1. Trang chủ
  2. » Giáo án - Bài giảng

Các chủ đề ôn thi ĐH mới và hay./.

11 453 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 635,5 KB

Nội dung

THPT Ngọc Hồi- Kon tum----------CV: Đặng Ngọc Liên- sđt: 0977467739 BÀI 4. CỰC TRỊ HÀM ĐA THỨC A. CỰC TRỊ HÀM ĐA THỨC BẬC 3 I. TÓM TẮT LÝ THUYẾT 1. Hàm số: y = f (x) ( ) 3 2 0ax bx cx d a= + + + ≠ 2. Đạo hàm: ( ) 2 3 2y f x ax bx c ′ ′ = = + + 3. Điều kiện tồn tại cực trị y = f (x) có cực trị ⇔ y = f (x) có cực đại cực tiểu ⇔ ( ) 0f x ′ = có 2 nghiệm phân biệt ⇔ ∆′ = b 2 − 3ac > 0 4. Kỹ năng tính nhanh cực trị Giả sử ∆′ = b 2 − 3ac > 0, khi đó ( ) 0f x ′ = có 2 nghiệm phân biệt 1 2 ,x x với 2 1,2 3 3 b b ac x a − ± − = hàm số đạt cực trị tại x 1 , x 2 . Theo định nghĩa ta có các cực trị của hàm số là: ( ) ( ) 2 2 1 1 2 2 3 3 ; 3 3 b b ac b b ac y f x f y f x f a a     − − − − + − = = = =  ÷  ÷     Trong trường hợp x 1 , x 2 là số vô tỉ thì các cực trị f (x 1 ), f (x 2 ) nếu tính theo định nghĩa sẽ phức tạp hơn so với cách tính theo thuật toán sau đây: Bước 1: Thực hiện phép chia f (x) cho f ′(x) ta có: ( ) ( ) ( ) ( ) 2 1 2 3 9 3 3 9 b b bc f x x f x c x d a a a   ′ = + + − + −  ÷   hay ( ) ( ) ( ) ( ) .f x f x q x r x ′ = + với bậc ( ) 1r x = Bước 2: Do ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 1 1 1 1 1 2 2 2 2 2 2 2 0 3 3 9 nên 0 2 3 3 9 b bc y f x r x c x d f x a a f x b bc y f x r x c x d a a    = = = − + −  ÷  ′  =       ′ =      = = = − + −  ÷     Hệ quả: Đường thẳng đi qua cực đại, cực tiểu có phương trình là: y = r(x) Đối với hàm số tổng quát : y = f (x) ( ) 3 2 0ax bx cx d a= + + + ≠ thì đường thẳng đi qua cực đại, cực tiểu có phương trình: ( ) 2 2 3 3 9 b bc y c x d a a   = − + −  ÷   1 Trần Anh Tuấn- 12C2-THPT A Hải Hậu_2009-2010 Hàm số – Trần Phương II. BÀI TẬP MẪU MINH HỌA Bài 1. Tìm m để hàm số: ( ) ( ) 3 2 2 2 1 2 3 1 5 3 y x m m x m x m= + − + + + + − đạt cực tiểu tại x = −2. Giải: ( ) ( ) 2 2 2 2 2 3 1y x x m m x m ′ = + − + + + ⇒ ( ) ( ) 2 2 2 2y x x m m ′′ = + − + Để hàm số đạt cực tiểu tại x = −2 thì ( ) ( ) ( ) ( ) ( ) 2 2 2 0 4 3 0 1 3 0 3 1 0 2 0 0 y m m m m m m m y m m  ′   − = − + − = − − =    ⇔ ⇔ ⇔ =    ′′ − > − >    − >    Bài 2. Tìm a để các hàm số ( ) 3 2 1 3 2 x x f x ax= − + + ; ( ) 3 2 3 3 x g x x ax a= + + + . có các điểm cực trị nằm xen kẽ nhau. Giải: ( ) ( ) 2 2 2 3 ;f x x x a g x x x a ′ ′ = + + = − + . Ta cần tìm a sao cho g′(x) có 2 nghiệm phân biệt 1 2 x x< f ′(x) có 2 nghiệm phân biệt 3 4 x x< sao cho ( ) ( ) ( ) ( ) 1 2 1 3 2 4 3 1 4 2 1 2 1 2 1 1 3 0 ; 1 4 0 4 0 0 a a a x x x x x x x x f x f x f x f x  ′ < ∆ = − > ∆ = − >  < < <     ⇔ ⇔    ′ ′ < < < <    ′ ′ <  (*) Ta có: ( ) ( ) ( ) ( ) 1 2 1 1 2 2 0 3 2 3 2 0f x f x g x x a g x x a ′ ′ ′ ′     < ⇔ + + + + < ⇔     ( ) ( ) 1 2 3 2 3 2 0x a x a + + < ( ) ( ) 2 1 2 1 2 15 9 6 4 4 15 0 0 4 x x a x x a a a a ⇔ + + + = + < ⇔ − < < Bài 3. Tìm m để ( ) ( ) ( ) 3 2 2 3 1 6 2 1f x x m x m x= + − + − − có đường thẳng đi qua CĐ, CT song song với đường thẳng y = ax + b. Giải: ( ) ( ) ( ) [ ] 2 6 1 2 0f x x m x m ′ = + − + − = ⇔ ( ) ( ) ( ) 2 1 2 0g x x m x m= + − + − = Hàm số có CĐ, CT ⇔ ( ) 0g x = có 2 nghiệm phân biệt ⇔ ( ) 2 3 0 3 g m m ∆ = − > ⇔ ≠ Thực hiện phép chia f (x) cho g(x) ta có: ( ) ( ) ( ) ( ) ( ) 2 2 2 1 3 3 3f x x m g x m x m m= + − − − − − + Với m ≠ 3 thì phương trình ( ) 0g x = có 2 nghiệm phân biệt x 1 , x 2 hàm số y = f (x) đạt cực trị tại x 1 , x 2 . Ta có: ( ) ( ) 1 2 0g x g x = = nên suy ra ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 1 1 1 2 2 2 3 3 3 ; 3 3 3y f x m x m m y f x m x m m = = − − − − + = = − − − − + ⇒ Đường thẳng đi qua CĐ, CT là (∆): ( ) ( ) 2 2 3 3 3y m x m m= − − − − + 2 THPT Ngọc Hồi- Kon tum----------CV: Đặng Ngọc Liên- sđt: 0977467739 Ta có (∆) song song với đường thẳng y = ax + b ⇔ ( ) ( ) 2 2 3 3; 0 0 3 3 3 m m a a m a m a m a ≠ ≠ < <    ⇔ ⇔    = ± − − − = − = −    Vậy nếu a < 0 thì 3m a= ± − ; nếu a ≥ 0 thì không tồn tại m thoả mãn. Bài 4. Tìm m để ( ) ( ) ( ) 3 2 2 3 1 6 1 2f x x m x m m x= + − + − có CĐ, CT nằm trên đường thẳng (d): y = −4x. Giải: Ta có: ( ) ( ) ( ) [ ] 2 6 1 1 2 0f x x m x m m ′ = + − + − = ⇔ ( ) ( ) ( ) 2 1 1 2 0g x x m x m m = + − + − = Hàm số có CĐ, CT ( ) 0g x ⇔ = có 2 nghiệm phân biệt ( ) 2 1 3 1 0 3 g m m ⇔ ∆ = − > ⇔ ≠ Thực hiện phép chia f (x) cho g(x) ta có: ( ) ( ) ( ) ( ) ( ) ( ) 2 2 1 3 1 1 1 2f x x m g x m x m m m= + − − − + − − Với 1 3 m ≠ thì phương trình ( ) 0g x = có 2 nghiệm phân biệt x 1 , x 2 hàm số y = f (x) đạt cực trị tại x 1 , x 2 . Ta có: ( ) ( ) 1 2 0g x g x = = nên suy ra ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 1 1 1 2 2 3 1 1 2 ; 3 1 1 2y f x m x m m m y m x m m m = = − − + − − = − − + − − ⇒ Đường thẳng đi qua CĐ, CT là (∆): ( ) ( ) ( ) 2 3 1 1 1 2y m x m m m= − − + − − . Để cực đại, cực tiểu nằm trên đường thẳng (d): y = −4x thì (∆) ≡ (d) ⇔ ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 3 1 2 3 1 2 0 3 1 4 1 1 1 2 0 1 1 2 0 m m m m m m m m m m   − − − + =  − − = − ⇔ ⇔ =   − − = − − =    Bài 5. Tìm m để ( ) 3 2 7 3f x x mx x= + + + có đường thẳng đi qua CĐ, CT vuông góc với y = 3x − 7. Giải: Hàm số có CĐ, CT ⇔ ( ) 2 3 2 7 0f x x mx ′ = + + = có 2 nghiệm phân biệt ⇔ 2 21 0 21m m ′ ∆ = − > ⇔ > . Thực hiện phép chia f (x) cho f ′(x) ta có: ( ) ( ) ( ) ( ) 2 7 1 2 3 21 3 9 9 9 m f x x m f x m x ′ = + + − + − Với 21m > thì phương trình ( ) 0f x ′ = có 2 nghiệm phân biệt x 1 , x 2 hàm số y = f (x) đạt cực trị tại x 1 , x 2 . Ta có: ( ) ( ) 1 2 0f x f x ′ ′ = = suy ra ( ) ( ) ( ) ( ) 2 2 1 1 1 2 2 2 7 7 2 2 21 3 ; 21 3 9 9 9 9 m m y f x m x y f x m x= = − + − = = − + − 3 Trần Anh Tuấn- 12C2-THPT A Hải Hậu_2009-2010 Hàm số – Trần Phương ⇒ Đường thẳng đi qua CĐ, CT là (∆): ( ) 2 7 2 21 3 9 9 m y m x= − + − Ta có (∆) ⊥ y = 3x − 7 ⇔ ( ) 2 2 3 10 45 2 21 .3 1 21 9 2 2 m m m− = − ⇔ = > ⇔ = ± Bài 6. Tìm m để hàm số ( ) 3 2 2 3f x x x m x m= − + + có cực đại, cực tiểu đối xứng nhau qua (∆): 5 1 2 2 y x= − Giải: Hàm số có CĐ, CT ⇔ ( ) 2 2 3 6 0f x x x m ′ = − + = có 2 nghiệm phân biệt ⇔ 2 9 3 0 3m m ′ ∆ = − > ⇔ < . Thực hiện phép chia f (x) cho f ′(x) ta có: ( ) ( ) ( ) ( ) 2 2 1 2 1 3 3 3 3 m f x x f x m x m ′ = − + − + + Với 3m < thì phương trình ( ) 0f x ′ = có 2 nghiệm phân biệt x 1 , x 2 hàm số y = f (x) đạt cực trị tại x 1 , x 2 . Ta có: ( ) ( ) 1 2 0f x f x ′ ′ = = nên ( ) ( ) ( ) ( ) 2 2 2 2 1 1 1 2 2 2 2 2 3 ; 3 3 3 3 3 m m y f x m x m y f x m x m = = − + + = = − + + ⇒ Đường thẳng đi qua CĐ, CT là (d): ( ) 2 2 2 3 3 3 m y m x m= − + + . Các điểm cực trị ( ) ( ) 1 1 2 2 , , ,A x y B x y đối xứng nhau qua ( ) 5 1 : 2 2 y x∆ = − ⇔ (d) ⊥ (∆) tại trung điểm I của AB (*) . Ta có 1 2 1 2 I x x x + = = suy ra (*) ⇔ ( ) ( ) ( ) 2 2 2 2 1 3 1 0 3 2 0 5 2 1 1 0 3 1 1 3 3 2 2 m m m m m m m m  − × = − =     ⇔ ⇔ =   + =    − × + + = × −   Bài 7. Cho ( ) ( ) ( ) 3 2 2 cos 3sin 8 1 cos 2 1 3 f x x a a x a x= + − − + + 1. CMR: Hàm số luôn có CĐ, CT. 2. Giả sử hàm số đạt cực trị tại x 1 , x 2 . CMR: 2 2 1 2 18x x+ ≤ Giải: 1. Xét phương trình: ( ) ( ) ( ) 2 2 2 cos 3sin 8 1 cos 2 0f x x a a x a ′ = + − − + = Ta có: ( ) ( ) ( ) 2 2 2 cos 3sin 16 1 cos 2 cos 3sin 32 cos 0a a a a a a a ′ ∆ = − + + = − + ≥ ∀ Nếu 2 2 0 cos 3sin cos 0 sin cos sin cos 0a a a a a a a ′ ∆ = ⇔ − = = ⇔ = ⇒ + = (vô lý) 4 THPT Ngọc Hồi- Kon tum----------CV: Đặng Ngọc Liên- sđt: 0977467739 Vậy ∆′ > 0 ∀a ⇒ f ′(x) = 0 có 2 nghiệm phân biệt x 1 , x 2 hàm số có CĐ, CT. 2. Theo Viet ta có: ( ) 1 2 1 2 3sin cos ; 4 1 cos 2x x a a x x a+ = − = − + ( ) ( ) ( ) 2 2 2 2 2 1 2 1 2 1 2 2 3sin cos 8 1 cos 2 9 8cos 6sin cosx x x x x x a a a a a a + = + − = − + + = + − ( ) ( ) ( ) 2 2 2 2 9 9 sin cos 3sin cos 18 3sin cos 18a a a a a a= + + − + = − + ≤ Bài 8. Cho hàm số ( ) ( ) ( ) 3 2 2 2 1 4 3 3 f x x m x m m x= + + + + + 1. Tìm m để hàm số đạt cực trị tại ít nhất 1 điểm > 1. 2. Gọi các điểm cực trị là x 1 , x 2 . Tìm Max của ( ) 1 2 1 2 2A x x x x= − + Giải: Ta có: ( ) ( ) 2 2 2 2 1 4 3f x x m x m m ′ = + + + + + 1. Hàm số đạt cực trị tại ít nhất 1 điểm > 1 ( ) 0f x ′ ⇔ = có 2 nghiệm phân biệt 1 2 ,x x thoả mãn: 1 2 1 2 1 1x x x x< < ∨ ≤ < ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 1 0 6 7 0 3 2, 3 2 0 5, 1 6 5 0 2 1 0 6 7 0 3 2, 3 2 1 1 1 2 2 f m m m m m m f m m m S m m ′  <   + + < ∈ − − − +    ′ ∆ >      ∈ − − + + <   ⇔ ⇔ ⇔       ≥  + + ≥    ∉ − − − +         < < − + < −         ( ) 5, 3 2m ⇔ ∈ − − + 2. Do ( ) ( ) 1 2 2 1 2 1 1 4 3 2 x x m x x m m  + = − +   = + +   ⇒ ( ) 1 2 1 2 2A x x x x= − + ( ) 2 4 3 2 1 2 m m m + + = + + 2 1 8 7 2 m m= + + ( ) ( ) ( ) ( ) 1 1 7 1 7 1 2 2 m m m m − = + + = + + (do 5 1m− < < − ) ⇒ ( ) ( ) 2 2 9 1 1 9 8 16 9 4 2 2 2 A m m m     = − + + = − + ≤     . Với 4m = − thì 9 Max 2 A = Bài 9. Tìm m để hàm số ( ) 3 2 1 1 3 f x x mx x m= − − + + có khoảng cách giữa các điểm CĐ CT là nhỏ nhất. Giải: Do ( ) 2 2 1 0f x x mx ′ = − − = có 2 1 0m ′ ∆ = + > nên f ′(x) = 0 có 2 nghiệm phân biệt x 1 , x 2 hàm số đạt cực trị tại x 1 , x 2 với các điểm cực trị là ( ) 1 2 ,A x y ; ( ) 2 2 ,B x y . Thực hiện phép chia f (x) cho f ′(x) ta có: ( ) ( ) ( ) ( ) ( ) 2 1 2 2 1 1 3 3 3 f x x m f x m x m ′ = − − + + + . Do ( ) ( ) 1 2 0f x f x ′ ′ = = nên 5 Trần Anh Tuấn- 12C2-THPT A Hải Hậu_2009-2010 Hàm số – Trần Phương ( ) ( ) ( ) ( ) ( ) ( ) 2 2 1 1 1 2 2 2 2 2 2 2 1 1 ; 1 1 3 3 3 3 y f x m x m y f x m x m= = − + + + = = − + + + Ta có: ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 1 2 1 2 1 2 1 4 1 9 AB x x y y x x m x x= − + − = − + + − ( ) ( ) 2 2 2 2 1 1 2 4 4 1 1 9 x x x x m     = + − + +       ( ) ( ) ( ) 2 2 2 4 4 4 4 1 1 4 1 9 9 m m   = + + + ≥ +     ⇒ 2 13 3 AB ≥ . Vậy 2 13 Min 3 AB = xảy ra ⇔ m = 0. Bài 10.Tìm m để hàm số ( ) ( ) ( ) 3 2 1 1 1 3 2 3 3 f x mx m x m x= − − + − + đạt cực trị tại x 1 , x 2 thoả mãn 1 2 2 1x x+ = . Giải:  Hàm số có CĐ, CT ⇔ ( ) ( ) ( ) 2 2 1 3 2 0f x mx m x m ′ = − − + − = có 2 nghiệm phân biệt ⇔ ( ) ( ) 2 0 1 3 2 0 m m m m ≠   ′ ∆ = − − − >  ⇔ 6 6 1 0 1 2 2 m − < ≠ < + (*) Với điều kiện (*) thì ( ) 0f x ′ = có 2 nghiệm phân biệt x 1 , x 2 hàm số f (x) đạt cực trị tại x 1 , x 2 . Theo định lý Viet ta có: ( ) ( ) 1 2 1 2 2 1 3 2 ; m m x x x x m m − − + = = Ta có: ( ) ( ) 1 2 2 1 2 1 2 1 2 2 3 4 2 1 1 ; m m m m m x x x x m m m m m − − − − − + = ⇔ = − = = − = ( ) ( ) ( ) ( ) 3 2 2 3 4 2 3 4 3 2 m m m m m m m m m m − − − ⇒ × = ⇔ − − = − 2 2 3 m m =   ⇔ =   Cả 2 giá trị này đều thoả mãn điều kiện (*). Vậy 1 2 2 1x x+ = 2 2 3 m m ⇔ = ∨ = Bài 11.Tìm m để hàm số ( ) 3 2 1 1 3 f x x mx mx= − + − đạt cực trị tại x 1 , x 2 thoả mãn điều kiện 1 2 8x x− ≥ . Giải: HS có CĐ, CT ⇔ ( ) 2 2 0f x x mx m ′ = − + = có 2 nghiệm phân biệt ⇔ ( ) ( ) 2 0 , 0 1,m m m D ′ ∆ = − > ⇔ ∈ = −∞ +∞ U (*) Với điều kiện này thì ( ) 0f x ′ = có 2 nghiệm phân biệt x 1 , x 2 hàm số f (x) đạt cực trị tại x 1 , x 2 . Theo định lý Viet ta có: 1 2 1 2 2 ;x x m x x m+ = = suy ra: 6 THPT Ngc Hi- Kon tum----------CV: ng Ngc Liờn- st: 0977467739 ( ) 22 1 2 1 2 1 2 1 2 8 64 4 64x x x x x x x x + 2 4 4 64m m 2 1 65 1 65 16 0 , , 2 2 m m m + + ữ ữ U (tho món (*) ) Vy 1 2 8x x thỡ 1 65 1 65 , , 2 2 m + + ữ ữ U B. CC TR HM A THC BC 4 I. TểM TT Lí THUYT 1. Hm s: y = f (x) ( ) 4 3 2 0ax bx cx dx e a= + + + + 2. o hm: ( ) 3 2 4 3 2y f x ax bx cx d = = + + + 3. Cc tr: Xột ( ) 0f x = cú đúng 1 nghiệm có đúng 1 cực trị 1 nghiệm đơn có đúng 2 nghiệm 1 nghiệm kép có 3 nghiệm phân biệt có 3 cực trị gồm CĐ CT 4. K nng tớnh nhanh cc tr Gi s f ( x ) trit tiờu v i du ti x = x 0 , khi ú f ( x ) t cc tr ti x 0 vi s cc tr l ( ) 4 3 2 0 0 0 0 0 f x ax bx cx dx e= + + + + . Trong trng hp x 0 l s vụ t thỡ cc tr f (x 0 ) c tớnh theo thut toỏn: Bc 1: Thc hin phộp chia f (x) cho f (x) ta cú: ( ) ( ) ( ) ( ) . 4 3 2 f x q x f x r x = + Bậc Bậc Bậc Bc 2: Do f (x 0 ) = 0 nờn f (x 0 ) = r(x 0 ) H qu: Cỏc im cc tr ca hm bc 4: y = f (x) nm trờn y = r(x) II. CC BI TP MU MINH HA Bi 1. Tỡm cc tr ca hm s ( ) 4 2 6 8 1y f x x x x= = . Gii: Ta cú: ( ) ( ) ( ) 2 3 4 12 8 4 1 2f x x x x x = = + ; ( ) ( ) ( ) 12 1 1f x x x = + Do phng trỡnh ( ) 0f x = cú 1 nghim n x = 2 v 1 nghim kộp x = 1 nờn hm s cú ỳng 1 cc tr ti x = 2. Mt khỏc ( ) 2 36 0f = > suy ra ( ) CT 2 25f f= = . Vy hm s cú cc tiu CT 25f = v khụng cú cc i. 7 Trần Anh Tuấn- 12C2-THPT A Hải Hậu_2009-2010 Hàm số – Trần Phương Bài 2. Cho ( ) ( ) 4 3 2 4 3 1 1f x x mx m x= + + + + . Tìm m để ƒ(x) chỉ có cực tiểu mà không có cực đại. Giải: ( ) ( ) ( ) [ ] 3 2 2 4 12 6 1 2 2 6 3 1f x x mx m x x x mx m ′ = + + + = + + + ; ( ) ( ) ( ) 2 0 0 2 6 3 1 0 x f x g x x mx m =  ′  = ⇔  = + + + =  . Xét các khả năng sau đây: a) Nếu ( ) 2 1 7 1 7 3 3 2 2 0 , 3 3 g m m m I   − + ′ ∆ = − − ≤ ⇔ ∈ =     thì ( ) 2 0g x x≥ ∀ ∈ ¡ ⇔ g(x) ≥ 0 x∀ ∈ ¡ . Suy ra f ′(x) triệt tiêu đổi dấu tại x = 0 mà f ′′(0) = 6(m + 1) > 0 ∀m∈I ⇒ ( ) CT 0 1f f= = , tức là hàm số chỉ có cực tiểu mà không có cực đại. b) Nếu ( ) ( ) 0 1 0 3 1 0 g m g m ′ ∆ >   ⇔ = −   = + =  thì ( ) ( ) ( ) 2 2 2 2 6 4 3f x x x x x x ′ = − = − ( ) 0f x ′ = ⇔ x = 0 nghiệm kép, x = 3. Nhìn bảng biến thiên suy ra: Hàm số y = f (x) chỉ có cực tiểu mà không có cực đại. c) Nếu ( ) 0 1 0 0 g m g ′ ∆ >   ⇔ = −   ≠  thì f ′(x) có 3 nghiệm phân biệt 1 2 3 x x x< < Nhìn bảng biến thiên suy ra: Hàm số y = f (x) có cực đại nên không thoả mãn yêu cầu bài toán. Kết luận: { } 1 7 1 7 , 1 3 3 m   − + ∈ −     U Bài 3. Cho hàm số ( ) ( ) ( ) 4 3 2 3 2 1y f x x m x m x= = + + + + Chứng minh rằng: ∀m ≠ −1 hàm số luôn có cực đại đồng thời 0x ≤ C§ ( ) ( ) ( ) ( ) ( ) [ ] ( ) 3 2 2 4 3 3 4 1 4 3 3 4 1 .f x x m x m x x x m x m x g x ′ = + + + + = + + + + = Ta có: ( ) ( ) 2 2 9 3 64 1 9 10 17 0 g m m m m m∆ = + − + = − + > ∀ nên g(x) = 0 có 2 nghiệm phân biệt x 1 , x 2 . 8 x−∞03+∞f ′ − 0 − 0+f +∞ CT+∞ x−∞x 1 x 2 x 3 +∞f ′−0+0−0+ f +∞ CT CĐ CT+∞ THPT Ngọc Hồi- Kon tum----------CV: Đặng Ngọc Liên- sđt: 0977467739 Theo định lý Viet ta có: 1 2 . 1 0 1x x m m= + ≠ ∀ ≠ − ⇒ PT ( ) 0f x ′ = có 3 nghiệm phân biệt 0, x 1 , x 2 . Xét 2 khả năng sau: a) Nếu m < −1 thì 1 2 . 1 0x x m= + < ⇒ 1 2 0x x< < ⇒ Bảng biến thiên Nhìn BBT suy ra 0x = C§ b) Nếu m > −1 thì 1 2 . 0x x > ( ) 1 2 3 3 0 4 m x x − + + = < ⇒ 1 2 0x x< < ⇒ Bảng biến thiên. Nhìn BBT suy ra 2 0x x= < C§ Kết luận: Vậy ∀m ≠ −1 hàm số luôn có 0x ≤ C§ Bài 4. (Đề thi TSĐH khối B 2002) Tìm m để hàm số ( ) 4 2 2 9 10y mx m x= + − + có 3 điểm cực trị Giải. Yêu cầu bài toán ( ) ( ) 2 2 2 2 9 2 . 0y x mx m x g x ′ ⇔ = + − = = có 3 nghiệm phân biệt 2 3 9 0 2 0 3 m m m m < −  − ⇔ < ⇔  < <  Bài 5. Tìm m để ( ) 4 2 4 2 2f x x mx m m = − + + có CĐ, CT lập thành tam giác đều. Giải. ( ) ( ) 3 2 4 4 4f x x mx x x m ′ = − = − . Ta có: ( ) 2 0 0f x x x m ′ = ⇔ = ∨ = . Để hàm số có CĐ, CT ⇔ ( ) 0f x ′ = có 3 nghiệm phân biệt ⇔ m > 0 ⇒ 3 nghiệm là: 1 2 3 ; 0 ;x m x x m= − = = ⇒ 3 điểm CĐ, CT là: ( ) ( ) ( ) 4 2 4 4 2 , 2 ; 0, 2 ; , 2A m m m m B m m C m m m m− − + + − + ⇒ 4 ; 2AB BC m m AC m= = + = . Để A, B, C lập thành tam giác đều thì AB BC AC= = ⇔ 4 2m m m+ = 9 x−∞x 1 0x 2 +∞f ′−0+0−0+ f +∞ CT CĐ CT+∞ x−∞x 1 x 2 0+∞f ′−0+0−0+ f +∞ CT CĐ CT+∞ x−∞x 1 0x 3 +∞f ′−0+0−0+ f +∞ A CT B CĐ C CT+∞ Trần Anh Tuấn- 12C2-THPT A Hải Hậu_2009-2010 Hàm số – Trần Phương 4 4 3 4 3 3m m m m m m⇔ + = ⇔ = ⇔ = Bài 6. Chứng minh rằng: Hàm số ( ) 4 3 2 1f x x mx mx mx= + + + + không thể đồng thời có CĐ CT m∀ ∈ ¡ Giải. Xét ( ) ( ) 3 2 2 3 4 3 2 0 3 2 1 4f x x mx mx m m x x x ′ = + + + = ⇔ + + = − ⇔ 3 2 4 3 2 1 x m x x − = + + . Xét hàm số ( ) 3 2 4 3 2 1 x g x x x − = + + có TXĐ: g D = ¡ ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 4 3 4 3 4 2 1 1 0 3 2 1 3 2 1 x x x x x x g x x x x x x   − + + − + + +   ′ = = ≤ ∀ ∈ + + + + ¡ ; ( ) 2 4 lim lim 2 1 3 x x x g x x x →∞ →∞ − = = ∞ + + Nghiệm của phương trình ( ) 0f x ′ = cũng là hoành độ giao điểm của đường thẳng y = m với đồ thị y = g(x). Nhìn bảng biến thiên suy ra đường thẳng y = m cắt y = g(x) tại đúng 1 điểm ⇒ ( ) 0f x ′ = có đúng 1 nghiệm. Vậy hàm số y = f (x) không thể đồng thời có cực đại cực tiểu. Bài 7. Chứng minh rằng: ( ) 4 3 0f x x px q x= + + ≥ ∀ ∈ ¡ ⇔ 4 256 27q p≥ Giải. Ta có: ( ) ( ) 3 2 2 4 3 4 3 0f x x px x x p ′ = + = + = ⇔ 3 4 p x − = nghiệm kép x = 0 Do f ′(x) cùng dấu với (4x + 3p) nên lập bảng biến thiên ta có: f (x) ≥ 0 ∀x∈ ⇔ ( ) 3 Min 0 4 p f x f −   = ≥  ÷   ⇔ 4 4 256 27 0 256 27 256 q p q p − ≥ ⇔ ≥ Bài 8. (Đề thi dự bị ĐH khối A năm 2004) Tìm m để hàm số 4 2 2 2 1y x m x= − + có 3 điểm cực trị là 3 đỉnh của một tam giác vuông cân Giải. Hàm số có 3 cực trị ( ) 2 2 4 0y x x m ′ ⇔ = − = có 3 nghiệm phân biệt 0m⇔ ≠ , khi đó đồ thị có 3 điểm cực trị là ( ) ( ) ( ) 4 4 0,1 ; ,1 , ,1A B m m C m m− − − . Do y là hàm chẵn nên YCBT . 0 1AB AC m⇔ = ⇔ = ± uuur uuur 10 x−∞x 2 +∞f ′−0−f +∞ −∞ [...]... sđt: 0977467739 Bài 9 Chứng minh rằng: f ( x ) = x 4 − 6 x 2 + 4 x + 6 luôn có 3 cực trị đồng thời gốc toạ độ O là trọng tâm của tam giác tạo bởi 3 đỉnh là 3 cực trị Bài 10 Chứng minh rằng: f ( x ) = x 4 + px + q ≥ 0 ∀x ∈ ¡ ⇔ 256q 3 ≥ 27 p 4 Bài 11 Cho f ( x ) = x 4 + 8mx 3 + 3 ( 2m + 1) x 2 − 1 Tìm m để ƒ(x) chỉ có cực tiểu mà không có cực đại 11

Ngày đăng: 26/10/2013, 05:11

HÌNH ẢNH LIÊN QUAN

Nhỡn bảng biến thiờn suy ra: Hàm   số  y =f  (x )   cú   cực   đại   nờn khụng thoả món yờu cầu bài toỏn. - Các chủ đề ôn thi ĐH mới và hay./.
h ỡn bảng biến thiờn suy ra: Hàm số y =f (x ) cú cực đại nờn khụng thoả món yờu cầu bài toỏn (Trang 8)
⇒ x1 &lt; &lt; 0x 2⇒ Bảng biến thiờn Nhỡn BBT suy ra x CĐ=0 - Các chủ đề ôn thi ĐH mới và hay./.
x1 &lt; &lt; 0x 2⇒ Bảng biến thiờn Nhỡn BBT suy ra x CĐ=0 (Trang 9)
Nhỡn bảng biến thiờn suy ra đường thẳng =m cắt y= g(x) tại đỳng 1 điểm - Các chủ đề ôn thi ĐH mới và hay./.
h ỡn bảng biến thiờn suy ra đường thẳng =m cắt y= g(x) tại đỳng 1 điểm (Trang 10)

TỪ KHÓA LIÊN QUAN

w