Tài liệu tham khảo |
Loại |
Chi tiết |
3. Nguyễn Thái Sơn (2016), Thủy vân thuận nghịch trên ảnh số và một số ứng dụng trong y tế.Tiếng Anh |
Sách, tạp chí |
Tiêu đề: |
Thủy vân thuận nghịch trên ảnh số và một sốứng dụng trong y tế |
Tác giả: |
Nguyễn Thái Sơn |
Năm: |
2016 |
|
18. Vojtěch Holub, Jessica Fridrich, and Tomáš Denemark (2014), Universal distortion function for steganography in an arbitrary domain. Eurasip J. Inf.Secur |
Sách, tạp chí |
Tiêu đề: |
Universaldistortion function for steganography in an arbitrary domain. Eurasip J. Inf |
Tác giả: |
Vojtěch Holub, Jessica Fridrich, and Tomáš Denemark |
Năm: |
2014 |
|
24. Yann Lecun, Leon Bottou, Yoshua Bengio, and Patrick Ha (1998), LeNet.In Proceedings of the IEEE |
Sách, tạp chí |
Tiêu đề: |
LeNet |
Tác giả: |
Yann Lecun, Leon Bottou, Yoshua Bengio, and Patrick Ha |
Năm: |
1998 |
|
30. Ernst Dietrich Munz (2017), Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift Sergey.Nervenheilkunde |
Sách, tạp chí |
Tiêu đề: |
Batch Normalization: Accelerating DeepNetwork Training by Reducing Internal Covariate Shift Sergey |
Tác giả: |
Ernst Dietrich Munz |
Năm: |
2017 |
|
41. Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz (2016), Loss Functions for Image Restoration With Neural Networks. IEEE Trans.Comput. Imaging |
Sách, tạp chí |
Tiêu đề: |
LossFunctions for Image Restoration With Neural Networks. IEEE Trans |
Tác giả: |
Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz |
Năm: |
2016 |
|
1. Trần Đại Dương (2012), Kỹ thuật giấu tin thuận nghịch trong ảnh bằng hiệu chỉnh hệ số wavelet |
Khác |
|
4. Abien Fred Agarap (2018), Deep Learning using Rectified Linear Units (ReLU) |
Khác |
|
5. Shumeet Baluja (2017), Hiding Images in Plain Sight: Deep Steganography. In Advances in Neural Information Processing Systems 30 |
Khác |
|
6. Mauro Barni and Stefan Katzenbeisser (2010), Digital watermarking. In Handbook of Financial Cryptography and Security |
Khác |
|
7. Anthony L. Caterini and Dong Eui Chang (2018), Recurrent neural networks. In SpringerBriefs in Computer Science |
Khác |
|
8. Franỗois Chollet (2016), Xceptinon: Deep Learning with Separable Convolutions. arXiv Prepr. arXiv1610.02357 (2016) |
Khác |
|
9. Laurent Dinh, David Krueger, and Yoshua Bengio (2015), NICE : N ON - LINEAR I NDEPENDENT C OMPONENTS |
Khác |
|
10. M. Divya Bharathi and T. Dhikhi (2016), A survey on image steganography techniques. Int. J. Pharm. Technol |
Khác |
|
11. Xuedan Du, Yinghao Cai, Shuo Wang, and Leijie Zhang (2017), Overview of deep learning. Proc. - 2016 31st Youth Acad. Annu. Conf. Chinese Assoc |
Khác |
|
12. Ian J. Goodfellow (2014), Generative Adversarial Nets Ian. Corrosion |
Khác |
|
13. Dongbing Gu (2011), A game theory approach to target tracking in sensor networks. IEEE Trans. Syst. Man, Cybern. Part B Cybern |
Khác |
|
14. Gokhan Gul and Fatih Kurugollu (2011), A new methodology in steganalysis: Breaking highly undetectable steganograpy (HUGO). In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
Khác |
|
15. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2016), Deep residual learning for image recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
Khác |
|
16. G. E. Hinton and R. R. Salakhutdinov (2006), Reducing the dimensionality of data with neural networks. Science (80-. ) |
Khác |
|
17. Vojtěch Holub and Jessica Fridrich (2012), Designing steganographic distortion using directional filters. In WIFS 2012 - Proceedings of the 2012 IEEE International Workshop on Information Forensics and Security |
Khác |
|