1. Trang chủ
  2. » Giáo án - Bài giảng

TT đề thi chuyên Lam Sơn(Tuấn Anh-Nga Điền)

13 616 7
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 356 KB

Nội dung

Đề thi tuyển sinh vào lớp 10 chuyên toán trường THPT chuyên Lam Sơn Thanh Hoá ================================================ SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN LAM SƠN THANH HOÁ NĂM HỌC: 2002-2003 Đề thức THI MƠN TỐN Thời gian: 150 phút (không kể thời gian giao đề) Ngày thi: 03 tháng 07 năm 2002 SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN LAM SƠN THANH HOÁ NĂM HỌC: 2003-2004 Đề thức MƠN: THI TỐN Thời gian: 150 phút (không kể thời gian giao đề) Ngày thi: 27 tháng năm 2003 Bài (2 điểm) Cho A  x2 + x x - x - x x+ x a, Hãy rút gọn biểu thức A b, Tìm x thoả mãn A = x - + Bài (2 điểm) Cho phương trình: x2 - 4( m – )x + 4m – = (1) a, Tìm m để phương trình (1) có hai nghiệm x1, x2 thoả mãn + = 2m x x b, Tìm m để P = + + x1x2 có giá trị nhỏ x x Bài (2,5 điểm) Cho tam giác ABC nội tiếp đường trịn O đường kính DE vng góc với BC Gọi D1E1 D2E2 hình chiếu vng góc DE AB AC Chứng minh BE1 = E2C = AD1; D1E1 = AC D2E2 = AB Các tứ giác AD1DD2 ; AE1EE2 nội tiếp đường trịn D1D2 vng góc với E1E2 Bài (2 điểm) Cho hình chopSABC có SA  AB; SA  AC; BA  BC; BA = BC; AC = a ; SA = 2a a, Chứng minh BC  mp(SAB) b, Tính diện tích tồn phần chóp SABC Bài (1,5 điểm) Cho số thực a1; a2; ….; a2003 thoả mãn: a1 + a2 + …+ a2003 = Chứng minh: a12 + a22 + + a22003  2003 - Hết SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN LAM SƠN THANH HOÁ NĂM HỌC: 2004-2005 Đề thức MƠN: TỐN (Dành cho học sinh thi vào lớp chuyên Nga - Pháp) Thời gian: 150 phút (không kể thời gian giao đề) - Bài (2 điểm) Gọi x1, x2 nghiệm phương trình: 2x2 + 2mx + m2 – = Với giá trị m thì: 1x + + x1 + x2 = 1 x2 Tìm giá trị lớn biểu thức: A = 2x2x2 + x1 + x2 - Bài (1,5 điểm) Giải phương trình: (x2 + 3x + 2)(x2 + 7x + 12) = 120 Bài (2 điểm) x y + y x = Giải hệ phương trình:  2 x y + y x = 20 Bài (3,5 điểm) Cho M điểm thay đổi đường trịn (O), đường kính AB Đường tròn (E) tâm E tiếp xúc với đường tròn (O) M AB N Đường thẳng MA, MB cắt đường tròn (E) điểm thứ hai C D khác M Chứng minh CD song song với AB Gọi giao điểm MN với đường tròn (O) K (K khác M) Chứng minh M thay đổi điểm K cố định tích KM.KN khơng đổi Gọi giao điểm CN với KB C giao điểm DN với KA D Tìm vị trí M để chu vi tam giác NCD nhỏ Bài (1 điểm) Tìm giá trị nhỏ biểu thức: y = 2x2 + 2x + 1+ 2x2 - 4x + Hết SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN LAM SƠN THANH HOÁ NĂM HỌC: 2004-2005 Đề thức MƠN: TOÁN (Dành cho học sinh thi vào lớp chuyên Tin) Thời gian: 150 phút (không kể thời gian giao đề) Bài (1,0 điểm) Cho hai phương trình: x2 + ax + = x2 + bx + 17 = Biết hai phương trình có nghiệm chung a + b nhỏ nhấ Tìm a b Bài (2 điểm) Giải phương trình: x + x - + x + x2 - 5x = 20 Bài (2,5 điểm) x3 + y3 = Giải hệ phương trình:  7 4 x + y = x + y Tìm nghiệm nguyên phương trình: x3 + y3 + 6xy = 21 Bài (2,5 điểm) Cho tam giác nhọn ABC nội tiếp đường trịn (O) tâm O M điểm cung BC không chứa điểm A Gọi M điểm đối xứng với M qua O Các đường phân giác góc B góc C tam giác ABC cắt đường thẳng AM E F Chứng minh tứ giác BCÈ nội tiếp đường tròn Biết đường tròn nội tiếp tam giác ABC có tâm I bán kính r Chứng minh: IB.IC = 2r.IM Bài (2 điểm) Cho số a, b thoả mãn điều kiện :  a  ,  b  11 a + b = 11 Tìm giá trị lớn tích P = ab Trong mặt phẳng (P) cho ba tia chung gốc phân biệt Ox, Oy, Oz Tio Ot không thuộc (P) xOt = yOt = x Ot Chứng minh Ot vng góc với mặt phẳng (P) - Hết - SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN LAM SƠN THANH HOÁ NĂM HỌC: 2004-2005 Đề thức MƠN: TỐN CHUNG Thời gian: 150 phút (khơng kể thời gian giao đề) Bài (2 điểm) Giải phương trình: - x = x - Chứng minh phương trình: ax2 + bx + c = (a 0) ln có hai nghiệm phân biệt Biết 5a – b + 2c = Bài (2,5 điểm) Cho hệ phương trình: x + y-2 = (m tham số) 2x - y = m Giải hệ phương trình với m = -1 Với giá trị m hệ phương trình cho vơ nghiệm Bài (3 điểm) Cho hình vng ABCD Điểm M thuộccạnh AB (M khác A B) Tia CM cắt tia DA N BVẽ tia Cx vng góc với CM cắt tia AB E Gọi H trung điểm đoạn NE Chứng minh tứ giác BCEH nội tiếp đường trịn Tìm vị trí điểm M để diện tích tứ giác NACE gấp ba diện tích hình vng ABCD Chứng minh M di chuyển cạnh AB tỉ số bán kính đường tròn nội tiếp tam giác NAC tam giác HBC khơng đổi Bài (1,5 điểm) Cho hình chóp A.BCD có cạnh AB = x, tất cạnh lại Gọi M, N trung điểm cạnh AB CD Chứng minh MN vng góc với AB CD Với giá trị x thể tích hình chóp A.BCD lớn Bài (1 điểm) Cho số dương a, b, c thay đổi thoả mãn: a + b + c = Chứng minh: a  b  b  c  c  a  - Hết SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN LAM SƠN THANH HOÁ NĂM HỌC: 2005-2006 Đề thức MƠN: TỐN (Dành cho học sinh thi vào lớp chuyên Nga, Pháp) Thời gian: 150 phút (không kể thời gian giao đề) Bài 1: (2 điểm) Cho phương trình: x2 – (m + 1)x + m – = Tìm m để phương trình có hai nghiệm dương phân biệt Gọi x1 , x2 nghiệm phương trình Tìm m để: 3x1 + 2x2 = Bài 2: (1,5 điểm) Cho hai số thực dương x, y thoả mãn điều kiện: 2x2 – 6y2 = xy Tính giá trị x - y biểu thức: A = 3x + 2y Bài 3: (2 điểm) x + + y + = x y2 Giải hệ phương trình:  x2 + + y2 + = 25  x2 y2 Bài 4: (3,5 điểm) Cho đường trịn tâm O đường kính AB P điểm di động đường tròn (P  A) cho PA  PB Trên tia đối PB lấy điểm Q cho PQ = PA, dựng hình vng APQR Tia PR cắt đường tròn cho điểm C (C  P) Chứng minh C tâm đường tròn ngoại tiếp  AQB Gọi K tâm đường tròn nội tiếp  APB, chứng minh K thuộc đường tròn ngoại tiếp  AQB Kẻ đường cao PH  APB, gọi R1, R2, R3 bán kính đường trịn nội tiếp  APB,  APH  BPH Tìm vị trí điểm P để tổng R1 + R2 + R3 đạt giá trị lớn Bài 5: (1 điểm) Cho ba số thực dương a, b, c thoả mãn điều kiện: a + b + c = Chứng minh a4 + b4 + c4  a3 + b3 + c3 - Hết SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN LAM SƠN THANH HOÁ NĂM HỌC: 2005-2006 Đề thức MƠN: TỐN (Dành cho học sinh thi vào lớp chun Tin) Thời gian: 150 phút (không kể thời gian giao đề) Bài 1: (1,5 điểm)  x2 - -    x4 + - x   Cho biểu thức: M =   x - x + x + 1 + x  Rút gọn M 2.Tìm giá trị nhỏ M Bài 2: (2 điểm) xy2 - 4y + x = Giải hệ phương trình:  x y - 8y + x = 022 Bài 3: (2,0 điểm) Cho x, y số thực thoả mãn điều kiện: x2 + 5y2 – 4xy – x + 2y – = Chứng minh:   x - 2y +  Tìm nghiệm nguyên phương trình: y3 – x3 = 2x + Bài 4: (3,5 điểm) Cho  ABC có diện tích 32 cm2, tổng độ dài hai cạnh AB BC 16 cm Tính độ dài cạnh AC Cho tam giác nhọn ABC (AB < BC) có đường cao AM trung tuyến BO Đường thẳng qua C song song với AB cắt tia BO điểm D Gọi điểm N, P hình chiếu vng góc A lên đường thẳng BD, CD a Chứng minh: NA2 = NP.NM b Chứng minh tứ giác MNOP nội tiếp đường tròn Bài 5: (1 điểm) Tìm số thực dương x, y, z thoả mãn điều kiện: x2 + y2 + z2 = xyz  x + y + z = xyz Hết - SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN LAM SƠN THANH HOÁ NĂM HỌC: 2005-2006 Đề thức MƠN: TỐN (Dành cho học sinh thi vào lớp chuyên Toán) Thời gian: 150 phút (không kể thời gian giao đề) Bài 1: (2,5 điểm) Cho biểu thức P(x) = x2 +12x + 12 - 3x Gọi x1 , x2 nghiểm phương trình x2 – x – = Chứng minh: P x1 = P x2 Tìm nghiệm nguyên phương trình: 3x2 + 14 y2 + 13xy = 330 Bài 2: (2,0 điểm) Giải hệ phương trình:  x2 + y2 + 2xy =  x + y = Bài 3: (2,0 điểm) Tìm giá trị nhỏ hàm số: y = x2 + x + + x2 - x + Cho ba số thực x, y, z lớn thoả mãn điều kiện: x1 + y1 + z1 = Chứng minh rằng:  x-2  y-2  z-2  Dấu " = " xảy nào? Bài 4: (2,0 điểm) Cho đường tròn tâm O nội tiếp tam giác ABC tiếp xúc với cạnh AB, BC CA điểm M, N, P Xét trường hợp AB < AC, gọi D giao điểm tia AO MN Chứng minh AD  DC Gọi (T) tam giác có đỉnh M, N, P, Giả sử (T) đồng dạng với tam giác ABC theo tỉ số k Tính k? Bài 5: (1,5 điểm) Cho đường tròn tâm O nội tiếp hình thoi ABCD Tiếp tuyến (d1) với đường tròn cắt cạnh AB, AD điểm M, P Tiếp tuyến (d2) với đường tròn cắt cạnh CB, CD diểm N, Q Chứng minh MN // PQ -Hết SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN LAM SƠN THANH HOÁ NĂM HỌC: 2007-2008 Đề thức MƠN: TỐN (Dành cho học sinh thi vào lớp chun Tốn) Đề thi có 01 trang Thời gian: 150 phút (không kể thời gian giao đề) Ngày thi: … tháng năm 2007 Bài 1: (1,5 điểm) 3xy = 2 x+y Giải hệ phương trình: 5xy = 6 y+z 4xz = 3 x+z Bài 2: (2,0 điểm) Đội bóng bàn trường A thi đấu với đội bóng bàn trường B, đấu thủ trường A thi đấu với đấu thủ trường B trận Biết rằng: Tổng số trận đấu lần cầu thủ, số cầu thủ trường B số lẻ Tính số cầu thủ đội Bài 3: (3,0 điểm) Cho hai điểm A B cố định đường tròn tâm O C điểm cung AB, M điểm đoạn AB Tia CM cắt đường tròn (O) D Chứng minh rằng: a AC2 = CM.CD b Tâm đường tròn ngoại tiếp tam giác ADM thuộc đường trịn cơc định c Gọi R1 , R2 theo thứ tự bán kính đường tròn ngoại tiếp hai tam giác ADM BDM Chứng minh R1 + R2 không đổi Bài 4: (2 điểm) Trên mặt phẳng tọa độ Oxy cho : A(0; 3), B(4; 0), C(5; 3/4) với O(0; 0) tạo thành tứ giác AOBC Viết phương trình đường thẳng (d) qua A, chia tứ giác AOBC thành hai phần có diện tích Bài 5: ( 1,5 điểm) Cho a, b, c số nguyên khác thoả mãn ab + bc + ca = Chứng minh tích abc lập phương số nguyên Hết - SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN LAM SƠN THANH HOÁ NĂM HỌC: 2008-2009 Đề thức MƠN: TỐN (Dành cho học sinh thi vào lớp chuyên Tin) Đề thi có 01 trang Thời gian: 150 phút (không kể thời gian giao đề) Ngày thi: 16 tháng năm 2008 Câu 1: (1,5 điểm) Cho phương trình : 4x2 + x - = (1) Chứng minh phương trình (1) ln ln có hai nghiệm trái dấu Gọi x1 nghiệm dương phương trình (1) Chứng minh rằng: x1 + = + x1 + - x1 x1 Câu 2: (2,0 điểm) Cho hệ phương trình: a  x2 + y2  + x + y = b y - x = b Giải hệ a = 1, b=2 Tìm a cho hệ có nghiệm với giá trị b Câu 3: (1,5 điểm) Cho phương trình: (x2 - 1)(x + 3)(x + 5) = m (2) Tìm m cho phương trình (2) có nghiệm phân biệt x1, x2, x3, x4 thoả mãn: + + + = -4 x1 x2 x3 x4 Câu 4: (4,0 điểm) Cho tam giác ABC có ba góc nhọn Gọi H trực tâm, K chân đường cao hạ từ A tam giác ABC Hai trung tuyến AM HN tam giác AHC cắt I Hai đường trung trực đoạn thẳng AC HC cắt J Chứng minh tam giác AHB tam giác MNJ đồng dạng Chứng minmh rằng: KH.KA  BC2 Tính tỉ số IA2 + IB2 + IH2 IM2 + IJ2 + IN2 Câu 5: (1,0 điểm) Cho hai số thực x, y thỏa mãn điều kiện: x4 + y4 – = xy(3 - 2xy) Tìm giá trị lớn giá trị nhỏ tích xy Hết - SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN LAM SƠN THANH HOÁ NĂM HỌC: 2008-2009 Đề thức MƠN: TỐN (Dành cho học sinh thi vào lớp chun Tốn) Đề thi có 01 trang Thời gian: 150 phút (không kể thời gian giao đề) Ngày thi: 16 tháng năm 2008 Câu 1: (2,0 điểm) 1+ 12a + , Tính giá trị biểu thức M = + 2a + 1 - biết rằng: x + y a = x + z  x + z 49 =  z - y  2x + y + z 13 Câu 2: (2,0 điểm) a + b + c >  Cho số thực a, b, c thoả mãn ab + bc + ca > abc > Chứng minh ba số dương Câu 3: (2,0 điểm) Cho hình vuông ABCD cạnh Gọi M, N điểm nằm cạnh AB AD cho chu vi tam giác AMN Tính góc MCN Câu 4: (2,0 điểm) Cho tam giác ABC cạnh a Điểm D di động cạnh AC, điểm E di động tia đối tia CB cho AD.BE = a2 Các đường thẳng AE BD cắt M Chứng minh: MA + MC = MB Câu 5: (2,0 điểm) Giả xử x, y số nguyên dương cho x2 + y2 + chia hết cho xy Tìm thương phép chia x2 + y2 + cho xy Hết - Họ tên thí sinh: ………………………………… Số báo danh: …………………… SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN LAM SƠN THANH HOÁ NĂM HỌC: 2009-2010 Đề thức MƠN: TỐN (Dành cho học sinh thi vào lớp chuyên Tin) Thời gian: 150 phút (không kể thời gian giao đề) Ngày thi: 19 tháng năm 2009 Câu 1: (2,0 điểm) Cho T = - x2 2x2 + - 1 + x - 1 - x Tìm điều kiện x để T xác định Rút gọn T Tìm giá trị lớn T Câu 2: (2,0 điểm) 2x2 - xy = 1 Giải hệ phương trình:  4x + 4xy - y = Giải phương trình: x - + y + 2009 + z - 2010 = 12  x + y + z Câu 3: (2,0 điểm) Tìm số nguyên a để phương trình: x2 – (3 + 2a)x + 40 – a = có nghiệm ngun Hãy tìm nghiệm ngun a  Chứng minh  Cho a, b, c số thoả mãn điều kiện: b  19a + 6b + 9c = 12 có hai phương trình sau có nghiệm x2 – 2(a + 1)x + a2 + 6abc + = x2 – 2(b + 1)x + b2 + 19abc + = Câu 4: (3,0 điểm) Cho tam gi ác ABC c ó ba góc nhọn, nội tiếp đường tịn tâm O đường kính AD Gọi H trực tâm tam giác ABC, E điểm cung BC không chứa điểm A Chứng minh tứ giác BHCD hình nhật Gọi P Q diểm đối xứng E qua đường thẳng AB AC Chứng minh ba điểm P, H, Q thẳng hàng Tìm vị trí điểm E để PQ có độ dài lớn Câu 5: (1,0 điểm) Gọi a, b, c độ dài ba cạnh tam giác có ba góc nhọn Chứng minh với số thực x, y, z ta ln có : a2 x2 + b2 y2 + c2 z2 > a2 + b2 + c2 2x2 + 2y2 + 2z2 Hết - Họ tên thí sinh: ………………………………… Số báo danh: …………………… SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN LAM SƠN THANH HOÁ NĂM HỌC: 2009-2010 Đề thức MƠN: TỐN (Dành cho học sinh thi vào lớp chuyên Toán) Thời gian: 150 phút (không kể thời gian giao đề) Ngày thi: 19 tháng năm 2009 Câu 1: (2,0 điểm) Cho số x ( x  R ; x > ) thoả mãn điều kiện : x2 + 1x2 = Tính giá trị biểu thức : A = x3 + B = x5 + x x  + 2- 2 x y Giải hệ phương trình:  1 2- 2 + x y Câu 2: (2,0 điểm) Cho phương trình: ax2 + bx + c = (a 0) có hai nghiệm x1, x2 thoả mãn điều kiện:  x1  x2  Tìm giá trị lớn biểu thức: Q = 2a2 2a2 - 3ab + b2 - ab + ac Câu 3: (2,0 điểm) x-2 + y + 2009 + z - 2010 = 12  x + y + z Giải phương trình: Tìm tất số nguyên tố p để 4p2 + 6p2 + số nguyên tố Câu 4: (3,0 điểm) Cho hình vng ABCD có hai đường chéo cắt E Một đường thẳng qua A, cắt cạnh BC M cắt đường thẳng CD N Gọi K giao điểm đường thẳng EM BN Chứng minh rằng: CK  BN Cho đường trịn (O) bán kính R = điểm A cho OA = Vẽ tiếp tuyến AB, AC với đường tròn (O) (B, C tiếp điểm) Một góc xOy có số đo 450 có cạnh Ox cắt đoạn thẳng AB D cạnh Oy cắt đoạn thẳng AC E Chứng minh 2 -  DE < Câu 5: (1,0 điểm) Cho biểu thức P = a2 + b2 + c2 + d2 + ac + bd , ad – bc = Chứng minh rằng: P  Hết - Họ tên thí sinh: ………………………………… Số báo danh: …………………… ... GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN LAM SƠN THANH HOÁ NĂM HỌC: 2007-2008 Đề thức MƠN: TỐN (Dành cho học sinh thi vào lớp chun Tốn) Đề thi có 01 trang Thời... DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN LAM SƠN THANH HOÁ NĂM HỌC: 2008-2009 Đề thức MƠN: TỐN (Dành cho học sinh thi vào lớp chun Tin) Đề thi có 01 trang Thời... GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN LAM SƠN THANH HOÁ NĂM HỌC: 2008-2009 Đề thức MƠN: TỐN (Dành cho học sinh thi vào lớp chun Tốn) Đề thi có 01 trang Thời

Ngày đăng: 31/10/2013, 05:11

HÌNH ẢNH LIÊN QUAN

1. Chứng minh rằng tứ giác BHCD là hình chứ nhật. - TT đề thi chuyên Lam Sơn(Tuấn Anh-Nga Điền)
1. Chứng minh rằng tứ giác BHCD là hình chứ nhật (Trang 11)

TỪ KHÓA LIÊN QUAN

w