Cắt khối trụ bởi một mặt phẳng ta được thiết diện là hình elip có độ dài trục lớn bằng 10.. Thiết diện chia khối trụ ban đầu thành hai nửa, nửa trên có thể tích V , 1.[r]
(1)Trang BÀI TẬP TRẮC NGHIỆM
NGUYÊN HÀM TÍCH PHÂN- DIỆN TÍCH HÌNH PHẲNG- THỂ TÍCH KHỐI TRỊN XOAY VẬN DỤNG VÀ VẬN DỤNG CAO
I NGUYÊN HÀM TÍCH PHÂN
Câu 1: Cho hàm số có đạo hàm đoạn thỏa mãn Tính tích phân
A B C D
Câu 2:Cho hàm số y f x liên tục thoả mãn f x 2f 3x x
với
; 2
x
Tính
2 d f x x x
A 3
2 B
3
C 9
2 D
9
Câu 3: Cho
1
0
2018
f x dx
Tính tích phân
4
0
sin cos
f x xdx
A 2018 B.1009 C 2018 D.1009
Câu 4: Biết
2
F x ax bxc x (a b c ) nguyên hàm hàm số , ,
2
20 30 11
2 x x f x x
khoảng ;
Tính T a b c
A T 11 B T 10 C T 9 D T 8
Câu 5:
6
0
2 d
ln ln
3
2
x x
a b c
x x
( , ,a b c Tính ) T a b c
A B C D
Câu 6: Cho f x hàm số liên tục thỏa mãn ( ) f x f x 2 cos 2 x Tính tích
phân
3
3
d
I f x x
A I 3 B I 4 C I 6 D I 8
f x 0;1 f 1 0
1
2
0
1
d d
4
x e
f x x x e f x x
d
I f x x
2
I e I e
2
e
I
2
e I
3
(2)Trang Câu 7: Hàm số f x liên tục 1;2018 :
2017
1
(2018 ) ( ) [1; 2018] , ( ) 10
f x f x x f x dx
Tính
2017
1
( )
I x f x dx
A I 10100 B I 20170 C I 20180 D I 10090. Câu 8: Hàm số f x liên tục 0; :
0
( ) ( ) [0; ] , ( )
2
f x f x x f x dx Tính
0
( )
I x f x dx
A
2
I B
2
I C
4
I D
2
I
Câu 9: Hàm số f x liên tục a b; : f a b( x) f x( ) x [ ; ]a b ; ( )
b
a
f x dx a b Tính
( )
b
a
I x f x dx
A a b
I B
2
a b
I C
4 a b
I D
2
a b
I
Câu 10: Cho hàm số y f x có đạo hàm liên tục 1; 2 thỏa mãn f 1 4
f x x f x x x
Tính giá trị f 2
A 5 B 20 C 10 D 15
Câu 11: Một ô tô bắt đầu chuyển động nhanh dần với vận tốc v t1 7 m/st Đi s , người lái xe phát chướng ngại vật phanh gấp, ô tô tiếp tục chuyển động chậm dần với gia tốc a 70 m/s 2 Tính qng đường S m tơ từ lúc bắt đầu chuyển bánh dừng hẳn
A S 87, 50 m B S 94, 00 m C S 95, 70 m D S 96, 25 m
Câu 12: Giả sử
2
1
2x1 ln dx xaln 2b
, a b ; Tính ab
A 5
2 B 2 C 1 D
3 2
Câu 13: Biết
1
2
3
ln ln
3
x x
dx a b c
x x
(3)Trang Câu 14: Cho hàm số f x liên tục thỏa mãn
16
2
1
cot x f sin x dx f x dx
x
Tính tích
phân
1 d f x I x x
A I 3 B
2
I C I 2 D
2
I
Câu 15: Cho hàm số f x liên tục thỏa mãn ln d ln e e f x x
x x
3
0
cos tan d
f x x x
Tính
2 d f x x x
A 3 B 5
2 C D 1
Câu 16: Tính tích phân ta kết với với Khi nhận giá trị
A B C D
Câu 17:Cho hàm số y f x có đạo hàm liên tục 0;
f 0 0,
2
2
0
d
f x x
,
sin d
4
x f x x
Tính
2
0
d
I f x x
?
A 0 B 1 C 2 D
Câu 18: Biết
ln
0
1
dx= ln ln ln
2
a c
x b
e
Trong a , b , c số nguyên Khi S a b c
A S 4 B S 3 C S 5 D S 2
Câu 19: Biết
ln
2
1 1
dx= ln ln 2 a x b e
Trong a , b số nguyên
Khi S a 2b
A S 2 B S 3 C S 1 D S 0
/
0
ln(tan 1)d
I x x
I a ln c
b
0, ( , )
, , ,
(4)Trang Câu 20: Biết
2 dx=a.e+bln x x
x x e
e c x e
Trong a , b , c số nguyên Khi
2
S a b c
A S 1 B S 2 C S 1 D S 0
Câu 21: Cho hàm số y f x có đạo hàm liên tục 1; thỏa mãn f 1 1
3 1;
f x x x x Tìm số nguyên dương m lớn cho
3;10
min
x f x m
với hàm số y f x thỏa đề
A m 15 B m 20 C m 25 D m 30
Câu 22: Cho hàm số y f x có đạo hàm liên tục 0; 1 thỏa mãn
2018
3f x xf x x x 0; Tìm giá trị nhỏ
0 f x dx
A
2019.2020 B
2019.2021 C
2020.2021 D 2018.2020 Câu 23: Cho hàm số y f x có đạo hàm thỏa mãn
1
2
2
3f x e f x x x
f x
f 0 1
Tích phân
7
0
d
x f x x
A 2
3 B
15
4 C
45
8 D
5 Câu 24: Cho hàm số f x có đạo hàm liên tục 0;1 thỏa mãn
1
2
0
1
1 0, d
11
f f x x d 55
x f x x
Tích phân
1
0
d
f x x
A
7
B 1
7 C
1 55
D
11 Câu 25: Cho hàm số f x có đạo hàm liên tục 0;1 thỏa mãn
1
2
0
3
1 0, d ln
2
f f x x
và
1
2
3 d ln
2
f x x
x
Tích phân
1
0
d
f x x
A 1 2ln 2
B 3 2ln
2
C 3 4ln 2
D 1 ln 2
Câu 26: Xét hàm số f x liên tục 0;1 thỏa mãn điều kiện x f x 2 3f 1x 1x2 Tích
phân
1
0
d
(5)Trang A
20
I B
16
I C
6
I D
4
I Câu 27: Cho hàm số f x( ) xác định, liên tục có đạo hàm thỏa mãn f x( )0, x
2
3 '( ) 2f x f ( )x 0 Tính f(1) biết f(0)1 A.1
5 B
2
5 C
3
5 D
4
Câu 28: Cho hàm số f x( ) xác định, liên tục có đạo hàm (0;) thỏa mãn f x( )xf '( )x 2x (1)
f Giá trị f(2)bằng: A.5
2 B.2 C.e D.2
e
Câu 29: Cho hàm số f x( ) xác định, liên tục có đạo hàm thỏa mãn f x( ) f x'( )2ex (0)
f Giá trị f(2) bằng:
A e B.ln C
e D.1
Câu 30: Cho hàm số f x liên tục \ 0; 1 thỏa mãn điều kiện f 1 2 ln
1
x x f x f x x x
Giá trị f 2 abln 3,a b Tính , a2b2 A 25
4 B
9
2 C
5
2 D
13 Câu 31: Biết
2
3
3
2 11
1
1 1
2 d a
x x c
x x x b
, với a b c nguyên dương, , , a
b tối giản c Tính a
S a b c
A S 51 B S 67 C S 39 D S 75 Suy S 67
Câu 32: Cho hàm số f x liên tục có đạo hàm x 0; đồng thời thỏa mãn điều kiện:
sin cos
f x x x f x x
3
2
sin d
f x x x
Khi đó, f nằm khoảng nào?
A 6; 7 B 5; 6 C 12;13 D 11;12
Câu 33: Cho hàm số y f x có đạo hàm liên tục thỏa mãn f x 2xf x 2 x ex2 0
f Tính f 1
A e B.1
e C.
2
e D.
2
e
(6)Trang Câu 34: Cho hàm số f x có đạo hàm thỏa mãn x2 f x x1 f x ex 0
2
f Tính f 2
A 2 e
f B 2 e
6
f C
2
e
3
f D
2
e
6
f
Câu 35: Biết
2
2
d ,
1
x
x a b c
x
với a b c số hữu tỷ Tính , , P a b c
A
2
P B
2
P C
2
P D P 2
Câu 36: Cho tích phân
3
ln sin 3
3 ln ln , ,
cos
x
I dx a a b c
x b c
Tính giá trị biểu thức
S a b c
A B 2 C 1 D 1
Câu 37: Cho tích phân
2
2
0
1
2 cos , ,
I x xdx a b c
a b c
Tính giá trị biểu thức
S a b c
A 1 B 2 C 2 D 1
Câu 38: Cho tích phân
4
2
0
tan ln , ,
I x xdx a b c a b c
Tính giá trị biểu thức
S a b c
A
32
B
31 C
5 16
D
32
Câu 39: Cho hàm số y f x có đạo hàm liên tục thỏa mãn f 21,
2
1
2 d
f x x
Tính
0
2
d
I x f x x
A I 1 B I 0 C I 4 D I 4 Câu 40: Cho hàm số y f x xác định 0;
2
thỏa mãn
2
2 2 sin
4
f x f x x dx Tính
2
0
d
(7)Trang A
4
B 0 C 1 D
2
Câu 41: Cho hàm số y f x liên tục 0;1 thỏa mãn
2
2
0
9
6 d
2
f x f x ex x e Tính
1
0
1 d
x f x x
A e1 B 2e5 C e D 3e
Câu 42: Cho hàm số y f x liên tục 1; 2
thỏa mãn
1 2 109
2 d
12
f x f x x x
Tính
1 2 d
f x x
x
A ln2
9 B
5 ln
9 C
7 ln
9 D
8 ln
9
Câu 43: Cho hàm số f x liên tục đoạn 0;1 thỏa mãn điều kiện
2
4 ( ) (1x f x f x) 1x Tích phân
1
0
( )dx
I f x A
4
I B
6
I C
20
I D
16
I
Câu 44:Cho
1
0
1 ln ln
ln
2
a bc c
x x dx
x
, với a b c Tính T, , a b c
A T 13 B T 15 C T 17 D T 11
Câu 45: Cho
3 ln 1
I x x dx
x
abcln 24bln 5c, với a b c Tính T, , a b c
A T 13 B T 15 C T 10 D T 11 Vậy T a b c10
Câu 46: Cho
1 ln
I x x dx
x
abln 24bcln 3c, với a b c Tính , , T abc
A T 18 B T 16 C T 18 D T 16 Câu 47: Cho ( )f x hàm liên tục a Giả sử với 0 x0;a, ta có ( ) 0f x
f x f a x Tính
01 ( )
a dx
f x
(8)Trang A
3
a
B 2a C alna 1 D
2
a
Câu 48: Cho hàm số f x liên tục
3f x 2f x tan x Tính
4
4
d
f x x
A 1
B
2
C 1
4
D 2
2
Câu 49: Cho hàm số f x có đạo hàm liên tục 0;1 thỏa mãn
1
0
2 d
x f x x f
Giá trị
của
1
0
d
I f x x
A 1 B 2 C D
Câu 50: Cho hàm số f x có đạo hàm liên tục 0;1 thỏa mãn
1
0
4 d
x f x x f
Giá trị
của
1
0
d
I f x x
A 0 B C D 2
Câu 51: Cho hàm số y f x liên tục thỏa mãn
1
0
1 d 10
x f x x
2f 1 f 0 2
Tính
1
0
d
I f x x
A I 12 B I 8 C I 12 D I 8 Câu 52: Biết hàm số y f x liên tục thỏa mãn f 2 16;
2
0
d
f x x
Tính
1
0
2 d
I xf x x
A I 13 B I 12 C I 20 D I 7
Câu 53: Cho hàm số f x xác định, liên tục có đạo hàm ( ) thỏa mãn x21f x( )2xf x( )xex f(0) Giá trị (1)1 f bằng:
A e B.1 C.ln D.0
Câu 54: Cho hàm số f x liên tục đoạn 0;1 thỏa mãn điều kiện f x 2f1x3x26x, 0;1
x
Tính tích phân
1
2
1 d
(9)Trang
A
15
I B I 1 C
15
I D
15
I Câu 55: Cho hàm số y f x liên tục với x thỏa mãn 1 3,
1
x
f x x
x
Tính
1
2
d
e
I f x x
A I 4e B I e2 C I 4e D I e Câu 56: Cho hàm số y f x liên tục với x thỏa mãn 0 f x 2f ,x x
x
Tính
2 d f x I x x
A
2
I B
2
I C
2
I D
3
I
Câu 57: Cho
1
0
2 d 12
f x x
2
2
0
sin sin d
f x x x
Tính
3
0
d
f x x
A 26 B 22 C 27 D 15
Câu 58: Biết
5
1
2
dx ln ln , , ,
5
2 1
x
I a b c a b c Z
x x
Khi đó, giá trị Pa2ab2c
A 10 B 8 C 9 D 0
Câu 59: Biết
4
0
2 1d
ln ln , ,
2 3
x x
a b c a b c
x x
Tính T 2a b c A T 4 B T 2 C T 1 D T 3 Câu 60: Biết
d 1 x
a b c
x x x x
với a , b , c số nguyên dương Tính
P a b c
A P 44 B P 42 C P 46 D P 48
Câu 61: Cho hai hàm f x g x có đạo hàm đoạn 1; thỏa mãn hệ thức
1 1 4
' ; '
f g
g x x f x f x x g x
Tính
4
1
d
I f x g x x
(10)Trang 10 Câu 62: Biết
2
2
d 35
3
x
x a b c
x x
, với a b c Tính , , P a 2b c A
9
B 86
27 C D
67 27 Câu 63: Biết
2
1
1
d
1 x a b c
x xx x
, với a b c Tính , , * P a b c
A 24 B 12 C 18 D 46 Câu 64: Cho biết
2
2
1
ln 9x dxaln 5bln 2c
, với a b c Tính , , P a b c A S 34 B S 13 C S 18 D S 26 Câu 65: Cho hàm số f x liên tục f 2 16,
2
0
d
f x x
Tính
4
0
d
x I xf x
A I 12 B I 112 C I 28 D I 144
Câu 66: Cho
1
0
8
3
2
dx
a b a
x x
, a b Tính , * a2b
A a2b B a2b 8 C a2b 1 D.a2b Câu 67: Cho hàm số y f x 0 xác định, có đạo hàm đoạn 0;1 thỏa mãn:
2
0
1 2018 d ,
x
g x f t t g x f x Tính
1
0
d
g x x
A 1011
2 B
1009
2 C
2019
2 D 505
Câu 68: Cho hai hàm f x g x có đạo hàm đoạn 1; thỏa mãn hệ thức hệ thức sau với x 1;4
1 2
1
' ; '
( ) ( )
f g
f x g x
g x f x
x x x x
Tính
4
1
( ) ( )
I f x g x dx
A 4 ln B 4 C 2 ln D 2
Câu 69: F x nguyên hàm hàm số f x( ) 1 x 1 x tập thảo mãn F 1 3 Tính tổng T F 0 F 2 F 3
(11)Trang 11 Câu 70: Cho hàm số f x xác định \1;1 thỏa mãn 21
1
f x x
, f 3 f 3 0
1
2
2
f f
Tính giá trị biểu thức P f 2 f 0 f 4
A ln9
P B ln6
5
P C 1ln9
2
P D 1ln6
2
P
Câu 71: Cho hàm số y f x liên tục 0;
0
d sin
x
f t tx x
Tính f 4
A
4
f B
2
f C
4
f D
2
f
Câu 72: Tính tích phân
2 2
2
0
sin cos c
d
os sin
x x
a x b x
I x
với a b 2
a b
A I a b
B
2
I
a b
C
2
I
a b
D
ab a b
Câu 73: Tính tích phân
2
0
sin sin d
I x nx x
với n
A I 0 B I 2 C I 1 D 1 2 Câu 74: Tính tích phân cosmxcos nx dx
với m , n m2 n2
A I 0 B I 2 C I 1 D 1 2 Câu 75: Cho hàm số f x liên tục thỏa mãn f x x 1, x
x
f 1 1 Tìm giá trị nhỏ f 2
A 3 B 2 C 5 ln
2 D 4
Câu 76: Cho hàm số f x thỏa mãn điều kiện 2
2
f x x f x 0
f Biết tổng
1 2 3 2017 2018 a
f f f f f
b
với a,b* a
b phân số tối giản Mệnh đề sau đúng?
A a
b B
a
(12)Trang 12 Câu 77: Cho hàm số y f x dương có đạo hàm liên tục đoạn 0; 3
biết
1
f x f x x f 3 e3 Tính
0 ln d
I f x x
A 2 B 3
3
C 3
D 3 3 2
Câu 78: Cho hàm số y f x có đạo hàm liên tục thỏa mãn ' x2
f x xf x x e
0
f Tính f 1
A e B.1
e C.
2
e D.
2
e
Câu 79: Cho hàm số y f x thỏa mãn
f x f x x x Biết f 0 2 Tính 2
2
f
A 2 313
2
15
f B 2 332
2
15
f C 2 324
2
15
f D 2 323
2
15
f
Câu 80: Cho hàm số y f x thỏa mãn f x f x x e x Biết f 1 e Tính 2
2
f A 2
2 16
f B 2
2
f e C 2
2
f e D 2
2
f
Câu 81: Cho hàm số y f x thỏa mãn f x f x x.sinx Biết 0
f Tính
f
A 4 2.
2 f e
B
2 2 f e
C
2 2 f e
D
2 2 f e
Câu 82: Cho hàm số f x liên tục có
1
0
d
f x x
;
3
0
d
f x x
Tính
1
1
2 d
f x x
A
3
I B I 4 C
2
I D I 6
Câu 83: Cho hàm số f x liên tục có đạo hàm , có ( ) f x( )0, ,x f 0 1 Biết
( ) 2 ( ) f x x f x
Tìm tất giá trị m để phương trình f x( )mcó nghiệm thực phân biệt
A 1 m e B 0m e C m e D 1 m e
Câu 84: Cho hàm số f x a2 b
x x
, với a , b hai số hữu tỉ thỏa điều kiện
1
1
d 3ln
f x x
Tính T a b
(13)Trang 13 Câu 85: Cho hàm số chẵn y f x liên tục
1 d x f x
x Tính
2
0
d f x x
A 2 B 4 C 8 D 16
Câu 86: Cho hàm số f x có đạo hàm liên tục đoạn 0;1, f x f x nhận giá trị dương đoạn 0;1 thỏa mãn f 0 2,
1
2
0
d d
f x f x x f x f x x
Tính
1
3
0
d
f x x
A 15
4 B
15
2 C
17
2 D
19
Câu 87: giá trị tích phân
100
0
1 100
x x x x dx
A.0 B C 100 D Kết khác
Câu 88: Tính tích phân
2 2
2 sin cos c d os sin x x
a x b x
I x
với a b a2 b2 A I
a b
B
2
I
a b
C
2
I
a b
D
ab a b
Câu 89: Tính tích phân
2
0
sin sin d
I x nx x
với n
A I 0 B I 2 C I 1 D 1 2 Câu 90: Tính tích phân cosmxcos nx dx
với m , n m2 n2
A I 0 B I 2 C I 1 D 1 2 Câu 91: Biết
3 cos a b dx x c
, , ,a b c số tự nhiên đơi ngun tố Khi
giá trị 2
2
T a b c bao nhiêu?
A T 15 B T 14 C T 13 D T 17
Câu 92: Biết
2 6 sin cos
x a b c
dx x d
, ,a b ,c d cặp số tự nhiên nguyên tố Khi
(14)Trang 14 A T 6 B T 246 C T 13 D T 17
Câu 93: Biết
4
1 ln
sin
a b dx
x c
, , ,a b c số tự nhiên đôi nguyên tố Khi
giá trị T 4a33b22c bao nhiêu?
A T 5 B T 29 C T 7 D T 17
Câu 94: Nếu ( )2
x
a
f t dt
x
t
với x hệ số a 0
A 9 B 19 C 5 D 6
Câu 95: Cho hàm số có đạo hàm liên tục thỏa mãn ,
Tích phân bằng?
A B C D
Câu 96: Cho hàm số f x liên tục có f 0 0; f x 10với x Tìm GTLN mà
3
f
đạt được?
A 30 B 10 C 60 D 20
Câu 97: Cho biểu thức
2
2
2 cot
4
ln sin x
m
S x e dx
, với số thực m 0 Khẳng định
A S 5 B cot 2 ln sin 2
4
S
m m
C S 9 D tan 2 ln 2
4
S
m m
Câu 98: Cho hàm số y f x , liên tục 0;1 thỏa mãn
1
0
1 ' 10
x f x dx
2f f 2 Tính
1
0
I f x dx
f x 0;1 f 1 0
1
2
0
1 dx
11
f x
1
1 dx
55
x f x
1
0
x
f x d
1
7
1 55
(15)Trang 15 A I 12 B I 8 C I 12 D I 8
Câu 99: Cho hàm số f x liên tục f 2 16,
0 f x dx 4
Tính
0 2 d
x I xf x
A.I 12 B I 112 C I 28 D I 144
Câu 100: Biết F x là nguyên hàm f x , F x và f x là hàm liên tục , thỏa mãn
2
1F x dx 1;F 3
Tính
0
I xf x dx
A.I 8 B I 9 C I 10 D I 11 Câu 101: Cho hàm số f x liên tục f 1 2f 0 2,
0 f x dx 5
Tính
3
0 3 d
x I x f x
A.I 61 B I 63 C I 65 D I 67
Câu 102: Cho hàm số y f x liên tục thỏa mãn f x2018f x xsin x Tính
2
2
?
I f x dx
A
1009 B
2
2019 C
1
2019 D
1 2018
Câu 103: Cho hàm số f x xác định \ 1 thỏa mãn '
f x x
;
0
f
1 2
f f
Giá trị f 3
A 1 ln 2 B 1 ln 2 C 1 D 2 ln 2
Câu 104: Biết
2
3
1 tan
d ln cos
x x a
x
x x x b
, a b , Tính P a b
A P 2 B P 4 C P 4 D P 2
Câu 105: Cho hàm số f x có đạo hàm xác định, liên tục đoạn 0;1 đồng thời thỏa mãn điều kiện '
0
f f' x 2 f x Đặt T f 1 f 0 , chọn khẳng định đúng? A 2 T 1 B 1 T C 0T 1 D 1T 2 Câu 106: Biết
3
2
1
1
x x a b
dx c
x x
(16)Trang 16 Câu 107: Cho hàm số f(x) liên tục [0;3]
1
0
( )
f x dx
;
3
0
( )
f x dx
Giá trị tích phân
1
1
| 1|
f x dx
là:
A B C D
Câu 108: Gọi S t diện tích hình phẳng giới hạn đường
2
1
, 0, 0,
1
y y x x t t
x x
Tìm limtS t
A ln 2
B ln
2
C 1 ln
2 D
1 ln
2
Câu 109: Cho hàm số
1
1
d
f x x
, hàm số y f x hàm số chẵn 1;1 Tính
1
d 2x
f x x
A 2 B 16 C 8 D 4
Câu 110: Cho hàm số ( )f x thỏa mãn 8
3 x3 f x dx25
33f 8 18f 3 83 Giá trị
3 f x dx
là:
A I 83 B I 38 C
3
I D 3
8
Câu 111: Giá trị
3
3
3
9
cos
2
1
sin x d
I x x e x gần số số sau đây:
A.0, 046 B.0, 036 C.0, 037 D.0, 038
Câu 112: Biết
2
2
1 ln 2 1
d ln ln
2
c c
x x x
I x a b
x x
, với a b c số nguyên dương Tính , ,
2
a b c
A B 22 C 14 D 20
Câu 113:Cho hàm số liên tục có đạo hàm thỏa mãn f(2) ,
2
0
( )d
f x x
Tính
tích phân
4
0
d
I f x x
A I 10 B I 5 C I 0 D I 18
( )
(17)Trang 17 Câu 114:Cho a số thực dương Biết F(x) nguyên hàm hàm số
x ax e x
f x ln
thỏa mãn 10 a
F F2018e2018 Mệnh đề sau đúng?
A
;1
2018
a B
2018 ;
a C a1;2018 D a2018;
Câu 115: Biết F x nguyên hàm hàm số
2 2018 2017 x f x x
thỏa mãn F 1 0 Tìm giá trị nhỏ m F x
A
2
m B
2017
2018
2
m C
2017
2018
2
2
m D
2
m
Câu 116: Biết
1
0
1
cos sin cos
4
x xdx a b c
, với a b c Khẳng định sau ? , ,
A a b c 1 B a b c 0 C 2a b c D a2b c 1 Câu 117: Giả sử tích phân
5
1
1
.ln ln
1
I dx a b c
x
Lúc đó:
A
3
a b c B
3
a b c C
3
a b c D
3
a b c
Câu 118: Cho hàm số
3
( )
1
x a
f x bxe
x
Tìm a b biết f '(0) 22
và
1
0
( )
f x dx
A a 2,b B a2,b C a8,b D a 8,b 2 Câu 119: Cho hàm số y f x liên tục thỏa mãn f x2018f x xsin x Tính
2
2
?
I f x dx
A
1009 B
2
2019 C
1
2019 D
1 2018
Câu 120: Biết khoảng 1;
hàm số
2
25
( ) x x f x x
có nguyên hàm
2
( ) (a )
F x x bxc x ( a b c số nguyên) Tổng , , S a b c
(18)Trang 18 Câu 121: Biết khoảng 1; hàm số
2
15
( )
2
x x
f x
x
có nguyên hàm
2
( ) (a )
F x x bxc x (trong a b c số nguyên) Tổng , , S a b c
A 3 B 3 C D 4
Câu 122: Xét hàm số f x liên tục đoạn ( ) 0;1 thỏa mãn ( )f x 3 (1f x) 1x Tích phân
1
0
( )d
f x x
A 2
3 B
1
6 C
2
15 D
3
Câu 123: Cho F x nguyên hàm hàm số f x ex2x34x Số cực trị hàm F x
A B 3 C 1 D 4
Câu 124: Cho hàm số y f x hàm lẻ liên tục 4; , biết
0
2
d
f x x
2
1
2 d
f x x
Tính
4
0
d
I f x x
A I 10 B I 6 C I 6 D I 10
Câu 125: Cho
2
0
d ln
x x
x x e
x ae b e c x e
với a , b, c Tính P a 2b c
A P 1 B P 1 C P 2 D P 0 Câu 126: Cho tích phân
1
1 ln
d ln
1 ln
e x x
e x ae b
x x e
a , b số nguyên Khi tỉ số a
b bằng: A 1
2 B 1 C 3 D 2
Câu 127: Cho tích phân
2
0
sin
d ln
2 sin cos
x
I x a b
x x
, với a , bQ Khi a b bằng:
A 1 B 2 C 1
2 D 0
Câu 128: Cho hàm số y f x có đạo hàm f 5 10,
5
0
d 30
x f x x
Tính
5
0
d
f x x
(19)Trang 19
A.20 B.70 C.20 D.30
Câu 129: Cho hàm số y f x có đạo hàm f 2 15,
2
0
d 60
x f x x
Tính
5
0
d
f x x
A.30 B.70 C.30 D.50
Câu 130: Cho hàm số y f x có đạo hàm f 4 13,
4
0
d 24
x f x x
Tính
4
0
d
f x x
A.11 B.28 C.76 D.28
Câu 131: Cho hàm số f x x44x32x2 x 1, x Tính
1
0
f x f x dx
A 2
3 B 2 C
2
D
Câu 132: Cho hàm số f x x33x23x2, x Tính
1
0
f x f x dx
A 3
4 B
15
4 C
1
4 D
15
Câu 133: Cho hàm số f x x65x43x21, x Tính
1 2017
0
f x f x dx
A
2018 B
1
1009 C
1 2018
D
1009
Câu 134: Cho F x nguyên hàm hàm số
1 sin
y
x
với x \ k ,k
, biết
0
F ; F 0 Tính 11
12 12
PF F
A P 2 B P 0 C Không tồn P D P 1
Câu 135: Cho F x nguyên hàm hàm số y2x4 xác định \ 2 thỏa mãn f 1 1 f 3 2 Giá trị biểu thức F 1 F 4
A 6 B 7 C 14 D 0
Câu 136: Cho hàm số f x xác định \1;1 thỏa mãn 22
1
f x x
, f 3 f 3 0
và 1
2
f f
(20)Trang 20 A 2ln 22ln 3ln 5 B 6ln 22ln 3ln 5
C ln 52ln 32ln 21 D 2ln 3ln 56
Câu 137: Một vật chuyển động với vận tốc 10m/s tăng tốc với gia tốc tính theo thời gian
3
a t t t Tính quãng đường vật khoảng thời gian giây kể từ vật bắt đầu tăng tốc
A 45m
2 B
201 m
4 C
81 m
4 D
65 m
Câu 138: Một ô tô chạy với tốc độ 10 ( / )m s người lái đạp phanh, từ thời điểm tơ chuyển
động chậm dần với ( )v t 5 10 (m/s)t , t khoảng thời gian tính giây, kể từ lúc bắt đầu đạp phanh Hỏi từ lúc đạp phanh đến dừng hẳn, tơ cịn di chuyển mét
A 8 m B 10 m C 5 m D 20 m
Câu 139: Một vật chuyển động với vận tốc 10m/s tăng tốc với gia tốc tính theo thời gian
3
a t t t Tính quãng đường vật khoảng thời gian giây kể từ vật bắt đầu tăng tốc
A 45m
2 B
201 m
4 C
81 m
4 D
65 m Câu 140: Biết khoảng 3;
2
hàm số
2
20 30
( )
2
x x
f x
x
có nguyên hàm
2
( ) (a )
F x x bxc x (trong a b c số nguyên) Tổng , , S a b c
A 4 B 3 C 5 D 6
Câu 141: Cho đa thức bậc bốn y = f (x) đạt cực trị x = x = Biết Tích phân
A B C D
II DIỆN TÍCH THỂ TÍCH
Câu 142: Cho hình (H hình phẳng giới hạn đường ) y x1,y trục Ox Diện tích x
của hình H (H)
A 4
3 B
7
6 C
3
2 D
5 Câu 143: Cho hình chữ nhật ABCD có AB 4, AD (như hình vẽ) 8
0
2 '( )
lim
2 x
x f x x
1
0
'( )
f x dx
3
1
(21)Trang 21 Gọi M N E F trung điểm BC , AD , BN NC Tính thể tích V vật thể , , , trịn xoay quay hình tứ giác BEFC quanh trục AB
A.100 B.96 C.84 D.90
Câu 144: Cho hình thang vng ABCD có Aˆ Dˆ 90, CD2AB, C ˆ 45 Gọi M trung điểm
CD , gọi ,H K trung điểm cạnh AM BM Biết , CD , tính thể tích V vật 8 thể tròn xoay quay tứ giác HKCD quanh trục AD
A.96 B.84 C.72 D.60
Câu 145: Có vật thể hình trịn xoay có dạng giống ly hình vẽ
Người ta đo đường kính miệng ly 4cm chiều cao 6cm Biết thiết diện ly cắt mặt phẳng đối xứng parabol Tính thể tích 3
V cm vật thể cho
A 72
5
V B 72
5
V C V 12 D V 12
Câu 146: Một đồng hồ cát hình vẽ, gồm hai phần đối xứng qua mặt nằm ngang đặt hình trụ Thiết diện thẳng đứng qua trục hai parabol chung đỉnh đối xứng qua mặt nằm ngang Ban đầu lượng cát dồn hết phần đồng hồ chiều cao h mực cát
4 chiều cao bên (xem hình)
F E
C
D M
B
A N
6 cm
A B
O
4 cm
(22)Trang 22 Cát chảy từ xuống với lưu lượng không đổi 2,90cm / phút Khi chiều cao cát cm bề mặt cát tạo thành đường trịn chu vi 8 cm (xem hình) Biết sau 30 phút cát chảy hết xuống phần bên đồng hồ Hỏi chiều cao khối trụ bên cm ?
A cm B 12 cm C 10 cm D cm
Câu 147: Một thùng rượu có bán kính đáy 30cm, thiết diện vng góc với trục cách hai đáy có bán kính 40cm, chiều cao thùng rượu 1m (hình vẽ)
Biết mặt phẳng chứa trục cắt mặt xung quanh thùng rượu đường parabol, hỏi thể tích thùng rượu bao nhiêu?
A 425162 lít B 21258 lít C 212, lít D 425, lít
(23)Trang 23 A 6.520.000 đồng B 6.320.000 đồng C 6.417.000 đồng D 6.620.000 đồng Câu 149: Tính thể tích V vật thể nằm hai mặt phẳng x x0 , biết thiết diện vật
thể bị cắt mặt phẳng vng góc với trục Ox điểm có hồnh độ x0x tam giác có cạnh sin x
A V 3 B V 3 C V 2 D V 2
Câu 150: Một mảnh vườn hình elip có trục lớn bằng100m , trục nhỏ 80m Người ta thiết kế mảnh nhỏ hình thoi có bốn đỉnh bốn đỉnh eip để trồng hoa, phần lại trồng rau Biết lợi nhuận thu 5000 đồng m trồng rau 10.000 đồng 2 m trồng hoa 2
Hỏi thu nhập từ mảnh vườn bao nhiêu? (Kết làm trịn đến hàng nghìn) A.25.708.000 B 51.416.000 C.31.415.000 D.17.635.000
Câu 151: Ở quảng trường thành phố A có miếng đất hình trịn đường kính 30 m Trong lịng hình
trịn người ta dự định trồng hoa hồng miếng hình elip có trục lớn đường kính trục bé phần ba đường kính đường trịn ( tâm đường tròn elip trùng nhau), phần lại làm hồ Biết chi phí để trồng 1m hoa hồng 2 500.000 đồng, chi phí làm 1m hồ 2 2.000.000 đồng Hỏi thành phố phải bỏ chi phí bao nhiêu? (Kết làm trịn đến hàng nghìn)
A 706.858.000 B 514.160.000 C 1.413.717.000 D 680.340.000 Câu 152: Cho H hình phẳng giới hạn parabol
3
y x nửa đường trịn có phương trình
2
4
y x với 2 x2 (phần tô đậm hình vẽ) Diện tích H
A 2
3
B 4
3
C 4
3
D 2
3
(24)Trang 24 Câu 153: Cho số thỏa mãn điều kiện: số dương Xét hàm số có đồ thị Gọi diện tích hình phẳng giới hạn , trục hồnh, đường thẳng ; diện tích hình phẳng giới hạn , trục tung, đường thẳng diện tích hình phẳng giới hạn trục tung, trục hồnh hai đường thẳng Khi so sánh , ta nhận bất đẳng thức bất đẳng thức đây?
A B C D
Câu 154: Cho hình thang cong giới hạn đường , , , Đường thẳng chia thành hai phần có diện tích hình vẽ bên Tìm để lớn
A B C D
Câu 155: Cho hình phẳng giới hạn đường Đường thẳng chia hình thành hai phần có diện tích (hình vẽ) Tìm để
,
p q p1,q1, 1
pq a b,
1
( 0)
p
yx x C S1 C
xa S2 C
;
yb S ,
xa yb S1S2 S
p q
a b
ab p q
1
1
p q
a b
ab
p q
1
1
p q
a b
ab
p q
p q
a b
ab p q
H yex y 0 x 0 x ln
0 ln 4
xk k H S1 S2 k
1
S S
25 ln
4
k ln9
4
k ln8
3
k ln5
2
k
H yx2, y 0, x 0, x 4
16
(25)Trang 25
A. B C D
Câu 156: Cho parabol , có đỉnh giao điểm khác trục hoành điểm di động ( không trùng với ) Tiếp tuyến cắt diện tích hình phẳng giới hạn , đường thẳng trục , diện tích hình phẳng giới hạn , đường thẳng trục Khi tổng nhỏ nhất, giá trị bằng:
A B C D
Câu 157: Gọi V thể tích khối trịn xoay tạo thành quay hình phẳng giới hạn đường y x,
y x quanh trục Ox Đường thẳng 4 xa0a4 cắt đồ thị hàm y x M Gọi V thể tích khối trịn xoay tạo thành quay tam giác OMH quanh trục Ox Biết 1
1
2
V V Tìm giá trị a
A a 2 B a 2 C
2
a D a 3 Câu 158: Diện tích hình phẳng giới hạn đồ thị yx2vày x2
A 13
12 B
21
2 C
9
2 D
1
Câu 159: Tính diện tích hình phẳng giới hạn đường ;
x x1; y 0 đồ thị hàm số
log2 x y
A 1
2 ln
B
2 ln C
1
2 ln
D 1
22 ln
3
k k 4 k 5 k 8
P : y x2 2x S A O P
0
( ; )
M x y SA M x y( ;0 0) S d P
M Ox ,Oy E F S1 P
d 0 y S2 P d 0x
1
S S Px0y0
23
44
20
(26)Trang 26 Câu 160: Cho hàm số yax4 bx2 có đồ thị c C , biết C qua điểm A 1; 0 Tiếp tuyến d
tại A C cắt C điểm có hồnh độ 2, diện tích hình phẳng giới hạn d , đồ thị C hai đường thẳng x0;x có diện tích 28
5 (phần gạch chéo
hình vẽ)
Diện tích hình phẳng giới hạn đường thẳng d , đồ thị C hai đường thẳng x 1;x
A 1
5 B
1
9 C
2
5 D
2
Câu 161: Cho parabol P :yx2 hai điểm ,A B thuộc P cho AB Diện tích hình phẳng giới 2 hạn P đường thẳng AB đạt giá trị lớn bằng:
A 2
3 B
3
4 C
4
3 D
3
Câu 162: Thể tích vật thể trịn xoay sinh hình phẳng giới hạn đường x y,
2,
y x x quay quanh Ox có giá trị kết sau
A
V B
2
V C 32
15
V D 11
V
Câu 163: Một mảnh vườn hình elip có trục lớn 100 m , trục nhỏ 80 m chia thành phần đoạn thẳng nối hai đỉnh liên tiếp elip Phần nhỏ trồng phần lớn trồng rau Biết lợi nhuận thu 2000 m2 trồng 4000 m2 trồng rau
Hỏi thu nhập từ mảnh vườn bao nhiêu? (Kết làm tròn đến hàng nghìn ) A 31904000 B 23991000 C 10566000 D 17635000
Câu 164: Một đào hình cầu có đường kính 6cm Hạt khối trịn xoay sinh hình Elip quay quanh đường thẳng nối hai tiêu điểm F , 1 F Biết tâm Elip trùng với tâm khối 2
cầu độ dài trục lớn, trục nhỏ cm , cm Thể tích phần cùi (phần ăn được) đào a cm3
b với a b số thực , a
(27)Trang 27
A 97 B 36 C 5 D 103
Câu 165: Trong mặt phẳng cho đường Elip có độ dài trục lớn AA , độ dài trục nhỏ ' BB ; ' đường tròn tâm O đường kính BB hình vẽ Tính thể tích vật thể trịn xoay '
có cách cho miền hình phẳng giới hạn đường Elip đường trịn (phần hình phẳng
được tơ đậm hình vẽ) quay xung quanh trục AA '
A 36 B 12 C 16 D 64
3
Câu 166: Từ tôn hình chữ nhật ABCD với 30 , 55
AB cm AD cm Người ta cắt miếng tơn theo đường hình vẽ bên để hai miếng tôn nhỏ Biết AM 20cm,
15
CN cm,BE 5cm.Tính thể tích lọ hoa tạo thành cách quay miếng tôn lớn quanh trục AD (kết làm tròn đến hàng trăm)
A 81788 cm 3 B 87388 cm 3 C 83788 cm 3 D 7883cm 3
Câu 167: Một vật chuyển động bốn với vận tốc (km/h)v phụ thuộc vào thời gian ( )t h có đồ thị
vận tốc hình vẽ bên Trong khoảng thời gian kể từ bắt đầu chuyển động, đồ thị phần đường parabol có đỉnh (2;9)I trục đối xứng song song với trục tung, khoảng thời gian lại
(28)Trang 28 vật chuyển động chậm dần Tính quãng đường S mà vật di chuyển ( kết làm tròn đến hàng phần trăm)
A.S23, 71km B S23,58km C S23,56km D.S23, 72km
Câu 168: Biết diện tích hình phẳng giới hạn đường ysinx, ycosx, x 0, x với a ;
4
a
1
3
2 hỏi số a thuộc khoảng sau đây?
A ;1 10
B
51 11 ; 50 10
C
11 ; 10
D
51 1;
50
Câu 169: Cho mảnh vườn hình chử nhật ABCD có chiều rộng 2m, chiều dài gấp ba chiều rộng
Người ta chia mảnh vườn cách dùng hai đường parabol, đường parabol có đỉnh trung điểm cạnh dài qua hai mút canh dài đối diện Tính tỉ số diện tích phần mảnh vườn nằm miền hai parabol với diện tích phần cịn lại
A 1
3 B
3
3 C
1
2 D
2
Câu 170: Cho hình phẳng H giới hạn đường yx y2, 0,x0,x Đường thẳng
0 16
yk k chia hình H thành hai phần có diện tích S S hình vẽ Tìm 1, k để
1
S S
(29)Trang 29 Câu 171: Gọi (H) hình phẳng giới hạn đồ thị (P) hàm số y6xx2 trục hoành Hai đường thẳng ym y, chia hình (H) thành ba phần có diện tích Tính n
3
(9 ) (9 )
Q m n
A Q 405 B Q 409 C Q 407 D Q 403 Câu 172: Cho hình cong (H) giới hạn đường yx x2 ;
0
y ; x 0 x Đường thẳng x với k
1k 3 chia hình (H) thành phần có diện tích S 1
và S Để 2 S1 6S2 k gần
A 1,37
B 1,63
C 0,97
D 1,24
Câu 173: Cho khối trụ có chiều cao 20 Cắt khối trụ mặt phẳng ta thiết diện hình elip có độ dài trục lớn 10 Thiết diện chia khối trụ ban đầu thành hai nửa, nửa tích V , 1
nửa tích V Khoảng cách từ điểm thuộc thiết diện gần điểm 2
thuộc thiết diện xa đáy tới đáy 14 Tính tỉ số
V V A 11
20 B
9
11 C
9
20 D
6 11
Câu 174: Gọi D hình phẳng giới hạn đồ thị hàm số y x, cung trịn có phương trình
2
6
(30)Trang 30 6
- 6 O
y
x A V 8 62
B
C 22
V
D 22
V
Câu 175: Cho đường trịn có đường kính 4 đường Elip nhận đường kính vng góc đường trịn làm trục lớn, trục bé Elip Diện tích S phần hình
phẳng bên đường trịn bên ngồi Elip (phần gạch carơ hình vẽ) gần với kết kết đây?
A S 4,8 B S 3,9 C S 3, 7 D S 3,
Câu 176: Trên cánh đồng cỏ có hai bị cột vào hai cọc khác Biết khoảng cách hai cọc mét hai sợi dây cột hai bò dài mét mét Tính phần diện tích mặt cỏ lớn mà hai bị ăn chung (lấy giá trị gần nhất)
A 1, 034m2 B 1, 574m2 C.1, 989m2 D 2, 824m2
Câu 177: Ơng An có mảnh vườn hình elip có độ dài trục lớn 16m độ dài trục bé bằng10m Ông muốn trồng hoa dải đất rộng 8m nhận trục bé elip làm trục đối xứng (như
22
8
3
(31)Trang 31
8m
hình vẽ) Biết kinh phí để trồng hoa 100.000 đồng/1m Hỏi ông An cần tiền để 2 trồng hoa dải đất đó? (Số tiền làm trịn đến hàng nghìn)
A 7.862.000 đồng B 7.653.000 đồng C 7.128.000 đồng D 7.826.000 đồng
Câu 178: Diện tích hình phẳng giới hạn đồ thị hàm số 2
1
yx x , trục Ox đường thẳng x 1
bằng
ln
a b b
c
với a b c số nguyên dương Tính , , a b c
A 11 B 12 C 13 D 14
Câu 179: Một cổng chào có dạng hình parabol chiều cao 18 m, chiều rộng chân đế 12 m Người ta căng hai sợi dây trang trí AB,CD nằm ngang đồng thời chia hình giới hạn parabol mặt đất
thành ba phần có diện tích (xem hình vẽ bên) Tỉ số AB CD A
2 B
4
5 C
1
2 D
3 2
Câu 180: Cho hàm số y f x ax3bx2cxd a b c, , , ,a0có đồ thị C Biết đồ thị C tiếp xúc với đường thẳng y 4 điểm có hồnh độ âm đồ thị hàm số y f x cho hình vẽ đây:
Tính diện tích S hình phẳng giới hạn đồ thị C trục hoành
12m
D C
B
A 18m
O x
y
1
3
O x
y
1
(32)(33)(34)Trang 34 A 9
4 B
9
2 C
3
2 D
4
Câu 190: Cho hàm số y f x( )có đạo hàm f x( ) liên tục Rvà đồ thị hàm số y f x( ) cắt trục hoành điểm có hồnh độ , , ,a b c d (hình bên) Chọn khẳng định khẳng định
sau
A f c( ) f a( ) f b( ) f d( ) B f a( ) f c( ) f d( ) f b( ) C f a( ) f b( ) f c( ) f d( ) D f c( ) f a( ) f d( ) f b( )
Câu 191: Cho hàm số y f x( )có đạo hàm f x( ) liên tục Rvà đồ thị hàm số y f x( ) cắt trục hồnh điểm có hồnh độ , ,a b c (hình bên) Chọn khẳng định khẳng định sau
(35)Trang 35 C. f(a) f(b) f(c) D. f(b) f(a) f(c)
Câu 192: Cho hàm số y f x có đạo hàm liên tục đoạn 3; 3 đồ thị hàm số y f x hình vẽ bên Biết f 1
2
1
x
g x f x Kết luận sau đúng?
A Phương trình g x có hai nghiệm thuộc 3;3 B Phương trình g x có nghiệm thuộc 3;3 C Phương trình g x khơng có nghiệm thuộc 3;3 D Phương trình g x có ba nghiệm thuộc 3;3
Câu 193: Tính diện tích hình phẳng giới hạn nửa đường tròn y 2x2 đường thẳng d qua
hai điểm A 2; 0 B 1;1 (phần tơ đậm hình vẽ )
A 2
B 3 2
4
C 2
4
D 3 2
4
Câu 194: Cho H hình phẳng giới hạn parabol
2
y x nửa đường elip có phương trình
2
1
y x ( với 2 x2) trục hồnh (phần tơ đậm hình vẽ) Gọi S diện tích
của, biết S a b c
(36)Trang 36 A P 9 B. P 12 C. P 15 D. P 17
Câu 195: Cho hàm số y f x xác định liên tục đoạn 3;3 Biết diện tích hình phẳng
1,
S S giới hạn đồ thị hàm số y f x đường thẳng y x M m ;
Tính tích phân
3
3
d
f x x
:
A 6 m M B 6 m M C M m D m M
Câu 196: Cho hàm số y f x( ) xác định liên tục đoạn 5;3 Biết diện tích hình phẳng
1, 2,
S S S giới hạn đồ thị hàm số y f x( ) đường thẳng 2
y g x ax bx c m n p, , Tích phân
3
5
( )
f x dx
A 208
45
m n p B 208
45
m n p C 208
45
m n p
D 208
45
m n p
Câu 197: Trong mặt phẳng Oxy , cho hình chữ nhật H có cạnh nằm trục hồnh có hai đỉnh đường chéo A 1;0 C m ; m với m Biết đồ thị hàm số y0 xchia hình H thành hai phần có diện tích Tìm m
A.m 9 B.m 4 C
2
m D.m 3
O y
x
2
(37)Trang 37 Câu 198: Trong mặt phẳng Oxy , cho hình thang vng ABCD có A 1;0
;0 ; ; ; 1;5
B m C m m D với m Biết đồ thị hàm số 1 y x chia hình H thành hai phần có diện tích Tìm m
A m 12 B.m 6 C m 8 D.m 10
Câu 199: Trong mặt phẳng Oxy , A0; 2 B m ; 0 với m Biết đồ thị hàm số 2
1
x y
x
(C)
chia tam giác OAB thành hai phần Tính diện tích phần giới hạn 2;
x
y y
x
đường thẳng AB theo m
A
2
3
ln
8
m m
B.
2
4 ln
8
m m
C.
2
4 ln
8
m m
D.
2
4 ln
8
m m
Câu 200: Gọi H tập hợp điểm biểu diễn số phức z mặt phẳng tọa độ Oxy thỏa mãn 2zz số phức z có phần ảo khơng âm Tính diện tích hình H
A 3 B 3
4
C 3
2
D 6
Câu 201: Cho hình giới hạn đường Khi diện tích hình là:
A B C D
D y x 22 y x D
13
7
7
13