vol 123, pp 263-266 [80] Lars Ojefors (1976), “SEM Studies of Discharge Products from Alkaline Iron Electrodes ", J Electrochem Soc., vol 123, pp 1691-1696 [81] G Girishkumar et al (2010), "Lithium-Air Battery: Promise and Challenges," J Phys Chem Lett vol 1, pp 2193–2203 [82] A Haleem et al (2008), “Effect of Sulphide Ions on Corrosion Behaviour of Iron in Alkaline Solutions”, Corros Eng., Sci Technol., vol 43, no 3, pp 225−230 [83] N A Hampson, R J Latham, A Marshall, R D Giles (1974), “Some aspects of the electrochemical behaviour of the iron electrode in alkaline solutions,”, Electrochim Acta, vol 19, pp 397-40 129 [84] A Inoishi, Y W Ju, Ida S., and T Ishihara (2013), “Fe–air rechargeable battery using oxide ion conducting electrolyte of Y2O3 stabilized ZrO2,” J Power Sources, vol 229, pp 12–15 [85] A Paulraj, Y Kiros, B Skårman, H Vidarsson (2018), “Capacity Limited Cycle Life of Cu/Sn Doped Nano-Iron/Carbon Electrodes in Alkaline Electrolyte”, The Electrochemical Society, vol 58, pp 2151-2043 [86] A R Paulraj, Y Kiros, B Skårman, H Vidarsson (2017) “Core/Shell Structure Nano-Iron/Iron Carbide Electrodes for Rechargeable Alkaline Iron Batteries” Journal of The Electrochemical Society, vol 164, no 7, pp 1665-1672 [87] A R Paulraj (2019), “Studies on Rechargeable Fe-air electrodes in Alkaline electrolyte”, Engineering and Technology Chemical Process Engineering Chemical Sciences, vol 23, pp 108-115 [88] Y Jiao, Y Liu, F Qu, A Umar, and X Wu (2015), “Journal of Colloid and Interface Science Visible-light-driven photocatalytic properties of simply synthesized a -Iron ( III ) oxide nanourchins,” J Colloid Interface Sci., vol 451, pp 93–100 [89] Z Liu, R Yu, Y Dong, W Li, and W Zhou (2016), “Preparation of α- Fe 2O3 hollow spheres, nanotubes, nanoplates and nanorings as highly efficient Cr(VI) adsorbents,” RSC Adv., vol 6, no 86, pp 82854–82861 [90] S Bharathi, D Nataraj, D Mangalaraj, Y M asuda, K Senthil, and K Yong (2010), “nanostructures: preparation, characterization and improved photocatalytic performance towards Rhodamine B (RhB),” J Phys D Appl Phys., vol 43, no 1, pp 9-16 [91] S Han, L Hu, Z Liang, S Wageh, and A A Al-ghamdi (2014), “One-Step Hydrothermal Synthesis of 2D Hexagonal Nanoplates of α–Fe2O3/Graphene Composites with Enhanced Photocatalytic Activity,” vol 6, no 86, pp 1–9 [92] Z Pu, M Cao, J Yang, K Huang, and C Hu (2006), “Controlled synthesis and growth mechanism of hematite nanorhombohedra, nanorods and nanocubes,” Nanotechnology, vol 17, no 3, pp 799–804 130 [93] Q Dong et al (2012), “Preparation of α-Fe2O3 particles with controlled shape and size via a facile hydrothermal route,” J Phys Conf Ser., vol 339, pp 1200412013 [94] G Zhang, Y Feng, Y Xu, D Gao, and Y Sun (2012), “Controlled synthesis of mesoporous a -Fe2 O3 nanorods and visible light photocatalytic property,” Mater Res Bull., vol 47, no 3, pp 625–630 [95] J Liu, J Wang, Y Li, P Jia, F Lu, and K Chen (2015), “Hydrothermal synthesis of monodisperse α-Fe2O3 nanocubes,” Mater Res Innov., vol 19, no sup 5, pp 5-371-5-375 [96] B B Lv, Z Liu, H Tian, Y Xu, D Wu, and Y Sun (2010), “SingleCrystalline Dodecahedral and Octodecahedral α -Fe2O Particles Synthesized by a Fluoride Anion – Assisted Hydrothermal Method,” Advance Functional Material, vol 201203, pp 3987–3996 131 DANH MỤC CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ CỦA LUẬN ÁN Bui Thi Hang, Vu Manh Thuan, Trinh Tuan Anh, Doan Ha Thang (2016), "Effect of Fe2O3 particle size on the electrochemical properties of Fe2O3/AB composite electrode in alkaline solution", Proceedings of the 3rd International Conference on Advanced Materials and Nanotechnologies (ICAMN) 205-208 (ISBN: 978-604-95-0010-7) Vu Manh Thuan, Trinh Tuan Anh, Pham Thi Thuy Trieu, Doan Ha Thang, Bui Thi Hang (2016), "Preparation and electrochemical properties of Fe2O3 in alkaline solution", Proceedings of The 3rd International Conference on Advanced Materials and Nanotechnology (ICAMN) 336-339 (ISBN: 978-604-95-0010-7) Bui Thi Hang, Trinh Tuan Anh, and Doan Ha Thang (2016), “Effect of Fe2O3 Morphology on the Electrochemical Properties of Fe2O3/C Composite Electrode as Fe-Air Battery Anode”, Journal of Nanoscienceand Nanotechnology, Vol 16, No 8, pp 7999–8006 Phạm Thị Thủy Triều, Trịnh Tuấn Anh, Doãn Hà Thắng, Bùi Thị Hằng (2017), “Tổng hợp đặc trưng điện hóa nano Fe2O3 ứng dụng làm điện cực âm cho pin sắt khí” Hội nghị Vật lý Chất rắn Khoa học Vật liệu Toàn quốc – SPMS-2017, 648-652 Trinh Tuan Anh, Vu Manh Thuan, Doan Ha Thang, Bui Thi Hang (2017), “Effect of Fe2O3 and binder on the electrochemical properties of Fe 2O3/AB (Acetylene Black) composite electrodes”, Journal of Electronic Materials, 46 (6) 3458-3462 (ISSN: 0361-5235) Trinh Tuan Anh, Doan Ha Thang, Bui Thi Hang (2018), “The influence of carbon additive on the electrochemical behaviors of Fe2O3 /C electrodes in alkaline solution”, Vietnam Journal of Science and Technology, 56 (1), pp 24-3 Trinh Tuan Anh, Bui Thi Hang (2019), “Electrochemical Performance of Fe2O3 -AB Based Composite Electrode”, VNU Journal of Science: Mathematics – Physics, Vol 35, № 3, pp 88-98 Trinh Tuan Anh and Bui Thi Hang (2020), “α-Fe2 O3 urchins synthesized by a facile hydrothermal route as anode for Fe-air battery”, Journal of Materials Engineering and Prmerfoance, vol 29, pp 1245–1252 132 ... ? ?Nghiên cứu chế tạo vật liệu composit ôxit sắt/các bon định hướng ứng dụng tích trữ lượng? ?? nhằm góp phần đẩy nhanh q trình thương mại hóa sản phẩm, hạn chế ô nhiễm môi trường Mục tiêu nghiên cứu. .. vật liệu cấu trúc nano sở ôxit sắt bon để cải thiện hạn chế tồn pin Fe - khí, góp phần thúc đẩy định hướng nghiên cứu gắn với ứng dụng thực tiễn Mục tiêu cụ thể:  Tìm quy trình chế tạo vật liệu. .. hóa điện cực composit Fe 2O3/AB khảo sát chi tiết nhằm tìm vật liệu phù hợp ứng dụng làm điện cực âm cho pin Fe - khí Chương 3: Nghiên cứu chế tạo vật liệu composit ôxit sắt/các bon quy trình

Ngày đăng: 19/02/2021, 10:37

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan