1. Trang chủ
  2. » Supernatural

Gợi ý làm bài Đề thi đại học môn Toán khối B năm 2014 | dethivn.com

5 20 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 464,33 KB

Nội dung

b) Để kiểm tra chất lượng sản phẩm từ một công ty sữa, người ta đã gửi đến bộ phận kiểm nghiệm 5 hộp sữa cam, 4 hộp sữa dâu và 3 hộp sữa nho.. Bộ phận kiểm nghiệm chọn ngẫu nhiên 3 hộp [r]

(1)

Mơn: TỐN; Khối B

(Thời gian: 180 phút, không kể thời gian phát đề) Câu (2 điểm) Cho hàm số yx33mx1 (1), với m tham số thực a) Khảo sát vẽ đồ thị hàm số với m

b) Cho điểm A(2; 3) Tìm m để đồ thị hàm số (1) có điểm cực trị B C tam giác , ABC cân A Câu (1 điểm) Giải phương trình 2(sinx2 cos )x  2 sin 2x

Câu (1 điểm) Tính tích phân     12 2

3

x x

I dx

x x Câu (2 điểm)

a) Cho số phức z thỏa mãn điều kiện 2z3(1i z)  1 9i Tính module z

b) Để kiểm tra chất lượng sản phẩm từ công ty sữa, người ta gửi đến phận kiểm nghiệm hộp sữa cam, hộp sữa dâu hộp sữa nho Bộ phận kiểm nghiệm chọn ngẫu nhiên hộp sữa để phân tích mẫu Tính xác suất để hộp sữa chọn có loại

Câu (1 điểm) Trong không gian với hệ trục tọa độ Oxyz , cho điểm A(1; 0; 1) đường thẳng

  

 1

:

2

y

x z

d Viết phương trình đường thẳng qua A vng góc với d Tìm tọa độ hình chiếu vng góc A d

Câu (1 điểm) Cho hình lăng trụ ABC A B C có đáy tam giác cạnh a Hình chiếu    A mặt phẳng (ABC trung điểm ) AB, góc tạo đường thẳng A C với mặt đáy  60 Tính theo a thể tích khối lăng trụ ABC A B C khoảng cách từ điểm    B đến (ACC A  )

Câu (1 điểm) Trong mặt phẳng với hệ tọa độ Oxy , cho hình bình hành ABCD Điểm M( 3; 0) trung điểm cạnh AB, điểm H(0; 1) hình chiếu vng góc B AD điểm  

 

4 ; 3

G trọng tâm tam giác BCD Tìm tọa độ điểm B D ,

Câu (1 điểm) Giải hệ phương trình

        

        



(1 ) ( 1)

2 2

y x y x x y y

y x y x y x y

với x y,  

Câu (1 điểm) Cho a b c không âm thỏa mãn , , (ab c) 0 Tìm giá trị nhỏ biểu thức

  

  2(  )

a b c

P

b c c a a b

(2)

LỜI GIẢI ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2014 Câu a/ Với m 1, ta có hàm số yx33x1 Tập xác định D 

Chiều biến thiên:               

2 1

3 3, 3

1

x y

y x y x

x y

Hàm số đồng biến  ( ; 1),(1;) , hàm số nghịch biến ( 1; 1) Đồ thị hàm số: Bảng biến thiên:

b/ Ta có y3x23 ,m y 0 x2m Đồ thị hàm số cho có cực trị y 0 có nghiệm phân biệt x hay m0,m4

Gọi B m m m; 1 , C m; 2 m m1 cực trị hàm số Tam giác ABC cân A

AB AC hay  m2 2 2m m2 2 m2 2 2m m22  m2m m0 Phương trình cuối có nghiệm dương 

2

m

Vậy giá trị cần tìm 

2

m

Câu Xét phương trình: sin x2 cosx 2 sin 2x sinx2 cosx 2 sin 2x

   

  

         

  

     

 



2 sin 2 cos 2 sin cos sin cos 2 cos

cos

1 cos sin 2

sin

x x x x x x x

x

x x

x

Ta loại nghiệm sinx sinx 1, ta có cos     1 3 2

2

x x k với k 

Vậy nghiệm phương trình cho  3 2

x k với k 

x  1 

y   

y 

 1

y

x

(3)

1 x x

Ta có:                

 

  

2 2 2 2

2 2 1

1 1

2

3

1 d x ln ln

x x x

dx dx x x x x

x x x x x x

Câu

a) Đặt  z x yi với x y,   Ta có:

    

   

          

              

    

 

 

 

    

 

 

2 1 2 1

2 3 3 3

5

3

z i z i x yi i x yi i

x yi x yi xi y i x y x y i i

x y x

x y y

Vậy module cần tính z  2232  13 b) Không gian mẫu n  C 123

Gọi A biến cố chọn có đủ loại Số phần tử biến cố A C C C51 41 13

Xác xuất biến cố A là:    

1 1

5

3 12

3 11

C C C

C

Câu Mặt phẳng qua  P qua A, có vtpt    

 

2; 2; p d

n a Suy ( ) : 2P x2y  z

Gọi H hình chiếu A lên  d { }H    dP Toạ độ điểm H thỏa hệ phương trình

 

 

  

 

     

1

2

2

y

x z

x y z

hay   

 

1 ; ; 3 H

Câu

Gọi H trung điểm AB   ,  a

A H ABC CH Ta có VABC A B C.   A H S  ABC

Mặt khác, ta có ABC tam giác cạnh a nên

4 ABC

a

S Ta có 

A HC vng      C

A' C'

B'

(4)

 

  tan  

2

a

A H CH A CH Do     

3 ABC A B C

a V

Tiếp theo, ta tính khoảng cách từ B đến (ACC A Ta có  )

         

B ACC A ABC A B C B ACC A ABC A B C a

V V V V

Vậy      

 

 ,     

3 13

13 ACC A

B ACC A

ACC A

V a

d

S Câu

Gọi B a b ( ; ) N trung điểm CD

Ta có 

 2

3

BG BN với    

 

 4

; 3

BG a b

 

  



;

N N

BN x a y b

Do đó, ta    

 

4

;

2

a b

N Ta có

                                                     2 2 2

( 3) 10 6 1 2 1

10

2 10

(1 ) 0

2

a b

MB HM a b a b a

a b

a a

a b a b

a b

MN BH

Giải hệ này, ta ( ; )a b (0; 1),( 2; 3)  Ta xét trường hợp:  Với a 0,b 1, ta có B(0; 1) , loại trùng với H

 Với  a 2,b3, gọi I tâm hình bình hành  

 

3 0;

2

I , ta D(2; 0) Vậy ta B( 2; 3), (2; 0) D

Câu Xét hệ phương trình        

       



(1 ) ( 1) (1) 2 (2)

y x y x x y y

y x y x y x y

Điều kiện xác định: y 0, 4x5y3,x2y Ta có

                                                                           

(1) (1 ) ( ) ( 1)

( 1) (1 )

1 1

1 1

1

, 1

1

y x y x y x y y

x y y y x y

y x y y x y

y x y x y y

y

x y y

(5)

- Nếu 1 y  0 y 1, từ (2) suy 3x   9 x

- Nếu x     y x y 1, từ (2) suy 2y23y 2 1y , phương trình tương đương với

           

           

2 2

2

16 16(1 ) 1 (4 1) (4 1)

4 1 1

y y y y y y

y y y y y y

Phương trình cuối có nghiệm khơng âm  1 

y , tương ứng, ta có  1

x

Vậy hệ cho có nghiệm

    

 

  

 

 

1 5

( ; ) (3;1), ;

2

x y

Câu Ta có        

      

2

1 b b a b c b b b

c a c a c a c a c a a b c

Đẳng thức xảy c   0a b b Tương tự, ta có 

  

2

a a

b c a b c (đẳng thức xảy c   0b a a 0) nên ta có

   

    

2( )

2( ) 2( )

1

a b c c

P

c

a b c a b a b

a b

Đặt  

c t

a b xét hàm số    

( ) ,

1

t

f t t

t

Ta có       

 

2 ( 3)( 1) ( )

2

(1 ) 2( 1)

t t

f t

t t

Do f t( )  0 t Khảo sát hàm số [0;) , ta ( ) (1)

f t f

Vậy GTNN biểu thức cho

2, đạt a 0,b cb 0,a c

Huỳnh Cơng Thái, Nguyễn Tuấn Lâm, Trương Huy Hồng, Lê Phúc Lữ, Lê Văn Đoàn, Nguyễn Minh Tùng, Trần Anh Hào

(Trung tâm luyện thi ĐH Ngoại Thương)

Ngày đăng: 03/02/2021, 00:30

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w