Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 84 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
84
Dung lượng
202,7 KB
Nội dung
ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN - TẠ THỊ HOÀN QUAN HỆ BIẾN PHÂN TUYẾN TÍNH Chun ngành: TỐN GIẢI TÍCH Mã số: LUẬN VĂN THẠC SỸ KHOA HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS TS TẠ DUY PHƯỢNG Hà Nội – Năm 2014 Mục lục Mở đầu Kiến thức chuẩn bị 1.1 Không gian véctơ tôpô 1.2 Không gian metric 1.2.1 1.2.2 1.3 Giải tích lồi 1.4 Ánh xạ đa trị 1.4.1 1.4.2 1.4.3 1.5 Định lý Hoffman Sự tồn nghiệm toán quan hệ biến phân 2.1 Bài toán quan hệ biến phân 2.1.1 2.1.2 2.2 Bài toán quan hệ biến phân 2.2.1 2.2.2 Cấu trúc tập nghiệm tốn quan hệ biến phân tuyến tính 53 3.1 Tính đóng tập nghiệm 3.2 Tính lồi tập nghiệm 3.3 Tính liên thông tập nghiệm Tài liệu tham khảo Mở đầu Bài toán quan hệ biến phân tốn xuất phát từ việc tổng qt hóa số tốn có ứng dụng thực tế toán tối ưu, toán cân bằng, toán bất đẳng thức biến phân, toán tựa cân bằng, Mơ hình tốn có ý nghĩa sâu sắc nghiên cứu toán học lý thuyết toán học ứng dụng Bài toán " Quan hệ biến phân" đề xuất lần vào năm 2008 Giáo sư Đinh Thế Lục [7] Môt dạng đặc biệt toán quan hệ biến phân toán quan hệ biến phân tuyến tính Dựa chủ yếu tài liệu [4], [6], [7], luận văn trình bày tính chất định tính tốn quan hệ biến phân tuyến tính tồn nghiệm tốn, cấu trúc tập nghiệm tìm hiểu tính chất tập nghiệm tính đóng, tính lồi, liên thơng, Đây thông tin cần thiết cho việc nghiên cứu mặt định lượng tốn, hay việc tìm nghiệm tốn Luận văn trình bày theo chương: Chương Kiến thức chuẩn bị Chương trình bày cách hệ thống kiến thức sở có dùng đến chương sau ánh xạ đa trị, tập lồi, Định lý Hoffman Chương Sự tồn nghiệm toán quan hệ biến phân Chương gồm hai phần Phần đầu phát biểu trình bày tồn nghiệm toán quan hệ biến phân tổng quát Phần sau phát biểu trình bày tồn nghiệm tốn quan hệ biến phân tuyến tính Chương Cấu trúc tập nghiệm tốn quan hệ biến phân tuyến tính Trong chương ta tìm hiểu số tính chất tập nghiêm toán quan hệ biến phân tuyến tính tính đóng, tính lồi, tính liên thơng Bên cạnh ví dụ minh họa cho kết Lời cảm ơn Luận văn hồn thành hướng dẫn nhiệt tình PGS TS Tạ Duy Phượng Thầy dành nhiều thời gian, tâm huyết hướng dẫn giải đáp thắc mắc tơi suốt q trình làm luận văn Tơi muốn bày tỏ lịng biết ơn sâu sắc đến thầy Qua đây, xin gửi tới quý thầy cô Khoa Toán-Cơ-Tin học, Trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội, thầy tham gia giảng dạy khóa cao học 2012-2014, lời cảm ơn sâu sắc công lao dạy dỗ suốt q trình học tập tơi Nhà trường Tơi xin cảm ơn gia đình, bạn bè bạn đồng nghiệp thân mến quan tâm, tạo điều kiện cổ vũ, động viên để tơi hồn thành tốt nhiệm vụ Hà Nội, tháng 12 năm 2014 Tác giả luận văn Tạ Thị Hoàn Chương Kiến thức chuẩn bị 1.1 Không gian véctơ tôpô Một số định nghĩa định lý trình bày dựa theo tài liệu [2] Định nghĩa 1.1.1 Quan hệ hai tập A tập hợp R tích Đềcác A × A Ta gọi đơn giản quan hệ hai Ký hiệu aRb R(a, b) (a, b) ∈ R Ta thường nói "a − R quan hệ b Định nghĩa 1.1.2 Cho tập V khác rỗng, K trường Các phần tử thuộc V gọi véctơ Trên V trang bị hai phép toán: phép cộng hai véctơ (ký hiệu "+") phép nhân vô hướng k ∈ K với véctơ (ký hiệu ".") Khi (V, +, ) gọi K - không gian véctơ 10 tính chất sau thỏa mãn: 1) Nếu x, y ∈ V x + y ∈ V 2) Với x, y, z ∈ V ta có x + (y + z) = (x + y) + z 3) Với x, y ∈ V ta có x + y = y + x 4) Tồn phần tử θ ∈ V, gọi phần tử trung hòa (hoặc véctơ không), cho x + θ = x với x ∈ V 5) Với x ∈ V, tồn phần tử y ∈ V, gọi phần tử đối xứng (phần tử đối) x, cho x + y = θ 6) Nếu a ∈ K, x ∈ V ax ∈ V 7) Với a ∈ K x, y ∈ V, ta có a(x + y) = ax + ay 8) Với a, b ∈ K x ∈ V, ta có (a + b)x = ax + bx 9) Với a, b ∈ K x ∈ V, ta có a(bx) = (ab)x 10) Với x ∈ V, ta có 1x = x1 = x, ký hiệu phần tử đợn vị phép nhân K Định nghĩa 1.1.3 (Không gian tôpô) Cho tập X = ∅ Một họ τ tập X gọi tơpơ X thỏa mãn tính chất sau: (i) ∅,X ∈ τ; (ii) Giao số hữu hạn phần tử thuộc τ thuộc τ ; (iii) Hợp họ tùy ý phần tử thuộc τ thuộc τ Tập X trang bị tôpô τ gọi không gian tôpô ký hiệu (X, τ) Định nghĩa 1.1.4 Cho (X, τ ) khơng gian tơpơ • Tập G gọi tập mở X G ∈ τ • Tập F gọi tập đóng X X\F ∈ τ Định nghĩa 1.1.5 Cho hai tôpô τ τ2 ta nói τ1 yếu τ2 (hay τ2 mạnh τ1) τ1 ⊂ τ2, nghĩa tập mở tôpô τ tập mở τ2 Định nghĩa 1.1.6 Cho không gian tôpô (X, τ ), tập A tập X Tập U gọi lân cận tập A tồn tập mở nằm U chứa A Khi A = {x} ta nói U lân cận điểm x Định lý 1.1.1 Tập G không gian tôpô (X, τ ) mở G lân cận điểm thuộc Định lý 1.1.2 Nếu Vx họ tất lân cận điểm x thì: (i) x ∈ V với V ∈ Vx; (ii) (iii) Nếu V1, V2 ∈ Vx V1 ∩ V2 ∈ Vx; Nếu V1 ∈ Vx V2 ⊃ V1 V2 ∈ Vx Định nghĩa 1.1.7 Cho Ux họ tất lân cận điểm x Một họ Vx ⊆ Ux gọi sở lân cận x với U ∈ Ux tồn V ∈ Vx cho V ⊆ U Chẳng hạn, họ tập mở chứa x sở lân cận x Định nghĩa 1.1.8 Cho không gian tôpô (X, τ ), A tập X Đối với phần tử x ∈ X ta nói: (i) x điểm A tồn tập mở x nằm A (ii) x điểm A tồn lân cận x nằm X\A (iii) x điểm biên A x đồng thời không điểm khơng điểm ngồi A Hay nói cách khác x điểm biên A lân cận x giao khác rỗng (chứa điểm khác x) với A X\A Định nghĩa 1.1.9 Giả sử A tập khơng gian tôpô (X, τ ) Ta gọi phần A hợp tất tập mở nằm A, o tập mở lớn nằm A Kí hiệu A intA Định nghĩa 1.1.10 Giả sử A tập khơng gian tơpơ (X, τ ) Ta gọi bao đóng A giao tất tập đóng nằm A , tập đóng nhỏ chứa A Kí hiệu ¯ A clA Arxj + Bry ≤ dr với y ∈ T (xj), j = 1, Xét y ∈ T (x), T (x) affin nên T (x) = T (λx1 + (1 − λ)x2) = λT (x1) + (1 − λ)T (x2) Từ suy ∈ λT (x1) + (1 − λ)T (x2) y Điều kéo theo tồn y1 ∈ T (x1), y2 ∈ T (x2) cho y = λy1+(1−λ)y2 Từ suy Arx + Bry = Ar(λx1 + (1 − λ)x2) + Br(λy1 + (1 − λ)y2) = λ(Arx1 + Bry1) + (1 − λ)(Arx2 + Ary2) = λdr + (1 − λ)dr = dr Suy R với y ∈ T (x) Tiếp theo, ta x ∈ S Thật Vì x1, x2 ∈ sol(LVR), suy x1, x2 ∈ S, tức A0x1 ≤ d0, A0x2 ≤ d0 Ta xét A0x = A0(λx1 + (1 − λ)x2) = λA0x1 + (1 − λ)A0x2 = λd0 + (1 − λ)d0 = d0 Suy A0x ≤ d0 Hay x ∈ S Vậy x ∈ sol(LVR) Suy sol(LVR) tập lồi Để minh họa cho mệnh đề trên, ta xét tốn (LVR) khơng gian R × R sau: 57 Ví dụ 3.2.1 A0 = −1 , d0 = Khi Tức S = {x ∈ R, ≤ x ≤ 2} Ta có A1x + B1y ≤ d1 ⇔ ⇔ ≤ y1 ≤ 2, ≤ y2 ≤ Tức T (x) = {y = (y1, y2)|0 ≤ y1 ≤ 2, ≤ y2 ≤ 2} Ta có ⇔ Tức quan hệ R cho x − y1 + y2 ≤ 6, x + y1 − y2 ≤ 4, −x + y1 + y2 ≤ 8, −x − 2y1 + y2 ≤ 58 Như P = {(x, y1, y2) : ≤ x ≤ 2, ≤ y1 ≤ 2, ≤ y2 ≤ 2}, P = {(x, y1, y2) : ≤ x ≤ 2, ≤ y1 ≤ 2, ≤ y2 ≤ 2, x − y1 + y2 ≤ 6, x + y1 − y2 ≤ 4, −x + y1 + y2 ≤ 8, −x − 2y1 + y2 ≤ 2} Biểu diễn hình học P P ta thu được: V (P ) = V (P) = {(0, 0, 0), (0, 0, 2), (0, 2, 0), (2, 0, 0), (2, 2, 0), (2, 0, 2), (2, 2, 2), (0, 2, 2)} Từ ta có Vx(P ) = Vx(P ) = {0, 2} Hơn x = x = nghiệm toán Theo Mệnh đề 3.2.1, ta có tập nghiệm tốn cho tập lồi Thật vậy, kiểm tra ta thấy với ≤ x ≤ 2, ≤ y1 ≤ 2, ≤ y2 ≤ thỏa mãn quan hệ R Nên tập nghiệm toán cho sol(LVR)=[0, 2] Như rõ ràng sol(LVR) tập lồi Một trường hợp đặc biệt thu từ Mệnh đề (3.2.1), ánh xạ T cho cụ thể, nội dung hệ sau Hệ 3.2.1 Cho T (x) xác định n T (x) = {y ∈ R l l l u u : A x + d ≤ y ≤ A x + d }, u l u A , A ma trận cấp n2 × n1 d , d véc tơ cấp n2 × Khi đó, tập nghiệm tốn (LVR) tập lồi Chứng minh Rõ ràng, tập hợp T (x) diễn đạt sau n l l u u T (x) = {y ∈ R : (A x + d )i ≤ yi ≤ (A x + d )i, i = 1, , n2} Giả sử x1, x2 ∈ R n x ∈ (x1, x2) Khi đó, tồn λ ∈ (0, 1) cho x = λx1 + (1 − λ)x2 59 Xét y ∈ T (x), điều có nghĩa l l u u (A x + d )i ≤ yi ≤ (A x + d )i, i = 1, 2, , n2 Suy l l l l λ(A x1 + d )i + (1 − λ)(A x2 + d )i ≤ yi u u u u ≤ λ(A x1 + d )i + (1 − λ)(A x2 + d )i, i = 1, 2, , n2 Do đó, với i = 1, 2, , n2 tồn αi ∈ [0, 1] cho l l l l u u yi = αi(λ(A x1 + d )i + (1 − λ)(A x2 + d )i) + (1 − α)(λ(A x1 + d )i +(1 u u l l u u − λ)(A x2 + d )i) = λ(αi(A x1 + d )i + (1 − αi)(A x2 + d )i) +(1 − λ) u u u u i i (αi(A x1 + d )i + (1 − αi)(A x2 + d )i) = λy1 + (1 − λ)y2 , n (yj , , yj ) ∈ T (xj), i = 1, 2, Từ suy T (x) ⊂ λT (x1) + (1 − λ)T (x2) Hơn nữa, rõ ràng T (x) ⊃ λT (x1) + (1 − λ)T (x2) Do đó, ta có T (x) = λT (x1) + (1 − λ)T (x2) Suy T (x) affin Theo Mệnh đề (3.2.1) tập nghiệm tốn (LVR) cho tập lồi Chú ý 3.2.1 Nhắc lại rằng, ánh xạ T : X ⇒ Y ánh xạ đa trị lõm với x1, x2 ∈ X với λ ∈ [0, 1], ta có T (λx1 + (1 − λ)x2) ⊂ λT (x1) + (1 − λ)T (x2) Trong toán (LVR), ta thấy rõ ràng T (x) ánh xạ đa trị lồi, hay T (x) khơng phải ánh xạ đa trị lõm Do không thỏa mãn Mệnh đề 3.6 [6] Nên tập nghiệm (LVR)nói chung khơng phải tập lồi 60 3.3 Tính liên thơng tập nghiệm Tương tự tính lồi tập nghiệm, tính liên thơng tập nghiệm khơng bảo đảm Để thấy rõ điều này, ta xét ví dụ sau Ví dụ 3.3.1 Xét tốn (LVR) khơng gian R × R 2, 1 ; d0 A0 = − = d1 0 0 Khi A0 ≤ d0 ⇔ Tức S Ta có A 1x + B 1y ≤ d ⇔ = {x ∈ R, ≤ x ≤ 5} 61 Tức T (x) = {(y1, y2) ∈ R } cho Ta có 11 ⇔ Tức quan hệ Suy P = {(x, y P = {(x, y1, y2) ∈ R × R2 | Bài toán nhận x1 = x2 = nghiệm Thật 62 Với x1 = ta có T (3) = {(y1, y2), ≤ y1 ≤ 7, y1 − y2 ≤ 4, y1 + y2 ≥ 8, −y1 + y2 ≤ 4, 2y1 − y2 ≥ 4} R(3) = {(y1, y2), ≤ y1 ≤ 8, y2 ≥ 1, y1 + y2 ≤ 19} Biểu diễn hình học T (3), ta kết cho hình sau 12 C = (8, 11) 11 10 B = (6, 9) D = (8,5) A = (3, 3) E = ( 2, 2) 1 Hình 3.1: T (3) Nhìn vào hình vẽ, ta thấy với y ∈ T (3) thỏa mãn R(3) Suy x1 = nghiệm toán cho 63 Với x2 = ta có T (4) = {(y1, y2), ≤ y1 ≤ 7, y1 − y2 ≤ 4, y1 + y2 ≥ 8, −y1 + y2 ≤ 4, 2y1 − y2 ≥ 4} R(4) = {1 ≤ y1 ≤ 9, y2 ≥ 1, y1 + y2 ≤ 17} Biểu diễn hình học T (4), ta kết cho hình vẽ sau D = (7, 10) 10 A = (4, 4) C = (7,3) Hình 3.2: T (4) 64 Nhìn vào hình vẽ, ta thấy y ∈ T (4) thoả mãn R(4) Suy x2 = nghiệm toán cho Như x1 = x2 = nghiệm toán Xét tổ hợp lồi x1 x2 sau: x x = + = + Ta có x = khơng nghiệm toán cho Thật vậy, ) = {(y1, y2), T( y1 + y2 ≥ 7, −y1 + y2 ≤ Biểu diễn hình học T ( 2), ta kết cho hình vẽ sau 65 12 B=(7, 10 A = ( 2, 2) 10 Hình 3.3: T ( ) Nhìn vào hình vẽ, ta thấy với y = ( 15 37 2, 11) ∈ T ( 2) ta có y1 +y2 = ≥ 18 15 Suy ( 2, 2, 11) không thỏa mãn R Hay x = không nghiệm toán cho Như tập nghiệm tốn cho khơng phải tập liên thơng Hay tập nghiệm tốn (LVR) nói chung không liên thông 66 KẾT LUẬN Trong chương 3, ta tập nghiệm toán (LVR) khơng có tính lồi tính liên thơng, lại đảm bảo tính đóng Bên cạnh đó, ta trình bày điều kiện cần, điều kiện đủ để tập nghiệm (LVR) tập lồi số ví dụ minh họa cho kết 67 Tài liệu tham khảo [1] Huỳnh Thế Phùng (2012), Cơ sở giải tích lồi, NXB Giáo dục Việt Nam [2] Hồng Tụy (2005), Hàm thực giải tích hàm, NXB Đại học Quốc gia Hà Nội [3] Nguyễn Đông Yên (2007), Giáo trình Giải tích đa trị, NXB Khoa học Tự nhiên Công nghệ [4] A Dhara, D T Luc (2013), A solution method for linear variational relation problems, Journal of Global optimization, p.139 [5] Alan J Hoffman (1952), On approximate solutions of systems of linear inequalities, Journal of Research of the National Bureau of Standards, Vol 49, p 263 - 265 [6] P Q Khanh, D T Luc (2008), Stability of Solutions in Parametric Variational Relation Problems, Set Valued Anal, Vol 16, p.1015 - 1035 [7] D T Luc (2008), An Abstract Problem in Variational Analysic, J Optim Theory Appl, Vol 138, p 65 - 76 68 ... tồn nghiệm toán quan hệ biến phân 2.1 Bài toán quan hệ biến phân 2.1.1 2.1.2 2.2 Bài toán quan hệ biến phân 2.2.1 2.2.2 Cấu trúc tập nghiệm toán quan hệ biến phân tuyến tính 53 3.1 Tính đóng tập... dạng đặc biệt toán quan hệ biến phân toán quan hệ biến phân tuyến tính Dựa chủ yếu tài liệu [4], [6], [7], luận văn trình bày tính chất định tính tốn quan hệ biến phân tuyến tính tồn nghiệm tốn,... quan hệ biến phân tổng quát Phần sau phát biểu trình bày tồn nghiệm toán quan hệ biến phân tuyến tính Chương Cấu trúc tập nghiệm tốn quan hệ biến phân tuyến tính Trong chương ta tìm hiểu số tính