1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi môn toán 2004

1 485 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 129,61 KB

Nội dung

Đề thi tuyển sinh chương trình Đào tạo Kỹ sư Tài năng và Kỹ sư Chất lượng cao năm 2004

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI TRUNG TÂM ĐÀO TẠO TÀI NĂNG Đề thi tuyển sinh chương trình Đào tạo Kỹ sư Tài năng và Ks. Chất lượng cao 2004 Môn thi: Toán học (Thời gian: 90 phút) Bài 1. Tìm các số a, b, c sao cho 152)14()5()3()15()2(lim2444232323=++++−−+−−++−±∞→xxxcbxxxaxxcxxbxxax Bài 2. Chứng minh rằng với mọi tham số m, phương trình 0)1(923=−−− xmxx luôn có 3 nghiệm. Bài 3. f(x) là một hàm số xác định trên đoạn [0,1], lấy giá trị trên đoạn [0,1], thỏa mãn điều kiện ]1,0[, ,)()(212121∈∀−<− xxxxxfxf Chứng minh rằng tồn tại một điểm duy nhất ]1,0[0∈x sao cho .)(00xxf = Bài 4. a) Chứng minh rằng nếu hàm số f(x) liên tục trên đoạn [a, b] thì ∫∫≤babadxxfdxxf )()( b) Chứng minh rằng nếu hàm số f(x) có đạo hàm liên tục trên đoạn [a, b] và thỏa mãn điều kiện f(a) = f(b) = 0 thì ,4)()(2Mabdxxfba−≤∫ trong đó )(max xfMbxa′=≤≤ Khi nào xảy ra dấu đẳng thức ? . NỘI TRUNG TÂM ĐÀO TẠO TÀI NĂNG Đề thi tuyển sinh chương trình Đào tạo Kỹ sư Tài năng và Ks. Chất lượng cao 2004 Môn thi: Toán học (Thời gian: 90 phút)

Ngày đăng: 03/11/2012, 08:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w