Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 26 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
26
Dung lượng
0,92 MB
Nội dung
GIẢI CHI TIẾT ĐỀ THI QUỐC GIA 2019 – MÃ ĐỀ 101 Sưu tầm: Thầy Ngô Long – Quảng Oai Câu Trong không gian Oxyz , cho mặt phẳng ( P) : x y 3z 1 Vectơ vectơ pháp tuyến ( P) ? A n3 1; 2; 1 Câu C n1 1;3; 1 D n2 2;3; 1 Với a số thực dương tùy ý, log5 a A 2log5 a Câu B n4 1; 2;3 B log5 a C log a D log a Cho hàm số có bảng biến thiên sau Hàm số cho nghịch biến khoảng đây? A 2;0 B 2; C 0; D 0; Câu Nghiệm phương trình: 27 A x B x D x Câu Cho cấp số cộng (un) với u1 u2 Công sai cấp số cộng cho A 6 B C 12 D Câu Đồ thị hàm số có dạng đường cong hình vẽ bên? x1 A y x3 3x Câu B y x 3x C y x x Trong không gian Oxyz , cho đường thẳng d : vectơ phương d ? A u2 (2;1;1) B u4 (1; 2; 3) Câu Câu C x x y 1 z Vectơ 1 C u3 (1; 2;1) Thể tích khối nón có chiều cao h bán kính đáy r A r h B r h C r h 3 Số cách chọn học sinh từ học sinh A 27 B A72 D y x x C C 72 D u1 (2;1; 3) D 2 r h D Câu 10 Trong khơng gian Oxyz , hình chiếu vng góc điểm M 2;1; 1 trục Oz có tọa độ A 2;1;0 B 0;0; 1 C 2;0;0 D 0;1;0 Câu 11 Biết 1 0 f x dx 2 g x dx , f x g x dx A 5 C 1 B D Câu 12 Thể tích khối lăng trụ có diện tích đáy B có chiều cao h A 3Bh B Bh C Bh Câu 13 Số phức liên hợp số phức 4i A 3 4i B 3 4i D Bh C 4i D 4 3i C x 1 D x 3 Câu 15 Họ tất nguyên hàm hàm số f ( x) x A x2 5x C B x2 5x C C 2x C D x C Câu 14 Cho hàm số f ( x) có bảng biến thiên sau: Hàm số cho đạt cực tiểu A x B x Câu 16 Cho hàm số f x có bảng biến thiên sau: Số nghiệm thực phương trình f x A B D C Câu 17 Cho hình chóp S ABC có SA vng góc với mặt phẳng ABC , SA 2a , tam giác ABC vuông B, AB a BC a (minh họa hình vẽ bên) Góc đường thẳng SC mặt phẳng ABC bằng: S C A B A 900 B 450 C 300 D 600 Câu 18 Gọi z1 , z2 hai nghiệm phức phương trình z z 10 Giá trị z12 z22 bằng: A 16 B 56 C 20 D 26 Câu 19 Hàm số y x A x 3 x 2 3 x 3 x có đạo hàm ln B 2x 3 x C x 3 x ln 3 x D x 3x 2x 3 x 1 Câu 20 Giá trị lớn hàm số f x x3 3x đoạn 3;3 A 16 B 20 C D Câu 21 Trong không gian Oxyz , cho mặt cầu S : x y z x z Bán kính mặt cầu cho A B C D 15 Câu 22 Cho khối lăng trụ đứng ABC A ' B ' C ' có đáy tam giác cạnh a AA ' 3a (minh họa hình vẽ bên) Thể tích khối lăng trụ cho 3a A a3 C 3a a3 D B Câu 23 Cho hàm số f ( x) có đạo hàm f ( x) x x , x A B C Số điểm cực trị hàm số cho D Câu 24 Cho a b hai số thực dương thỏa mãn a 4b 16 Giá trị 4log a log b A B C 16 D Câu 25 Cho hai số phức z1 i z2 2i Trên mặt phẳng tọa độ Oxy , điểm biểu diễn số phức 3z1 z2 có tọa độ là: A 4; 1 B 1; C 4;1 D 1; Câu 26 Nghiệm phương trình log3 x 1 log3 x 1 A x B x 3 C x D x Câu 27 Một sở sản xuất có hai bể nước hình trụ có chiều cao nhau, bán kính đáy 1m 1, 2m Chủ sở dự định làm bể nước mới, hình trụ, có chiều cao tích tổng thể tích hai bể nước Bán kính đáy bể nước dự định làm gần với kết đây? A 1,8m B 1, m C 2, 2m D 1,6 m Câu 28 Cho hàm số y f x có bảng biến thiên sau: Tổng số tiệm cận đứng tiệm cận ngang đồ thị hàm số cho là: A B C D Câu 29 Cho hàm số f x liên tục Gọi S diện tích hình phẳng giới hạn đường y f x , y 0, x 1 x (như hình vẽ bên) Mệnh đề đúng? A S f x dx f x dx 1 B S 1 1 1 C S f x dx f x dx f x dx f x dx 1 1 D S f x dx f x dx Câu 30 Trong không gian Oxyz , cho hai điểm A 1;3;0 B 5;1; 2 Mặt phẳng trung trực đoạn thẳng AB có phương trình là: A x y z B x y z C x y z D 3x y z 14 Câu 31 Họ tất nguyên hàm hàm số f x C x 1 C 2ln x 1 C x 1 2x 1 x 1 khoảng 1; C x 1 D 2ln x 1 C x 1 A 2ln x 1 B 2ln x 1 Câu 32 Cho hàm số f x Biết f f x 2cos2 x 1, x , f x dx 4 A 16 14 B 16 16 C 16 D 16 16 16 Câu 33 Trong không gian Oxyz , cho điểm A1;2;0 , B 2;0;2 , C 2; 1;3 , D 1;1;3 Đường thẳng qua C vng góc với mặt phẳng ABD có phương trình x 2 4t A y 2 3t z t Câu 34 Cho số phức x 4t B y 1 3t z t x 2 4t C y 4 3t z t x 2t D y t z 3t z thỏa mãn z i i z 10i Môđun z A B C D Câu 35 Cho hàm số f x , bảng xét dấu f ' x sau: àm số y f x nghịch biến khoảng đây? A 4; B 2;1 C 2; Câu 36 Cho hàm số y f x , hàm số y f ' x liên tục D 1; có đồ thị hình vẽ bên Bất phương trình f x x m ( m tham số thực) nghiệm với x 0; A m f B m f C m f D m f Câu 37 Chọn ngẫu nhiên hai số khác từ 25 số nguyên dương Xác suất để chọn hai số có tổng số chẵn 313 13 12 A B C D 625 25 25 Câu 38 Cho hình trụ có chiều cao Cắt hình trụ cho mặt phẳng song song với trục cách trục khoảng , thiết diện thu có diện tích 30 Diện tích xung quanh hình trụ cho A 10 3 B 39 C 20 3 D 10 39 Câu 39 Cho phương trình log9 x log3 3x 1 log3 m ( m tham số thực) Có tất giá trị nguyên tham số m để phương trình cho có nghiệm? A B C D Vơ số Câu 40 Cho hình chóp S ABCD có đáy hình vng cạnh a, mặt bên SAB tam giác nằm mặt phẳng vng góc với mặt phẳng đáy (minh họa hình vẽ bên) Khoảng cách từ A đến mặt phẳng SBD A 21a 14 B 21a C 2a D 21a 28 Câu 41 Cho hàm số f x có đạo hàm liên tục A Biết f xf x dx 1, x f x dx 31 B 16 C D 14 Câu 42 Trong không gian Oxyz , cho điểm A 0; 4; 3 Xét đường thẳng d thay đổi, song song với trục Oz cách trục Oz khoảng Khi khoảng cách từ A đến d nhỏ nhất, d qua điểm đây? A P 3;0; 3 B M 0; 3; 5 C N 0;3; 5 D Q 0;5; 3 Câu 43 Cho hàm số bậc ba y f x có đồ thị hình vẽ bên Số nghiệm thực phương trình f x3 3x A B C D Câu 44 Xét số phức z thỏa mãn z Trên mặt phẳng tọa độ Oxy , tập hợp điểm biểu diễn số phức iz đường trịn có bán kính 1 z A 34 B 26 C 34 w Câu 45 Cho đường thẳng y x parabol y D 26 x a ( a tham số thực dương) Gọi S1 S diện tích hai hình phẳng gạch chéo hình vẽ Khi S1 S2 a thuộc khoảng đây? 3 1 A ; 7 2 1 B 0; 3 1 2 C ; 3 5 Câu 46 Cho hàm số y f x , bảng biến thiên hàm số f ' x sau: 2 3 D ; 5 7 Số điểm cực trị hàm số y f x x A B C D Câu 47 Cho lăng trụ ABC A ' B ' C ' có chiều cao đáy tam giác cạnh Gọi M , N P tâm mặt bên ABB ' A ', ACC ' A ' BCC ' B ' Thể tích khối đa diện lồi có đỉnh điểm A, B, C, M , N , P A 27 B 21 Câu 48 Trong không gian Oxyz , cho mặt cầu C 30 S : x2 y z D 36 Có tất điểm A a; b; c ( a, b, c số nguyên) thuộc mặt phẳng Oxy cho có hai tiếp tuyến S qua A hai tiếp tuyến vng góc với nhau? A 12 Câu 49 B C 16 x x x 1 x y x x m ( m tham số x x 1 x x 1 C2 Tập hợp tất giá trị m để C1 C2 cắt (Mã đề 001) Cho hai hàm số y thực) có đồ thị C1 bốn điểm phân biệt A ; 2 B 2; Câu 50 D C ; (Mã đề 001) Cho phương trình 4log 22 x log x D 2; x m ( m tham số thực) Có tất giá trị ngun dương m để phương trình cho có hai nghiệm phân biệt? A 49 B 47 C Vô số D 48 Câu 1.B 11.A 21.C 31.B 2.A 12.B 22.A 32.C 3.C 13.C 23.D 33.C 4.C 14.C 24.A 34.C 41.B 42.C 43.B 44.A BẢNG ĐÁP ÁN 5.D 6.A 15.A 16.C 25.A 26.D 35.B 36.B 45.C 46.C 7.C 17.B 27.D 37.C 8.A 18.A 28.D 38.C 9.C 19.A 29.B 39.A 10.B 20.B 30.B 40.B 47.A 48.A 49.B 50.B LỜI GIẢI CHI TIẾT Trong không gian Oxyz , cho mặt phẳng ( P) : x y 3z 1 Vectơ vectơ pháp tuyến ( P) ? A n3 1; 2; 1 B n4 1; 2;3 C n1 1;3; 1 D n2 2;3; 1 Lời giải Chọn B Từ phương trình mặt phẳng (P) suy vectơ pháp tuyến mặt phẳng n4 1; 2;3 Câu Với a số thực dương tùy ý, log5 a A 2log5 a Câu log a Lời giải B log5 a C D log a Chọn A Vì a số thực dương nên ta có log5 a 2log5 a Cho hàm số có bảng biến thiên sau Hàm số cho nghịch biến khoảng đây? A 2;0 B 2; C 0; D 0; Lời giải Chọn C Dựa vào bảng biến thiên ta thấy khoảng 0; f ' x Vậy hàm số nghịch biến khoảng 0; Câu 27 Nghiệm phương trình: A x B x C x Lời giải Chọn C x1 D x 27 x x Ta có: Câu Cho cấp số cộng (un) với u1 u2 Công sai cấp số cộng cho x1 A 6 x1 B C 12 Lời giải D Chọn D Ta có: d u2 u1 Câu Đồ thị hàm số có dạng đường cong hình vẽ bên? A y x3 3x B y x 3x C y x x Lời giải D y x x Chọn A Dạng hàm bậc ba nên loại C loại D Từ đồ thị ta có a Do loại B Câu Trong khơng gian Oxyz , cho đường thẳng d : vectơ phương d ? A u2 (2;1;1) B u4 (1;2; 3) x y 1 z Vectơ 1 C u3 (1;2;1) Lời giải D u1 (2;1; 3) Chọn C Câu Câu Một vectơ phương d là: u (1;2;1) u3 Thể tích khối nón có chiều cao h bán kính đáy r A r h B r h C r h 3 Lời giải Chọn A D 2 r h Thể tích khối nón có chiều cao h bán kính đáy r là: V r h Số cách chọn học sinh từ học sinh A 27 B A72 C C 72 D Lời giải Chọn C Mỗi cách chọn học sinh từ học sinh tổ hợp chập phần tử Số cách chọn học sinh từ học sinh là: C 72 Câu 10 Trong khơng gian Oxyz , hình chiếu vng góc điểm M 2;1; 1 trục Oz có tọa độ A 2;1;0 B 0;0; 1 C 2;0;0 Lời giải D 0;1;0 Chọn B Hình chiếu vng góc điểm M 2;1; 1 trục Oz có tọa độ là: 0;0; 1 Câu 10 Biết 1 0 f x dx 2 g x dx , f x g x dx A 5 Chọn A B C 1 Lời giải D 1 0 f x g x dx f x dx g x dx 2 5 Câu 11 Thể tích khối lăng trụ có diện tích đáy B có chiều cao h A 3Bh B Bh C Bh Lời giải Chọn B D Bh Thể tích khối lăng trụ có diện tích đáy B có chiều cao h là: V B.h Câu 13 Số phức liên hợp số phức 4i A 3 4i B 3 4i C 4i Lời giải D 4 3i Chọn C Số phức liên hợp số phức a bi số phức a bi Vậy số phức liên hợp số phức 4i số phức 4i Câu 14 Cho hàm số f ( x) có bảng biến thiên sau: Hàm số cho đạt cực tiểu A x B x C x 1 D x 3 Lời giải Chọn C Theo bảng biến thiên hàm số đạt cực tiểu điểm x 1 Câu 15 Họ tất nguyên hàm hàm số f ( x) x A x2 5x C B x2 5x C C 2x C D x C Lời giải Chọn A Họ tất nguyên hàm hàm số f ( x) x F ( x) x2 5x C Câu 16 Cho hàm số f x có bảng biến thiên sau: z z Áp dụng định lý Viet áp dụng cho phương trình ta được: z1 z2 10 Khi ta có z12 z22 z1 z2 z1 z2 36 20 16 Câu 19 Hàm số y x A x 3 2 3 x x 3 x có đạo hàm ln B 2x 3 x ln C x 3 x 3 x D x 3x 2x 3 x 1 Lời giải Chọn A y ' 2x 3 x ' x 3 x 3 x ln Câu 20 Giá trị lớn hàm số f x x3 3x đoạn 3;3 A 16 B 20 Chọn B f x x3 3x tập xác định C Lời giải D f ' x 3x2 x 1 3;3 f 1 0; f 1 4; f 3 20; f 3 16 Từ suy max f x f (3) 20 3;3 Câu 21 Trong không gian Oxyz , cho mặt cầu S : x y z x z Bán kính mặt cầu cho A B C Lời giải D 15 Chọn C x2 y z x z x2 y z 2.(1).x 2.0 y 2.1.z a 1, b 0, c 1, d -7 Tâm mặt cầu I 1;0;1 bán kính R a b2 c d 1 Câu 22 Cho khối lăng trụ đứng ABC A ' B ' C ' có đáy tam giác cạnh a AA ' 3a (minh họa hình vẽ bên) Thể tích khối lăng trụ cho 3a A a3 C 3a a3 D Lời giải B Chọn A a2 ; AA ' a 3a3 Từ suy V a 3.a 4 Ta có S ABC 02 12 Câu 23 Cho hàm số f ( x) có đạo hàm f ( x) x x , x A B Số điểm cực trị hàm số cho C D Lời giải Chọn D Bảng biến thiên Từ bảng biến thiên ta thấy hàm số cho có điểm cực trị điểm cực tiểu x Câu 24 Cho a b hai số thực dương thỏa mãn a 4b 16 Giá trị 4log a log b A B C 16 Lời giải D Chọn A 4log a log b log a log b log a 4b log 16 log 24 Câu 25 Cho hai số phức z1 i z2 2i Trên mặt phẳng tọa độ Oxy , điểm biểu diễn số phức 3z1 z2 có tọa độ là: A 4; 1 B 1; C 4;1 Lời giải D 1; Chọn A 3z1 z2 1 i 1 2i i Suy ra: Tọa độ điểm biểu diễn là: 4; 1 Câu 26 Nghiệm phương trình log3 x 1 log3 x 1 A x B x 3 C x Lời giải D x Chọn D Điều kiện: x Ta có: log x 1 log x 1 1 1 x x x 3 x 1 x x Vậy: Nghiệm phương trình x Câu 27 Một sở sản xuất có hai bể nước hình trụ có chiều cao nhau, bán kính đáy 1m 1, 2m Chủ sở dự định làm bể nước mới, hình trụ, có chiều cao tích tổng thể tích hai bể nước Bán kính đáy bể nước dự định làm gần với kết đây? A 1,8m B 1, m C 2, 2m D 1,6 m Lời giải Chọn D Gọi R1; R2 ; R bán kính trụ thứ nhất, thứ hai dự kiến làm,ta có: V V1 V2 R h R12 h R2 h R R12 R2 R R12 R2 12 1, 1,56(m) Vậy: Giá trị cần tìm : 1,6 m Câu 28 Cho hàm số y f x có bảng biến thiên sau: Tổng số tiệm cận đứng tiệm cận ngang đồ thị hàm số cho là: A B C Lời giải D Chọn D Hàm số y f x có tập xác định: D \ 0 Ta có: lim f x Khơng tồn tiệm cận ngang x x lim f x đồ thị hàm số y f x có tiệm cận ngang y x lim f x ; lim f x 4 x 0 x 0 Đồ thị hàm số y f x có tiệm cận đứng x Vậy tổng số tiệm cận đứng ngang Câu 29 Cho hàm số f x liên tục Gọi S diện tích hình phẳng giới hạn đường y f x , y 0, x 1 x (như hình vẽ bên) Mệnh đề đúng? A S f x dx f x dx 1 1 B S 1 f x dx f x dx C S 1 f x dx f x dx 1 D S f x dx f x dx Lời giải Chọn B Ta có: hàm số f (x) x 1;1; f (x) x 1;4 , nên: 4 1 1 1 S f x dx f x dx f x dx f x dx f x dx Chọn đáp án B Câu 30 Trong không gian Oxyz , cho hai điểm A 1;3;0 B 5;1; 2 Mặt phẳng trung trực đoạn thẳng AB có phương trình là: A x y z B x y z C x y z D 3x y z 14 Lời giải Chọn B Mặt phẳng trung trực đoạn thẳng AB qua trung điểm I 3; 2; 1 , có vec tơ pháp tuyến AB 2; 1; 1 có phương trình: x 3 1 y 1 z 1 x y z Chọn đáp án B n Câu 31 Họ tất nguyên hàm hàm số f x C x 1 C 2ln x 1 C x 1 2x 1 x 1 khoảng 1; C x 1 D 2ln x 1 C x 1 Lời giải A 2ln x 1 B 2ln x 1 Chọn B Ta có f x dx 2x 1 x 1 x 1 x 1 dx 2 dx dx 2ln x 1 C 2 x 1 x x 1 Câu 32 Cho hàm số f x Biết f f x 2cos2 x 1, x , f x dx 4 A 16 14 B 16 16 C 16 D 16 16 Lời giải Chọn C Ta có f x f x dx 2cos x 1 dx cos x dx sin x x C Vì f C f x sin x x Vậy 1 16 f x dx sin x x dx cos2x x x 16 0 0 16 Câu 33 Trong không gian Oxyz , cho điểm A1;2;0 , B 2;0;2 , C 2; 1;3 , D 1;1;3 Đường thẳng qua C vuông góc với mặt phẳng ABD có phương trình x 2 4t A y 2 3t z t x 4t B y 1 3t C z t Lời giải x 2 4t y 4 3t z t x 2t D y t z 3t Chọn C AB 1; 2;2 AD 0; 1;3 AB AD 4; 3; 1 Đường thẳng qua C 2; 1;3 vng góc với mặt phẳng ABD có phương trình x 4t y 1 3t z t Điểm E 2; 4;2 thuộc đường thẳng trên, suy đường thẳng cần tìm trùng với đường thẳng có x 2 4t phương trình y 4 3t z t Chọn đáp án đáp án C Câu 34 Cho số phức A B Chọn C Đặt z x yi, x, y z thỏa mãn z i i z 10i Môđun z C Lời giải z i i z 10i x yi i i x yi 10i x y x y 3 i 10i x y x y 10 x y 1 z 2i Vậy z Câu 35 Cho hàm số f x , bảng xét dấu f ' x sau: D àm số y f x nghịch biến khoảng đây? A 4; B 2;1 C 2; D 1; Lời giải Chọn B y 2 f x 3 2x 1 Hàm số nghịch biến y 2 f x f x 3 2x 2 x x Vậy chọn đáp án B Câu 36 Cho hàm số y f x , hàm số y f ' x liên tục có đồ thị hình vẽ bên Bất phương trình f x x m ( m tham số thực) nghiệm với x 0; A m f B m f C m f D m f Lời giải Chọn B f x x m f x x m Đặt g ( x) f x x xét khoảng 0; g ( x) f x Từ đồ thị ta thấy g ( x) f x 1 với x 0; Suy hàm số g ( x) f x x nghịch biến khoảng 0; Bất phương trình f x x m ( m tham số thực) nghiệm với x 0; m lim g x f (0) x 0 Câu 37 Chọn ngẫu nhiên hai số khác từ 25 số nguyên dương Xác suất để chọn hai số có tổng số chẵn 313 13 12 A B C D 625 25 25 Lời giải Chọn C Số cách chọn hai số khác từ 25 số nguyên dương C25 300 n 300 Gọi A biến cố “Tổng hai số chọn số chẵn” Ta có hai trường hợp: + TH 1: Chọn số chẵn từ 12 số chẵn có C122 66 cách + TH 2: Chọn số lẻ từ 13 số lẻ có C132 78 cách Do n A 66 78 144 Vậy xác suất cần tìm P A 144 12 300 25 Câu 38 Cho hình trụ có chiều cao Cắt hình trụ cho mặt phẳng song song với trục cách trục khoảng , thiết diện thu có diện tích 30 Diện tích xung quanh hình trụ cho A 10 3 B 39 C 20 3 D 10 39 Lời giải Chọn C Gọi O, O tâm hai đáy ABCD thiết diện song song với trục với A, B O ; C , D O Gọi H trung điểm AB OH d OO, ABCD Vì S ABCD 30 AB.BC 30 AB 30 HA HB Bán kính đáy r OH HA2 Diện tích xung quanh hình trụ S xq 2 rh 2 2.5 20 3 Câu 39 Cho phương trình log9 x log3 3x 1 log3 m ( m tham số thực) Có tất giá trị nguyên tham số m để phương trình cho có nghiệm? A B C Lời giải Chọn A Điều kiện: x D Vô số m Phương trình cho tương đương: log3 x log3 3x 1 log3 x m 3x m x với x 3x 1 Có f x 0, x 3x 1 Xét hàm số f x Dựa vào BBT, phương trình có nghiệm Do m m 1 0m3 m 1,2 Câu 40 Cho hình chóp S ABCD có đáy hình vng cạnh a, mặt bên SAB tam giác nằm mặt phẳng vng góc với mặt phẳng đáy (minh họa hình vẽ bên) Khoảng cách từ A đến mặt phẳng SBD A 21a 14 B 21a C 2a D 21a 28 Lời giải Chọn B S A H B D I O K C Gọi H trung điểm AB Khi đó, SH ABCD Gọi O giao điểm AC BD suy AC BD Kẻ HK BD K ( K trung điểm BO ) Kẻ HI SH I Khi đó: d A, SBD 2d H , SBD 2HI a a , HK AO 1 28 a 21 HI Khi đó: 2 HI SH HK 3a 14 a 21 Suy ra: d A, SBD HI Xét tam giác SHK , có: SH Câu 41 Cho hàm số f x có đạo hàm liên tục A Biết f xf x dx 1, x f x dx 31 B 16 C D 14 Lời giải Chọn B Xét xf x dx Đặt: t 4x Xét I 4 1 t f t dt t f t dt 16 x f x dx 16 0 4 x f x dx x df x Suy ra: I x f x x f x dx 42 f 2.16 16 Câu 42 Trong không gian Oxyz , cho điểm A 0; 4; 3 Xét đường thẳng d thay đổi, song song với trục Oz cách trục Oz khoảng Khi khoảng cách từ A đến d nhỏ nhất, d qua điểm đây? A P 3;0; 3 B M 0; 3; 5 C N 0;3; 5 D Q 0;5; 3 Lời giải Chọn C Đường thẳng d thay đổi, song song với trục Oz cách trục Oz khoảng nên d nằm mặt trụ tròn xoay có trục Oz bán kính Điểm A 0; 4; 3 thuộc mặt phẳng yOz Khoảng cách từ A đến d nhỏ d A; d min d A; Oz d d ; Oz Khi đó, đường thẳng d qua giao điểm cố định I 0;3;0 th104 đãuộc Oy , d có phương trình dạng x y nên qua điểm N 0;3; 5 z t Câu 43 Cho hàm số bậc ba y f x có đồ thị hình vẽ bên Số nghiệm thực phương trình f x3 3x A B C Lời giải D Chọn B Đặt t x3 3x t 3x2 Ta có bảng biến thiên Khi f t 1 Dựa vào đồ thị hàm số f t ta thấy phương trình (1) có nghiệm phân biệt t1 2, 2 t2 0, t3 , t4 Mỗi nghiệm t phương trình 1 , ta thay vào phương trình t x3 3x để tìm nghiệm x Khi + t1 2 phương trình t x3 3x có nghiệm + 2 t2 phương trình t x3 3x có nghiệm + t3 phương trình t x3 3x có nghiệm + t4 phương trình t x3 3x có nghiệm Vậy phương trình f x3 3x có nghiệm Câu 44 Xét số phức z thỏa mãn z Trên mặt phẳng tọa độ Oxy , tập hợp điểm biểu diễn số phức iz đường trịn có bán kính 1 z A 34 B 26 C 34 Lời giải Chọn A iz w 1 z w iz z w i w 1 z z w i w w i w (*) w Gọi w x yi, x, y 26 D thay vào (*) ta có: 2 2 x yi i x yi x y 1 x y x y 8x y 14 x y 34 2 Vậy tập hợp điểm biểu diễn số phức w Câu 45 Cho đường thẳng y x parabol y iz đường trịn có bán kính 1 z 34 x a ( a tham số thực dương) Gọi S1 S diện tích hai hình phẳng gạch chéo hình vẽ Khi S1 S2 a thuộc khoảng đây? 3 1 A ; 7 2 1 B 0; 3 1 2 C ; 3 5 2 3 D ; 5 7 Lời giải Chọn C Phương trình hồnh độ giao điểm: x a x x x 2a (1) 1 2a 0a Phương trình có nghiệm dương phân biệt S 2 2a P phương trình (1) có hai nghiệm dương phân biệt x1 x2 , x1 x2 1 S1 S2 x a x dx x a x dx 2 0 x1 Khi a 1 1 x1 ax1 x12 x23 ax2 x22 x13 ax1 x12 6 1 x23 ax2 x22 x22 6a 3x2 Từ (1) suy 2a x22 x2 x2 0(l ) 1 2 Thế vào (2) ta được: x2 3x2 a 0,375 ; x2 3 5 (2) Câu 46 Cho hàm số y f x , bảng biến thiên hàm số f ' x sau: Số điểm cực trị hàm số y f x x A B C ải D Chọn C Ta có y x 1 f x x x x x x a ; 1 x x a 0, a ; 1 x y x x b 1;0 x x b 0, b 1;0 f x x x x c 0;1 x x c 0, c 0;1 x x d 1; x x d 0, d 1; (1) (2) (3) (4) Phương trình (1) vơ nghiệm, phương trình (2),(3),(4) có hai nghiệm phân biệt khác b, c, d đôi khác nên nghiệm phương trình (2),(3),(4) đơi khác Do f x x có nghiệm phân biệt Vậy y có nghiệm phân biệt, số điểm cực trị hàm số y f x x Câu 47 Cho lăng trụ ABC A ' B ' C ' có chiều cao đáy tam giác cạnh Gọi M , N P tâm mặt bên ABB ' A ', ACC ' A ' BCC ' B ' Thể tích khối đa diện lồi có đỉnh điểm A, B, C, M , N , P A 27 B 21 C 30 Lời giải Chọn A D 36 Gọi h chiều cao hình lăng trụ ABC A ' B ' C ' 9 8.9 72 Vì ABC có độ dài cạnh nên SABC 62 Thể tích lặng trụ ABC A ' B ' C ' V h SABC Gọi E trung điểm cạnh AA ' 1 1 Thể tích khối chóp A.EMN VA.EMN d A, EMN SEMN h SABC V 3 24 Thể tích khổi đa diện ABCMNP là: 1 VABCMNP V 3VA.EMN V V V 27 2 24 S : x2 y z Có tất điểm số nguyên) thuộc mặt phẳng Oxy cho có hai tiếp tuyến Câu 48 Trong không gian Oxyz , cho mặt cầu A a ;b ; c ( a , b , c S qua A hai tiếp tuyến vng góc với nhau? B A 12 C 16 Lời giải D Chọn A Mặt cầu S : x y z có tâm I 0;0; , bán kính R A a ; b ; c Oxy A a ; b ;0 * Xét trường hợp A S , ta có a b2 Lúc tiếp tuyến S thuộc tiếp diện S A nên có vơ số tiếp tuyến vng góc a a a 1 a 1 ; ; ; Trường hợp ta có cặp giá trị a; b b b 1 b b * Xét trường hợp A S Khi đó, tiếp tuyến S qua A thuộc mặt nón đỉnh A Nên tiếp tuyến vng góc với A Điều kiện để có tiếp tuyến vng góc góc đỉnh hình nón lớn 90 Giả sử AN ; AM tiếp tuyến S thỏa mãn AN AM ( N ; M tiếp điểm) Dễ thấy ANIM hình vng có cạnh IN R IA 2 IA R a b 2 Điều kiện phải tìm a b IA IA Vì a , b số nguyên nên ta có cặp nghiệm a; b 0;2 , 0; 2 , 2;0 , 2;0 , 1;1 , 1; 1 , 1;1 , 1; 1 Vậy có 12 điểm A thỏa mãn yêu cầu x x x 1 x Câu 49: (Mã đề 001) Cho hai hàm số y y x x m ( m tham số x x 1 x x 1 thực) có đồ thị C1 C2 Tập hợp tất giá trị m để C1 C2 cắt bốn điểm phân biệt A ; 2 B 2; C ; D 2; Lời giải Chọn B x x x 1 x Xét phương trình x2 xm x x 1 x x 1 x x x 1 x (1) x2 x m x x 1 x x 1 Hàm số x x x x 1 2 x 2 x x x 1 x x x 1 x x 1 p x x2 x x x 1 x x 1 x x x x x x 2 x x 1 x x 1 1 2 0, x 2; \ 1;0;1; 2 2 x x x x Ta có p x 1 2 0, x 2 2 x x 1 x x nên hàm số y p x đồng biến khoảng ; 1 , 1;0 , 0;1 , 1; , 2; Mặt khác ta có lim p x lim p x x x Bảng biến thiên hàm số y g x : x g x 2 || + + + + 49 12 g x Do để C1 1 C2 cắt bốn điểm phân biệt phương trình (1) phải có nghiệm phân biệt Điều xảy đường thẳng y m cắt đồ thị hàm số y p x điểm phân biệt m Câu 50: Cho phương trình 4log 22 x log x x m ( m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có hai nghiệm phân biệt? A 49 B 47 C Vô số D 48 Lời giải Chọn B x x x Điều kiện: x m m Với m nguyên dương ta có: x 2 4log x log x x 4log x log x m x x m x log m +) Để phương trình cho có nghiệm phân biệt có trường hợp: - TH1: log m 72 m 72 Trường hợp m3; 4;5; ; 48 , có 46 giá trị nguyên dương m - TH2: log7 m m Trường hợp có giá trị m thỏa mãn Vậy có tất 47 giá trị m thỏa mãn yêu cầu Chọn B ... LỜI GIẢI CHI TIẾT Trong không gian Oxyz , cho mặt phẳng ( P) : x y 3z 1 Vectơ vectơ pháp tuyến ( P) ? A n3 1; 2; 1 B n4 1; 2;3 C n1 1;3; 1 D n2 2;3; 1 Lời giải. .. tất giá trị m để C1 C2 cắt (Mã đề 001) Cho hai hàm số y thực) có đồ thị C1 bốn điểm phân biệt A ; 2 B 2; Câu 50 D C ; (Mã đề 001) Cho phương trình 4log 22 x... cực trị hàm số cho C D Lời giải Chọn D Bảng biến thi? ?n Từ bảng biến thi? ?n ta thấy hàm số cho có điểm cực trị điểm cực tiểu x Câu 24 Cho a b hai số thực dương thỏa mãn a 4b 16 Giá trị 4log