1. Trang chủ
  2. » Nghệ sĩ và thiết kế

Tải BÍ KÍP BẤM MÁY TÍNH CASIO TOÁN HÌNH ÔN THI THPT QUỐC GIA [Không Gian]

19 29 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 19
Dung lượng 908,99 KB

Nội dung

Phần quan trọng của phương pháp này là cách chọn hệ trục tọa độ, không có phương pháp tổng quát để lựa chọn hệ trục chúng ta chỉ cần tìm 3 cạnh đôi một vuông góc với nhau, có những bài[r]

(1)

HÌNH HỌC KHƠNG GIAN SỬ DỤNG CASIO

I Phương pháp giải toán

Việc BGD đề thi trắc nghiệm mơn Tốn đa phần học sinh tốc độ để giải toán hình học khơng gian Để giúp em có cách nhanh giải toán trắc nghiệm thầy biên soạn chun đề sử dụng casio hình học khơng gian, phần casio hỗ trợ phần nhỏ giảm bớt thời gian chọn đáp án, em ý phương pháp khơng phải tồn nhanh để giải tốn, có sử dụng phương pháp truyền thống giải nhanh nhiều Vì em coi phương pháp để tham khảo học hỏi thêm

Phương pháp tọa độ hóa khơng gian ta cần phải thực yêu cầu sau

Bước 1: Chọn hệ trục tọa độ Oxyz thích hợp ( ý đến vị trí gốc O), chọn hệ trục cho có đường thẳng đơi vng góc với

Bước Xác định tọa độ điểm có liên quan ví dụ đề yêu cầu tính thể tích khối chop SABC cần tìm tọa độ điểm S;A;B;C xác định tọa độ điểm ta dựa vào yếu tố sau:

- Ý nghĩa hình học tọa độ điểm điẻm nằm cá trục tọa độ, mặt phẳng tọa độ ví dụ điểm A nằm truc Ox A( a;0;0) hay điểm A nằm mặt phẳng oxy A( a;b;0) , ý việc xác định tọa độ điểm quan trọng nên cẩn trọng, việc xác định tọa độ điểm để tìm A(x;y;z) từ điểm ta phải kẻ vng góc vào hệ trục tọa độ chọn

- Dựa vào quan hệ hình học nhau, vng góc, song song, phương, thẳng hàng, điểm chia đoạn thẳng để tìm tọa độ

- Xem điểm cần tìm giao điểm đường thẳng, mặt phẳng - Dựa vào quan hệ góc đường thẳng, mặt phẳng

- Bước Sử dụng kiến thức tọa độ để giải tốn ( em có

(2)

tại

https://docs.google.com/forms/d/e/1FAIpQLSfnskdQNwwY8knBCp0Lg70Ox FV3z0S7qgsdCWKcQgAmL64afQ/viewform

hoặc tham gia group Thủ thuật caiso khối A

https://www.facebook.com/groups/1613922545604453/ để tìm hiểu thêm

- Độ dài đoạn thẳng

- Khoảng cách từ điểm đến mặt phẳng, đường thẳng - Khoảng cách hai đường thẳng

- Góc hai đường thẳng, hai mặt phẳng, đường thẳng mặt phẳng - Thể tích khối đa diện

- Diện tích hình

- Quan hệ song song, vuơng giĩc II Bổ sung kiến thức :

1 Cho khối chóp S.ABC Trên ba đường thẳng SA, SB, SC lấy ba điểm A', B', C' khác với S Ta ln có:

SC SC SB SB SA SA V

V

ABC S

C B A S

' ' '

' ' '

2 Xác định tọa độ điểm khơng gian

Tọa độ hình chiếu vng góc A lên mặt phẳng Oxy H(a;b) ta tính AH=c, kho A có tọa độ A(a;b;c) với giả sử thành phần tọa độ A nằm phần dương

(3)

3 Phương trình tổng quát mp   có dạng: Ax + By + Cz + D = Với 2

0

ABC  ; nA B C; ; là VTPT mp   Chú ý

Giả sử mp   có cặp VTCP aa a a1; 2; 3

  

1; ;2

b b b b Nên có VTPT là:

n 3 1

2 3 1

, a a ;a a ;a a a b

b b b b b b

            

Phương trình mặt phẳng toạ độ:

(Oxy) : z = ; (Ozy) : x = (Oxz) : y =

Phương trình mặt phẳng có VTPT nA B C; ;  điểm quaM0x y z0; 0; 0

 0  0  0 A xxB yyC zz

Để viết phương trình mặt phẳng ta cần tìm VTPT VTCP qua một điểm

5 Khoảng cách

a Khoảng cách hai điểm AB

  2  2 2

B A B A B A

ABxxyyzz

b Khoảng cách từ điểm M0(x0 ; y0 ; z0) đến mp   : Ax + By + Cz + D =

 

  0

0, 2 2 2

Ax By Cz D d M

A B C

    

 

c Khoảng cách từ điểm M1 đến đường thẳng d Lấy M0 d

Tìm VTCP đường thẳng d u

 

1

, ,

M M u d M d

u        

d Khoảng cách hai đường thẳng chéo  /

Gọi u /

u 

VTCP  /

(4)

  / 0/ /

/

, ,

, u u M M d

u u

 

 

  

 

 

  

 

4 Chọn hệ trục tọa độ

Phần quan trọng phương pháp cách chọn hệ trục tọa độ, khơng có phương pháp tổng quát để lựa chọn hệ trục cần tìm cạnh đơi vng góc với nhau, có tốn lựa chọn nhiều hệ trục tọa độ chọn hệ trục tọa độ cho việc tìm tọa độ điểm dễ dàng nhiều số tốt nhất, có tốn việc tạo hệ trục tọa độ phức tạp dẫn đến việc tính tọa độ chúng gặp khó khăn phải theo hướng giải theo phương pháp truyền thống Tóm lại cần ý

 Hệ trục tọa độ nằm đường thẳng đôi vng góc

 Gốc tọa độ thường chân đường cao hình chóp, lăng trụ có đáy hình vng, hình chữ nhật, tam giác vng trung điểm cạch đó, theo giả thiết toán…

 Một số cách chọn hệ trục tọa độ Tứ diện

Hình chóp đáy tứ giác lồi

(5)

Hình lăng trụ xiên, lăng trụ đứng tương tự hình chóp, riêng hình hộp có nhiều cách lựa chọn hệ trục tọa độ

II Bài tập minh họa

Các tập qui ước với a=1 khơng nói thêm

Câu Đề minh họa BGD 2017

Cho tứ diện ABCD có cạnh AB,AC,AD đơi vng góc với AB=6a, AC=7a, AD=4a Gọi M,N,P tương ứng trung điểm cạnh BC, CD, DB Tính thể tích V tứ diện AMNP

A

2a

B

14a C 28

3 a

D

7a

(6)

Do AB;AC; AD đơi vng góc với chọn hệ trục tọa độ Oxyz theo hình vẽ ta cần tính thể tích tứ diện AMNP ta cần tìm tọa độ A;M;N;P, M; N;P trung điểm BC; CD; BD ta có tọa độ đỉnh

sau A(0;0;0); ( ;3;0);7 ( ;0; 2); P(0;3; 2)7

2

M N

Sử dụng cơng thức tính thể tích chóp tam giác

1 3

1

x x x

V y y y

z z z

1 1 2 3

1

x y z

V x y z

x y z

 với ( ; ; ),x y zi i i i1, 2,3 tọa độ   AM AN AP; ; ta khơng phải tính trực tiếp mà nhập vào máy tính ví dụ tính AM nhập 0;3 0; 0

2   ví dụ điểm tương đối dễ tính nhẩm em tính nhẩm ngay, ví dụ khác để tránh nhầm lần ta nên nhập

Trước tiên ta vào chế độ matrận w6

Chọn 1;2;3 chế độ lưu ma trận, có ma trận mxn tức m dòng, n cột ta quan tâm đến dòng, cột tức chọn 3x3 hình trên, ô ta nhập phép thực “ ngọn- gốc” vectơ , theo

(7)

hàng ngang hàng dọc được, sau khỏi hình lệnh C

Tiếp ta nhập lệnh q47

Tiếp tục nhập lệnh q43 ( ta nhớ vào ma trận A, 4,5 nhớ vào ma trận B, C bước ban đầu ) lệnh = kết ( lấy giá trị dương)

Vậy thể tích 42

6  đáp án D

Câu Đề minh họa BGD 2017

Cho hình chóp tứ giác S.ABCD có đáy hình vng cạnh 2a Tam giác SAD cân S mặt bên (SAD) vng góc với mặt phẳng đáy Biết thể tích khối chóp S.ABCD

3a Tính khoảng cách từ B đến mặt phẳng (SCD)

A

3a B

3a C

3a D 4a

(8)

Do (SAD) vng góc với đáy, tam giác SAD cân S nên gọi O trung điểm AD, SO vng góc với đáy chọn hệ trục tọa độ oxyz hình vẽ ta có 2

3

V   SOSO ,yêu cầu tính khoảng cách từ B đến (SCD) ta có tạo độ đỉnh sau

O(0;0;0); S(0;0;2); ( 2; ; 0); (0; ; 0); B( 2; ; 0)

2 2

C D

Ta viết phương trình mặt phẳng (SCD) qua điểm S;C;D có dạng ax+by+cz+d=0

Trong (a; ; )b c  u u 1; 2 hai vtcp mặt phẳng ta sử dụng lệnh w8

Chọn vec tơ A B,C tùy ý chọn A không gian chiều chọn

Ta nhập vec tơ phương mặt phẳng vào ta lấy SC S ; D ta nhập “ ngọn- gốc” vectơ ta

Tương tự ta nhập vào vectơ B lệnh q5121

(9)

Ta

Tiếp theo ta tính tích có hướng hai vectơ A B lệnh q5

Vậy mp có dạng 2,83y+z+d=0 -> d=2,83y-z nhập hình sử dụng lệnh r cho qua điểm, cho qua điểm S(0;0;2) y=0, z=2 ta

được d=-2

Khi phương trình mặt phẳng (SCD) 2,83y+z-2=0

Ta tính khoảng cách từ B đến mặt phẳng (SCD) từ cơng thức tính khoảng cách từ điểm đến mặt phẳng

Đáp án B

Câu Đề minh họa BGD 2017

Cho hình chóp tứ giác S.ABCD có đáy ABCD hình vng cạnh a, cạnh bên SA vng góc với mặt phẳng đáy SA 2a Tính thể tích khối chóp S.ABCD

A

3

2 a

B

3

2

a C 2a3

D

3

2 a

(10)

Ở em để ý sử dụng phương pháp tọa độ hóa sai lầm cịn lâu việc sử dụng phương pháp truyền thống thầy đưa em thấy đừng có thần thánh phương pháp hết phải kết hợp nhuần nhuyễn sử dụng linh hoạt phương pháp cho phù hợp

Ta có S=1 nên

V  đáp án D

Câu Đề minh họa BGD 2017

Tính thể tích V khối lập phương ABCDA’B’C’D’ biết AC'a

A

Va

B

3

3 a

V  C

3

3

Va D

3 Va

Tương tự câu 3, câu ta gọi hình vng cạnh x ta có

(11)

2 2 2

'

' ' ' '

3a 2x

1 A C x

AC AA A C x

x V

  

  

   

Đáp án A

Câu Cho hình chóp S.ABCD đáy ABCD hình vng cạnh a, SA vng góc với đáy, SC tạo với đáy góc 450 Khoảng cách từ điểm B đến mặt

phẳng (SCD)

A

3 a

B

3

a C

3 a

D

3 a

Do SA vng góc đáy , SC tạo đáy góc 450

nên góc SCA =600,

0

2 tan 45

AC SAACAC

Chọn hệ trục tọa độ hình vẽ, u cầu tính khoảng cách từ B đến (SCD) ta cần tọa độ đỉnh S,B,C,D ta có

A(0;0;0), B(1;0;0), C(1;1;0), D(0;1;0), S(0;0; 2)

Sử dụng cơng thức tính khoảng cách từ điểm đến mặt phẳng (SCD), Mặt phẳng (SCD) có hai vtcp SC S; D

 

, qua điểm S ta nhớ chúng vào vectơ A,B,C với véc tơ C tọa độ điểm S

(12)

Hệ số -d phương trình mặt phẳng (SCD) –d=ax+by+cz

Chú ý dấu phép tính tích vơ hướng từ lệnh q57 Khi ta có phương trình mặt phẳng ( làm tròn số )

1,41y+z-1,41=0 khoảng cách từ B(1;0;0) đến (SCD)

So sánh với đáp án toán ta đáp án A

Câu Cho hình chóp S.ABCD có đáy hình vng ABCD cạnh a, SA vng góc với mặt phẳng đáy, góc SC mặt phẳng (ABCD) 450.Khoảng cách hai đường thẳng SB AC

A

10 B

5 C

5

10 D

10

(13)

Tương tự SA vuông góc với đáy nên góc SC mặt phẳng đáy góc SAC =450 nên SA Ta chọn hệ trục tọa độ hình vẽ, u cầu tính khoảng SB AC ta có tọa độ điểm sau

A(0;0;0), B(1;0;0), C(1;1;0), D(0;1;0), S(0;0; 2)

Sử dụng cơng thức tính khoảng cách hai đường thẳng

1 2

| [ , ] | | [ , ] | u u M M d

u u

   với u u1,

 

vtcp hai đường thẳng

1;

M M hai điểm qua hai đường thẳng Hay ta sử dụng công thức

1 3

1

|[ , ] |

x x x

y y y

z z z

d

u u

  

Trước tiên tính

1 3

x x x y y y z z z

hướng dẫn với vec tơ SB AC AB  ; ; (

vtcp véc tơ qua hai điểm A B đường thẳng) nhớ vào phím A

Tương tự tính |[SB AC , ] |

So sánh với đáp án toán đáp án D Câu

Cho hình lăng trụ ABCA’B’C’ có đáy tam giác cạnh a Hình chiếu vng góc A’ mặt phẳng (ABC) trung điểm cạnh AB, góc

(14)

đường thẳng A’C mặt phẳng đáy 600 Tính theo a khoảng cách từ điểm

B đến mặt phẳng (ACC’A’) A a

13 B

13 13

a

C 3a

13 D a 13

Ta có A’H vng góc với đáy nên góc đường thẳng A’C mặt phẳng đáy góc A’CH=600

Ta có '

2

CH   A H  Ta chọn hệ trục tọa độ hình vẽ

Khi tọa độ đỉnh H(0;0;0) , ( ; 0; 0); (0;1 3; 0).A'(0; 0; ); A(3 1; 0; 0)

2 2

B C

Có vtcp (ACC’A’)  AA AC'; vtpt AA AC[ ', ]

Ta d phương trình mặt phẳng ax+by+cz=-d cho mặt phẳng qua điểm A’ ta nhập điểm A’ vec tơ C tích vơ hướng với véc tơ vừa tính –d

(15)

Vậy phương trình mặt phẳng kết làm tròn -1,3x+0,75y+0,43z-0,65=0

Ta tính khoảng cách từ điểm B đến mặt phẳng

So sánh với đáp án đáp án C

Câu Cho hình chóp S.ABCD cáo đáy ABCD tam giác vuông B, AC=2a, 

30

ACB Hình chiếu vng góc H đỉnh S mặt đáy trung điểm cạnh AC SHa Khoảng cách từ C đến mặt phẳng (SAB) A 66

11 a

B 66 11

a

C 66 11

a

D 66 11

a

Trong tam giác vng ABC ta có AC=2a,

30

ACBABACsinACB2.sin 300 1,BCcos30 AC

Do SH (ABCD) tam giác ABC vuông B nên từ B ta kẻ song song với SH chọn hệ trục tọa độ hình vẽ, yêu cầu tính khoảng cách từ điểm C

(16)

B(0;0;0), A(1;0;0), (0; 3; 0);S(1; 3; 2)

C

Viết phương trình mặt phẳng (SAB) tương tự câu trước ta véc tơ pháp tuyến hệ số -d mặt phẳng

Khi phương trình mặt phẳng (SAB) -1,414y+0,866z=0 khoảng cách từ C đến mặt phẳng (SAB)

Đối chiếu với đáp án ta đáp án B Sử dụng đề chung cho hai câu

Cho lăng trụ đứng ABCA’B’C’ có đáy ABC vng B, AB=a, AA’=2a, A’C=3a Gọi M trung điểm A’C’, I giao điểm AM A’C Câu Thể tích khối tứ diện IABC

A

3

4a

9 B

3

4a

3 C

3

a

9 D

3

a

Do hình lăng trụ đứng tam giác ABC vuông B nên ta chọn hệ trục tọa độ hình vẽ, không để hệ trục tọa độ đáy ta cần tính thể tích hình chóp IABC nên việc ta chọn hệ trục cho việc tìm tọa độ dễ dàng nhiều tọa độ

(17)

2 2 2

1, AA ' 2, '

' -AA' 5

2

AB A C

AC A C AC

BC AC AB

  

    

  

Khi ta có tọa độ điểm B(0;0;0); C(2;0;0), A(0;1;0), A’(0; 1;-2) Tìm tọa độ điểm I, thay tìm trực tiếp ta dễ thấy I trọng tâm tam giác AA’C’ ta có ' ' '

3

A C

A I   A C



 

ta có A C' (2; 1; 2)

Khi 2 3 3 3 I I I x y z                   

tức ( ; ;2 4) 3 I

Tính thể tích theo cơng thức trên, trước tiên tính ma trận cấp 3x3 véc tơ BC BI BA  ; ; chọn điểm B làm gốc điểm B( 0;0;0) tọa độ véc tơ trùng với tọa độ điểm, sử dụng cơng thức tính thể tích ta tính thể tích IABC

(18)

Câu 10 Khoảng cách từ điểm A đến mặt phẳng (IBC) A a

5 B

2a

5 C

3a

5 D

a

Ta viết phương trình mặt phẳng (IBC) trước hết tính vec tơ phát tuyến mặt phẳng có hai vec tơ phương BI BC ; qua điểm B(0;0;0) nên hệ số d=0

Phương trình mặt phẳng (IBC) 2,66 y+1,33z=0 khoảng cách từ điểm A đến (IBC)

So sánh với đáp án đáp án B

Giải phương pháp tọa độ việc khó khăn tính tọa độ điểm liên hệ yêu cầu toán Đơi việc kết hợp trợ giúp hình học cổ đỉnh ta dẫn đến kết nhanh đỡ phức tạp Một tọa độ tính việc cịn lại sử dụng công thức không cần kĩ suy nghĩa khéo léo chọn lọc giải hình khơng gian Tuy nhiên có nhược điểm thầy nhắc lại khơng phải tồn nên đừng coi trọng phương pháp mà bỏ rơi phương pháp kia, qua câu hỏi thầy nhấn mạnh ưu điểm nhược điểm nó.Thầy hi vọng với chuyên đề em có nhìn bao quát thêm vốn hiểu biết hình học khơng gian, thời gian có hạn nên việc tính tốn, hay trình bày cịn nhiều thiếu sót mong góp ý em thầy cô Chúc em học tập tốt đạt kết cao kì thi tới

Hà Nam 08/12/2017 Th.s Hà Ngọc Toàn

(19) 2 24

Ngày đăng: 11/12/2020, 17:39

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w