Tuyển tập các đề thi kì I. N¨m häc 2010 - 2011 Môn: Toán – Lớp 9 -ĐỀ SỐ 01 Câu1: (2,5 điểm) Tính: a/ 121 - 2 16 c/ ( ) − 2 5 2 b/ − 2 2 61 60 d/ + −2 32 98 3 18 Câu 2: (2,5 điểm) a/ Trên cùng hệ trục tọa độ vẽ đồ thị các hàm số sau: (d 1 ): y = -2x + 5 (d 2 ): y= x + 2. b/ Tìm tọa độ giao điểm của A của (d 1 ) và (d 2 ). c/ Xác định hàm số có đồ thị đi qua gốc tọa độ O và điểm A. Câu 3: (2,5 điểm): a/ Tìm nghiệm tổng quát của phương trình: 2x – y =1 và vẽ đường thẳng biểu diễn tập nghiệm của nó. b/ Cho ∆ ABC vuông tại A có AB = 3cm, AC = 4cm. Kẻ đường cao AH và tia phân giác AK. Tính: BC; AH; BK? Câu 4: (2,5 điểm) Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại M. Kẻ tiếp tuyến chung ngoài AB, A ∈ (O) và B ∈ (O’). Tiếp tuyến chung trong tại M cắt tiếp tuyến chung ngoài AB tại K. a/ Chứng minh · 0 AMB 90= . b/ Chứng minh ∆ OKO’ là tam giác vuông và AB là tiếp tuyến của đường tròn đường kính OO’. c/ Biết AM = 8cm, BM = 6cm. Tính độ dài bán kính OM? ---------------------------------------- -ĐỀ SỐ 02 -------------------------------------------------------------- 1 Tuyển tập các đề thi kì I. N¨m häc 2010 - 2011 Bài 1: (1,5 điểm) 1) Tìm x để biểu thức 1 1x x + có nghĩa: 2) Rút gọn biểu thức : A = ( ) 2 2 3 2 288+ − Bài 2. (1,5 điểm) 1) Rút gọn biểu thức A. A = 2 1 x x x x x x − − − − với ( x >0 và x ≠ 1) 2) Tính giá trị của biểu thức A tại 3 2 2x = + Bài 3. (2 điểm). Cho hai đường thẳng (d 1 ) : y = (2 + m)x + 1 và (d 2 ) : y = (1 + 2m)x + 2 1) Tìm m để (d 1 ) và (d 2 ) cắt nhau: 2) Với m = – 1 , vẽ (d 1 ) và (d 2 ) trên cùng mặt phẳng tọa độ Oxy rồi tìm tọa độ giao điểm của hai đường thẳng (d 1 ) và (d 2 ) bằng phép tính. Bài 4: (1 điểm) Giải phương trình: 1 9 27 3 4 12 7 2 x x x − + − − − = Bài 5.(4 điểm) Cho đường tròn tâm (O;R) đường kính AB và điểm M trên đường tròn sao cho · 0 60MAB = . Kẻ dây MN vuông góc với AB tại H. 1. Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM): 2. Chứng minh MN 2 = 4 AH .HB . 3. Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó. 4. Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N; E; F thẳng hàng. ----HẾT---- -------------------------------------------------------------- 2 Tuyển tập các đề thi kì I. N¨m häc 2010 - 2011 ĐỀ SỐ 03 Thời gian tập giải mỗi đề : 90 phút Bài 1.( 1,5điểm) 1. Tính giá trị các biểu thức sau: 2 3 2 2− − 2. Chứng minh rằng 3 3 1 1 2 2 + + = Bài 2.(2điểm) Cho biểu thức : P = 4 4 4 2 2 a a a a a + + − + + − ( Với a ≥ 0 ; a ≠ 4 ) 1) Rút gọn biểu thức P. 2) Tính P tại a thoả mãn điều kiện a 2 – 7a + 12 = 0 3) Tìm giá trị của a sao cho P = a + 1. Bài 3. (2điểm) Cho hai đường thẳng : (d 1 ): y = 1 2 2 x + và (d 2 ): y = 2x − + 1. Vẽ (d 1 ) và (d 2 ) trên cùng một hệ trục tọa độ Oxy. 2. Gọi A và B lần lượt là giao điểm của (d 1 ) và (d 2 ) với trục Ox , C là giao điểm của (d 1 ) và (d 2 ) . Tính chu vi và diện tích của tam giác ABC (đơn vị trên hệ trục tọa độ là cm) Bài 4. (4,5điểm) Cho tam giác ABC nhọn . Đường tròn tâm O đường kính BC cắt AB ở M và cắt AC ở N. Gọi H là giao điểm của BN và CM. 1) Chứng minh AH ⊥ BC . 2) Gọi E là trung điểm AH. Chứng minh ME là tiếp tuyến của đường tròn (O) 3) Chứng minh MN. OE = 2ME. MO 4) Giả sử AH = BC. Tính tang BAC. ---HẾT--- -------------------------------------------------------------- 3 Tuyển tập các đề thi kì I. N¨m häc 2010 - 2011 ĐỀ SỐ 04 Thời gian tập giải : 90 phút Bài 1. (2,5 điểm) 1. Trục căn thức ở mẫu của các biểu thức sau: a) 2009 2009 b) 1 2010 2009− 2. Rút gọn biểu thức: ( ) ( ) 2 3 . 4 12− + 2. Tìm điều kiện cho x để ( ) ( ) 3 1 3. 1x x x x− + = − + . Bài 2. (1,5 điểm) Cho hàm số y = ax + b . Xác định các hệ số a và b trong các trường hợp sau: 1. Đồ thị hàm số là đường thẳng cắt trục tung tại điểm có tung độ bằng 3 và đi qua điểm (2;1). 2. Đồ thị hàm số cắt trục hoành tại điểm có hoành độ có hoành độ bằng – 1 và song song với đường thẳng chứa tia phân giác góc vuông phần tư I và III. Bài 3. (2 điểm) 1. Giải phương trình sau: ( ) 2 2 1 2 1x x− = − 2. Tìm các số nguyên x thỏa mãn: 1 2x − < Bài 4. (4 điểm) Cho tam giác ABC vuông ở A, đường cao AH. Gọi D và E lần lượt là hình chiếu của điểm H trên các cạnh AB và AC. 1. Chứng minh AD. AB = AE. AC 2. Gọi M, N lần lượt là trung điểm của BH và CH. Chứng minh DE là tiếp tuyến chung của hai đường tròn (M; MD) và (N; NE) 3. Gọi P là trung điểm MN, Q là giao điểm của DE và AH . Giả sử AB = 6 cm, AC = 8 cm . Tính độ dài PQ. -----HẾT---- ĐỀ SỐ 05 -------------------------------------------------------------- 4 Tuyển tập các đề thi kì I. N¨m häc 2010 - 2011 Thời gian tập giải : 90 phút Bài 1. (1,5 điểm) Rút gọn các biểu thức sau: 1. M = ( ) 3 6 2 3 3 2+ − 2. P = 6 2 3 3 3 − − 3. Q = ( ) 3 3 3 16 128 : 2− Bài 2. (2 điểm) Cho biểu thức : B = 1 4 1 1 2 x x x x − − + + + − (với 0x ≥ ; 4x ≠ ) 1. Rút gọn biểu thức B. 2. Tìm các giá trị của x thỏa mãn B = 3 6x x− + Bài 3. (2 diểm) Cho hàm số y = (m + 2)x – 3 . (m ≠ 2 ) 1. Tìm m để hàm số đã cho nghịch biến trên R. 2. Vẽ đồ thị hàm số khi m = –3 3. Gọi (d) là đường thẳng vẽ được ở câu 2, khi x [ ] 2;5∈ − , tìm giá trị lớn nhất, bé nhất của hàm số. Bài 4. (4,5 điểm) Cho tam giác ABC vuông tại C, đường cao CH, I là trung điểm AB. 1. Chứng minh CH 2 + AH 2 = 2AH. CI 2. Kẻ hai tia Ax và By vuông góc với AB( tia Ax , By nằm cùng phía bờ AB chứa điểm C). Đường thẳng vuông góc với CI tại C cắt Ax và By lần lượt tại E và K, tia BC cắt tia Ax ở M. Chứng minh E là trung điểm AM. 3. Gọi D là giao điểm của CH và EB. Chứng minh ba điểm A, D, K thẳng hàng. ĐỀ SỐ 06. -------------------------------------------------------------- 5 Tuyển tập các đề thi kì I. N¨m häc 2010 - 2011 Bài 1: ( 1,5điểm) Thu gọn các biểu thức sau: 1. A = 1 2 3 48 108 3 + − 2. B = 2 2 1x x x− + − ( với x 1≥ ) Bài 2: ( 1,0 điểm) Cho biểu thức P = 3 2 x y xy xy − ( với x > 0; y > 0) 1. Rút gọn bểu thức P. 2. Tính giá trị của P biết 4x = ; y = 9 Bài 3: (1,5 điểm) 1. Tìm x không âm thỏa mãn: 2x < 2. Giải phương trình: 2 9 3 3 0x x− − − = Bài 4: (2 điểm) Cho hàm số y = (m – 2)x + 3 (m ≠ 2) 1. Tìm m để hàm số đã cho nghịch biến. 2. Tìm m để đồ thị hàm số đi qua điểm M (2; 5). 3. Tìm m để đồ thị hàm số tạo với trục Ox một góc 45 0 . 4. Chứng tỏ rằng với mọi m , khi x = 0 đồ thị hàm số luôn đi qua một điểm cố định. Bài 5: (4 điểm) Từ điểm A ở ngoài đường tròn (O;R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm) . Gọi H là giao điểm của OA và BC. 1. Tính tích OH. OA theo R 2. Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA. 3. Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE. -----HẾT----- ĐỀ SỐ 07 -------------------------------------------------------------- 6 Tuyển tập các đề thi kì I. N¨m häc 2010 - 2011 Bài 1. (2 điểm) Rút gọn các biểu thức sau: 1. A = 1 6 2 9 1 3 3 3 1 + − + − . 2. ( ) ( ) 3 1 3 1 3 2 − + − . Bài 2. (1,5 điểm) Cho biểu thức : P = 2 2 1 3x x x− + − . 1. Rút gọn biểu thức P khi 1x ≤ . 2. Tính giá trị biểu thức P khi x = 1 4 . Bài 3. ( 2,5 điểm) Cho hai đường thẳng y = – x + 2 và y = x – 4 có đồ thị là đường thẳng (d 1 ) và (d 2 ) . 1. Vẽ (d 1 ) và (d 2 ) trên cùng một hệ trục tọa độ Oxy. 2. Gọi P là giao điểm của (d 1 ) và (d 2 ) . Tìm tọa độ điểm P. 3. (d 1 ) cắt và (d 2 ) lần lượt cắt Oy tại M và N. Tính độ dài MN, NP và MP rồi suy ra tam giác MNP vuông. Bài 4. (4 điểm) Cho đường tròn (O;R) đường kính AB. Đường tròn tâm A bán kính AO cắt đường tròn (O) tại hai điểm C và D. Gọi H là giao điểm của AB và CD. 1. Tứ giác ACOD là hình gì? Tại sao? 2. Tính độ dài AH, BH, CD theo R. 3.Gọi K là trung điểm của BC. Tia CA cắt đường tròn (A) tại điểm thứ hai E khác điểm C. Chứng minh DK đi qua trung điểm của EB . -------------------------------------------------------------- 7 Tuyển tập các đề thi kì I. N¨m häc 2010 - 2011 ĐỀ SỐ 08. Bài 1. ( 2,5 điểm). 1. Tìm điều kiện cho x để biểu thức 2x + 7 có căn bậc hai ? 2. Rút gọn các biểu thức sau: a) A = ( ) 4 27 2 48 5 75 : 2 3− − b)B = ( ) 2 3 5 1 5 1 5 1 + + − ÷ ÷ − Bài 2. (2 điểm). Cho biểu thức Q = 1 1 a b a b − − + ( với a ≥ 0, b ≥ 0 , a ≠ b) 1. Rút gọn biểu thức Q. 2. Cho Q = – 2 , Tìm a, b thỏa mãn 2a = b. Bài 3. (1, 5 điểm). Cho hàm số y = (2 – m)x + 4. 1.Tìm m biết đồ thị hàm số là đường thẳng song song với đường thẳng y = – 2x. 2. Vẽ đồ thị hàm số ứng với m tìm được. Bài 4. (4 điểm). Cho tam giác ABC vuông ở A đường cao AH. Kẻ HD ⊥ AB, HE ⊥ AC ( D ∈ AB , E ∈ AC). Vẽ các đường tròn tâm J đường kính AB và tâm I đường kính AC. 1. Chứng minh AD. AB = AE. AC. 2. Tia HD cắt đường tròn (J) ở M, tia HE cắt đường tròn (I) ở N. Chứng minh ba điểm M, A, N thẳng hàng. 3. Chứng minh MN là tiếp tuyến đường tròn ngoại tiếp tam giác ABC. 4. Giả sử M; J; I thẳng hàng. Tính Sin ABC ? ----HẾT---- -------------------------------------------------------------- 8 Tuyển tập các đề thi kì I. N¨m häc 2010 - 2011 ĐỀ SỐ 09. Bài 1. (2 điểm) Rút gọn các biểu thức sau: 1. 3 3 1 3 + − 2. ( ) 2 8 32 3 18− + 3. ( ) ( ) 12 2 3 27+ − Bài 2.(2 điểm) Cho biểu thức : P = 4a b ab b b a a b a b − − − − + − . ( với a ≥ 0, b ≥ 0 , a ≠ b) 1. Rút gọn biểu thức P. 2. Tính giá trị của P khi a = 2 và b = 3 - 2 2 . Bài 3. (2 điểm) Cho hai đường thẳng ( ) 1 d : y = x + 2 và ( ) 2 d : y = 2x – 2 1. Vẽ ( ) 1 d và ( ) 2 d trên cùng một hệ trục tọa độ . 2. Gọi A là giao điểm của ( ) 1 d và ( ) 2 d . Tìm tọa độ điểm A và tính khoảng cách từ điểm A tới gốc tọa độ. Bài 4.(4 điểm) Cho nửa đường tròn (O;R) đường kính AB. Kẻ hai tiếp tuyến Ax và By nằm cùng phía với nửa đường tròn. M là điểm bất kỳ trên nửa đường tròn ( M khác A và B). Tiếp tuyến tại M của nửa đường tròn cắt Ax và By lần lượt tại E và N. 1. Chứng minh AE. BN = R 2 . 2. Kẻ MH vuông góc By. Đường thẳng MH cắt OE tại K. Chứng minh AK MN ⊥ . 3. Xác định vị trí của điểm M trên nửa đường tròn (O) để K nằm trên đường tròn (O) . Trong trường hợp này hãy tính Sin MAB ? HẾT ĐỀ SỐ 10. -------------------------------------------------------------- 9 A B C H z 9 x y 16 A C B H R R' O O' Tuyển tập các đề thi kì I. N¨m häc 2010 - 2011 KI M TRA H C K IĐỀ Ể Ọ Ỳ Môn: TOÁN - L p : 9ớ ( Th i gian làm bài : 90 phút )ờ I. PH N TR C NGHI M : ( 4 đi m ) Ầ Ắ Ệ ể Khoanh tròn ch cái in hoa đ ng tr c câu tr l i đúng.ữ ứ ướ ả ờ Câu 1 : Kh ng đ nh nào sau đây là đúngẳ ị : A. S 49có hai c n b c hai s h c là : 7 và -7.ố ă ậ ố ọ B. S 49 ch có m t c n b c hai là 7.ố ỉ ộ ă ậ C. 7 là c n b c hai s h c c a 49.ă ậ ố ọ ủ D. C n b c hai s h c c a 49 là -7.ă ậ ố ọ ủ Câu 2 : K t qu c a phép tính ế ả ủ 6436 + là: A. 10 B. 14 C. 100 D. C 2 tr ng h p A và C đ u đúng.ả ườ ợ ề Câu 3 : C n th c ă ứ x210 − xác đ nh v i các giá tr :ị ớ ị A. x > 5 B. x < 5 C. x 5 ≥ D. x 5 ≤ Câu 4 : Gía tr c a bi u th c ị ủ ể ứ 2 )35( − là: A. 3- 5 B. 35 − C. 3+ 5 D. M t k t qu khác.ộ ế ả Câu 5 : th c a hàm s y = -2x -1 đi qua đi m: Đồ ị ủ ố ể A( 1; 3) B ( -2; 3) C ( 2; 5) D( -3; -7) Câu 6: Hàm s y= ( m - 3 )x +2 ngh ch bi n trên R khi : ố ị ế A. m < 3 B. m > 3 C. m 3 ≥ D. m 3 ≤ Câu 7 : ng th ng y = a x + 2 song song v i đ ng th ng y = -3x +1 khi :Đườ ẳ ớ ườ ẳ A. a = 3 B. a = 3 1 C. a = -6 D. a = -3 Câu 8 : Cho 2 hàm s : y = 2x +5 ( có đ th dố ồ ị 1 ) và y = -3x +5 ( có đ th dồ ị 2 ) A. d 1 // d 2 B. d 1 ≡ d 2 C. d 1 và d 2 c t nhau D. C 3 ý trên đ u saiắ ả ề Câu 9: Cho tam giác ABC vuông t i A ( Hình 1 ), đ ng cao AH. H th c nào sau đây làạ ườ ệ ứ đúng: A. AH = HB . HC Hình 1: B. AB . AC = BC . AH C. AB 2 = BC . HC D. C 3 tr ng h p trên đ u đúng .ả ườ ợ ề Câu 10: Trong hình 1 , sin B b ng:ằ A. BC AH B. AB AC C. BC AC D. C 2 ý B và C đ u đúngả ề Câu 11: Trong hình 1 , h th c nào sau đây là đúng:ệ ứ A. AC = BC . sin B B. AB = AC. sinC C. AB = BC . tg C D. AC = AB. tg C Câu 12: Cho tam giác ABC vuông t i A ( hình 2) Hình 2:ạ Có AB= x, AH = y , AC = z , đ ng cao AH , bi t ườ ế BH=9 cm, CH = 16 cm . K t qu nào sau đây là đúng:ế ả A. x = 10cm B. y = 12 cm C. z = 18 cm D. y = 5cm Câu 13: Trong hình 2 , tr ng h p nào sau đây là đúng :ườ ợ A. SinB = CosC B. CosB = tgC C. tgC = CosA D. cotg B = SinC Câu 14: Cho α là 1 góc nh n , h th c nào sau đây là sai: : ọ ệ ứ A. Sin 2 α + Cos 2 α =-1 B. 0 < sin α < 1 C. tg α = α α cos sin D. sin α = cos ( 90 0 - α ) Câu 15: ng tròn là hình có: Đườ A. Vô s tâm đ i x ng B. M t tâm đ i x ngố ố ứ ộ ố ứ -------------------------------------------------------------- 10 [...]... vng t i C, đường cao CH, I là trung i m AB 4 Chứng minh CH2 + AH2 = 2AH CI 5 Kẻ hai tia Ax và By vng góc v i AB( tia Ax , By nằm cùng phía bờ AB chứa i m C) Đường thẳng vng góc v i CI t i C cắt Ax và By lần lượt t i E và K, tia BC cắt tia Ax ở M Chứng minh E là trung i m AM 6 G i D là giao i m của CH và EB Chứng minh ba i m A, D, K thẳng hàng -HẾT ĐỀ SỐ 17 B i 1: ( 1,5 i m) Thu gọn các biểu... có diện tích nhỏ nhất B i 4: (0,75 i m) Gi i phương trình: x 2 − 3x + 2 + x + 3 = x − 2 + x 2 + 2 x − 3 ***** Hết ***** ĐỀ SỐ 14 Th i gian tập gi i m i đề : 90 phút B i 1.( 1,5 i m) 1 Tính giá trị các biểu thức sau: 2 − 3 − 2 2 2 Chứng minh rằng 1 + 3 3 +1 = 2 2 B i 2.(2 i m) Cho biểu thức : P = a+4 a +4 a +2 + 4−a 2− a ( V i a ≥ 0 ; a ≠ 4 ) 1) Rút gọn biểu thức P 2) Tính P t i a thoả mãn i u kiện... tạo v i trục Ox một góc 450 19 Tuyển tập các đề thi kì I N¨m häc 2010 - 2011 8 Chứng tỏ rằng v i m i m , khi x = 0 đồ thị hàm số ln i qua một i m cố định B i 5: (4 i m) Từ i m A ở ng i đường tròn (O;R) kẻ hai tiếp tuyến AB, AC (v i B và C là hai tiếp i m) G i H là giao i m của OA và BC 4 Tính tích OH OA theo R 5 Kẻ đường kính BD của đường tròn (O) Chứng minh CD... các đề thi kì I N¨m häc 2010 - 2011 AC 5 Chứng minh AD AB = AE AC 6 Tia HD cắt đường tròn (J) ở M, tia HE cắt đường tròn (I) ở N Chứng minh ba i m M, A, N thẳng hàng 7 Chứng minh MN là tiếp tuyến đường tròn ngo i tiếp tam giác ABC 8 Giả sử M; J; I thẳng hàng Tính Sin ABC ? HẾT ĐỀ SỐ 20 B i 1 (2 i m) Rút gọn các biểu thức sau: 1 3+ 3 −1 3 2 2 ( 8 − 32 + 3 18 ) 3 ( 12 + 2 ) ( 3 − 27 ) B i 2.(2 i m)... Gi¶ sư giao i m thø hai cđa hai ®êng th¼ng ®ã v i trơc tung lµ B,C TÝnh c¸c kho¶ng c¸ch AB, BC, CA vµ diƯn tÝch tam gi¸c ABC C©u 11 ( 3 i m ) Cho tam gi¸c ABC vu«ng t i A, BC = 5, AB = 2AC a) TÝnh AC 1 b) Tõ A h¹ ®êng cao AH, trªn AH lÊy mét i m I sao cho AI = 3 AH Tõ C kỴ Cx // AH G i giao i m cđa BI v i Cx lµ D TÝnh diƯn tÝch cđa tø gi¸c AHCD c) VÏ hai ®êng trßn ( B, AB ) vµ ( C, AC ) G i giao... tư I và III B i 3 (2 i m) 1 Gi i phương trình sau: ( 2 x − 1) 2 = 2x −1 2 Tìm các số ngun x thỏa mãn: x − 1 < 2 B i 4 (4 i m) Cho tam giác ABC vng ở A, đường cao AH G i D và E lần lượt là hình 17 Tuyển tập các đề thi kì I N¨m häc 2010 - 2011 chiếu của i m H trên các cạnh AB và AC 4 Chứng minh AD AB = AE AC 5 G i M, N lần lượt là trung i m của BH và CH Chứng minh... gì? T i sao? 2 Tính độ d i AH, BH, CD theo R 3.G i K là trung i m của BC Tia CA cắt đường tròn (A) t i i m thứ hai E khác i m C Chứng minh DK i qua trung i m của EB -HẾT ĐỀ SỐ 19 B i 1 ( 2,5 i m) 3 Tìm i u kiện cho x để biểu thức 2x + 7 có căn bậc hai ? 4 Rút gọn các biểu thức sau: a) A = ( 4 27 − 2 48 − 5 75 ) : 2 3 b) B = 2 3 5 +1+ ÷ 5 −1 5 −1 ÷ ( ) B i 2 (2 i m) Cho biểu thức... trßn ( B, AB ) vµ ( C, AC ) G i giao i m kh¸c A cđa hai ®êng trßn nµy lµ E Chøng minh CE lµ tiÕp tun cđa ®êng trßn ( B ) 14 Tuyển tập các đề thi kì I N¨m häc 2010 - 2011 THI THỬ KÌ I TỐN LỚP 9-ĐỀ SỐ 13 I. Trắc nghiệm: ( 2 i m): Hãy chọn chữ c i đứng trước câu trả l i mà em cho là đúng r i ghi kết quả vào b i làm: 2 Câu 1: Căn bậc hai của ( x − y ) là: A x - y B y - x... Oxy 5 G i P là giao i m của (d1) và (d2) Tìm tọa độ i m P 6 (d1) cắt và (d2) lần lượt cắt Oy t i M và N Tính độ d i MN, NP và MP r i suy ra tam giác MNP vng B i 4 (4 i m) 20 Tuyển tập các đề thi kì I N¨m häc 2010 - 2011 Cho đường tròn (O;R) đường kính AB Đường tròn tâm A bán kính AO cắt đường tròn (O) t i hai i m C và D G i H là giao i m của AB và CD 1 Tứ giác ACOD... độ là cm) B i 4 (4,5 i m) Cho tam giác ABC nhọn Đường tròn tâm O đường kính BC cắt AB ở M và cắt AC ở N G i H là giao i m của BN và CM 1) Chứng minh AH ⊥ BC 2) G i E là trung i m AH Chứng minh ME là tiếp tuyến của đường tròn (O) 3) Chứng minh MN OE = 2ME MO 4) Giả sử AH = BC Tính tang BAC -HẾT - ĐỀ SỐ 15 Th i gian tập gi i : 90 phút B i 1 (2,5 i m) 3 Trục căn thức ở mẫu của các biểu thức sau: . 2 Tuyển tập các đề thi kì I. N¨m häc 2010 - 2011 ĐỀ SỐ 03 Th i gian tập gi i m i đề : 90 phút B i 1.( 1,5 i m) 1. Tính giá trị các biểu thức sau: 2 3. các đề thi kì I. N¨m häc 2010 - 2011 8. Chứng tỏ rằng v i m i m , khi x = 0 đồ thị hàm số luôn i qua một i m cố định. B i 5: (4 i m) Từ i m A ở ngoài