BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI KHOA VẬT LÝ BẢN TÓM TẮT LUẬN ÁN TIẾN SĨ THẾ HIGGS TRONG MƠ HÌNH 3-3-1 VỚI CƠ CHẾ CKS VÀ PHÂN LOẠI CÁC MƠ HÌNH 3-3-1 DỰA TRÊN DỮ LIỆU TÍCH YẾU Chuyên ngành: Vật lý lý thuyết Vật lý toán Mã số: 44 01 03 Nghiên cứu sinh: Nguyễn Văn Hợp Hướng dẫn khoa học: GS.TS HoàngNgọc Long TS Nguyễn Huy Thảo -2020- ❇❷◆ ❚➶▼ ❚➁❚ ▲❯❾◆ ⑩◆ ❚■➌◆ ❙➒ ❚❍➌ ❍■●●❙ ❚❘❖◆● ▼➷ ❍➐◆❍ ✸✲✸✲✶ ❱❰■ ❈❒ ❈❍➌ ❈❑❙ ❱⑨ P❍❹◆ ▲❖❸■ ❈⑩❈ ▼➷ ❍➐◆❍ ✸✲✸✲✶ ❉Ü❆ ❚❘➊◆ ❉Ú ▲■➏❯ ❚➑❈❍ ❨➌❯ ◆❣✉②➵♥ ❱➠♥ ❍ñ♣ ◆❣➔② ✷ t❤→♥❣ ✶✶ ♥➠♠ ✷✵✷✵ ▲í✐ ❝❛♠ ✤♦❛♥ ❚ỉ✐ ①✐♥ ❝❛♠ ✤♦❛♥ ❝→❝ ❦➳t q✉↔ ❦❤♦❛ ❤å❝ ❝❤➼♥❤ ✤÷đ❝ tr➻♥❤ ❜➔② tr♦♥❣ ❧✉➟♥ →♥ ♥➔② ❧➔ s↔♥ ♣❤➞♠ ❦❤♦❛ ❤å❝ ❝â ✤÷đ❝ ❞♦ ❜↔♥ t❤➙♥ tæ✐ ✤â♥❣ ❣â♣ ✈➔♦ ❤♦↕t ✤ë♥❣ ♥❣❤✐➯♥ ❝ù✉ tr♦♥❣ t❤í✐ ❣✐❛♥ ✸ ♥➠♠ tỉ✐ ❧➔♠ ♥❣❤✐➯♥ ❝ù✉ s✐♥❤ t↕✐ ❚r÷í♥❣ ❙÷ P❤↕♠ ❍➔ ◆ë✐ ✷✳ ❚r♦♥❣ ❧✉➟♥ →♥ ữỡ ợ t ố ✈➔ ❝→❝ t❤➔♥❤ tü✉ ❦❤♦❛ ❤å❝ ♠➔ ❞ü❛ tr➯♥ ✤â ❝→❝ ❝æ♥❣ tr➻♥❤ ❦❤♦❛ ❤å❝ ❝â tæ✐ t❤❛♠ ❣✐❛ ✈➔ ❧✉➟♥ →♥ ❝õ❛ tỉ✐ ✤÷đ❝ ①➙② ❞ü♥❣✱ ♣❤➛♥ ❝á♥ ❧↕✐ ❝õ❛ ❝❤÷ì♥❣ ♥➔② ❧➔ ✤â♥❣ ❣â♣ ❦❤♦❛ ❤å❝ ❝õ❛ ♥❤â♠ ❝❤ó♥❣ tỉ✐✳ ❈❤÷ì♥❣ ✷ ✈➔ ❝❤÷ì♥❣ ✸ tr➻♥❤ ❜➔② ❝❤õ ②➳✉ ❞ü❛ tr➯♥ ❝→❝ ❝æ♥❣ tr➻♥❤ ❦❤♦❛ ❤å❝ ❝õ❛ ♥❤â♠ ♥❣❤✐➯♥ ❝ù✉ ❝â tæ✐ t❤❛♠ ❣✐❛✳ P❤➛♥ ❦➳t ❧✉➟♥ tâ♠ t➢t ❧↕✐ ❝→❝ ❦➳t q✉↔ ❦❤♦❛ ❤å❝ ❝❤➼♥❤ ❝õ❛ ❧✉➟♥ →♥✳ ❈✉è✐ ❝ị♥❣✱ tỉ✐ ①✐♥ ❝❛♠ ❦➳t ❝→❝ ❦➳t q✉↔ ❝❤➼♥❤ tr♦♥❣ ❧✉➟♥ →♥ ✧❚❤➳ ❍✐❣❣s tr♦♥❣ ♠æ ❤➻♥❤ ✸✲✸✲✶ ✈ỵ✐ ❝ì ❝❤➳ ❈❑❙ ✈➔ ♣❤➙♥ ❧♦↕✐ ❝→❝ ♠ỉ ❤➻♥❤ ✸✲✸✲✶ ❞ü❛ tr➯♥ ❞ú ❧✐➺✉ t➼❝❤ ②➳✉✧ ❧➔ t❤➔♥❤ q✉↔ ❦❤♦❛ ❤å❝ ❝õ❛ tæ✐ ✈➔ ♥❤â♠ ♥❣❤✐➯♥ ❝ù✉ ♠➔ tæ✐ t❤❛♠ ❣✐❛✱ ❦❤ỉ♥❣ trị♥❣ ❧➦♣ ✈ỵ✐ ❦➳t q✉↔ tr♦♥❣ ❧✉➟♥ →♥ ❦❤→❝ ❤❛② ❝æ♥❣ tr➻♥❤ ❦❤♦❛ ❤å❝ ❦❤→❝ ✤➣ ❝â✳ ủ ử ỵ ❤✐➺✉ ✈➔ ❝❤ú ✈✐➳t t➢t P❤➛♥ ♠ð ✤➛✉ ❈❤÷ì♥❣ ✶✳ ▼ỉ ❤➻♥❤ ✸✲✸✲✶ ✈ỵ✐ ❝ì ❝❤➳ ❈❑❙ ✶✳✶ ▼ỉ ❤➻♥❤ ✸✲✸✲✶ ✈ỵ✐ ❝ì ❝❤➳ ❈❑❙ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✶✳✶ P❤➛♥ ❢❡r♠✐♦♥ ❝õ❛ ♠ỉ ❤➻♥❤ ✸✸✶ ✈ỵ✐ ❝ì ❝❤➳ ❈❑❙ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✶✳✷ ❇♦s♦♥ ❝❤✉➞♥✱ ❣â❝ trë♥ ✈➔ ❦❤è✐ ❧÷đ♥❣ ❝õ❛ ❝❤ó♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✶✳✸ ❳→❝ ✤à♥❤ ❣✐ỵ✐ ❤↕♥ t❤❛♠ sè ♠ỉ ❤➻♥❤ ✈➔ ợ ố ữủ s ỹ t❤❛♠ sè ρ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✶✳✹ ❚✐➳t ❞✐➺♥ t→♥ ①↕ t♦➔♥ ♣❤➛♥ ❝❤♦ q✉→ tr➻♥❤ s✐♥❤ ❜♦s♦♥ ❝❤✉➞♥ ♥➦♥❣ ❩✷ ð ▲❍❈ t❤❡♦ ❝ì ❝❤➳ ❉r❡❧❧✲❨❛♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹ ✺ ✽ ✽ ✽ ✾ ✾ ✶✵ ❈❤÷ì♥❣ ✷✳ ❚❤➳ ❍✐❣❣s ✈➔ ♠ët sè ❤✐➺♥ t÷đ♥❣ ❧✉➟♥ ❝â ❧✐➯♥ q✉❛♥ ✤➳♥ ❍✐❣❣s tr♦♥❣ ▼ỉ ❤➻♥❤ ✸✲✸✲✶ ✈ỵ✐ ❝ì ❝❤➳ ❈❑❙ ✶✶ ✷✳✶ ❚❤➳ ❍✐❣❣s t♦➔♥ ♣❤➛♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✷ ❚❤➳ ❍✐❣❣s ❜↔♦ t♦➔♥ sè ❧❡♣t♦♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✸ ❈→❝ tr÷í♥❣ ❤đ♣ ❣✐↔♥ ❧÷đ❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✸✳✶ P❤➛♥ ❍✐❣❣s ❈P✲❧➫ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✸✳✷ P❤➛♥ ❍✐❣❣s ❈P✲❝❤➤♥ ✈➔ ❍✐❣❣s ♥❤÷ ♠ỉ ❤➻♥❤ ❝❤✉➞♥ ✳ ✳ ✳ ✳ ✳ ✷✳✸✳✸ P❤➛♥ ❍✐❣❣s ♠❛♥❣ ✤✐➺♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✹ ❚❤➳ ❍✐❣❣s ✈✐ ♣❤↕♠ sè ❧❡♣t♦♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✺ ▼ët sè ❤✐➺♥ t÷đ♥❣ ❧✉➟♥ ❧✐➯♥ q✉❛♥ ✤➳♥ ♥ë✐ ❞✉♥❣ ❍✐❣❣s tr♦♥❣ ▼ỉ ❤➻♥❤ ✸✲✸✲✶ ✈ỵ✐ ❝ì ❝❤➳ ❈❑❙ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✺✳✶ õ õ ổ ữợ t số ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✺✳✷ ❍✐➺♥ t÷đ♥❣ ❧✉➟♥ ✈➲ ❜♦s♦♥ ❍✐❣❣s ♥➦♥❣ ❍✹ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✺✳✸ ▼➟t ✤ë t➔♥ ❞÷ ❝õ❛ ✈➟t ❝❤➜t tè✐ ✭❉❛r❦ ♠❛tt❡r r❡❧✐❝ ❞❡♥s✐t②✮ ✶✶ ✶✶ ✶✷ ✶✷ ✶✷ ✶✷ ✶✷ ✶✷ ✶✷ ✶✸ ✶✹ ❈❤÷ì♥❣ ✸✳ ❇✐➺♥ ❧✉➟♥ ❝→❝ ✤➦❝ t➼♥❤ ❝õ❛ ❝→❝ ♠æ ❤➻♥❤ ✸✲✸✲✶ ❞ü❛ ✈➔♦ ❞ú ❧✐➺✉ t➼❝❤ ②➳✉ ❝õ❛ ✶✸✸❈s ✈➔ ❝õ❛ ♣r♦t♦♥ ✶✻ ✸✳✶ ●✐→ trà t❤ü❝ ♥❣❤✐➺♠ ❝õ❛ t➼❝❤ ②➳✉ ❝õ❛ ❈s✲✶✸✸✱ ♣r♦t♦♥ ✈➔ ❝æ♥❣ t❤ù❝ t➼❝❤ ②➳✉ tr♦♥❣ ❝→❝ ♠æ ❤➻♥❤ ♠ð rë♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✻ ✷ ✸✳✷ ❍✐➺♥ t÷đ♥❣ ❆P❱ tr♦♥❣ ♠ỉ ❤➻♥❤ ✸✲✸✲✶ ✈ỵ✐ ❝ì ❝❤➳ ❈❑❙ ✳ ✳ ✳ ✳ ✸✳✷✳✶ ❇✐➸✉ t❤ù❝ ❜ê ✤➼♥❤ t➼❝❤ ②➳✉ tr♦♥❣ ▼ỉ ❤➻♥❤ ✸✲✸✲✶ ❈❑❙ ✸✳✸ ❍✐➺♥ t÷đ♥❣ ❆P❱ tr♦♥❣ ❝→❝ ♠æ ❤➻♥❤ ✸✲✸✲✶✲β√✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✳✸✳✶ ❆P❱ tr♦♥❣ ♠ỉ ❤➻♥❤ ✸✲✸✲✶ ✈ỵ✐ β = ± ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✳✸✳✷ ❆P❱ tr♦♥❣ ♠ỉ ❤➻♥❤ ✸✲✸✲✶ ✈ỵ✐ β = ± √13 ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✳✸✳✸ ❆P❱ tr♦♥❣ ♠ỉ ❤➻♥❤ ✸✲✸✲✶ ✈ỵ✐ β = ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ P❤➛♥ ❦➳t ❧✉➟♥ ✸ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✼ ✶✼ ✶✽ ✶✾ ✷✵ ✷✶ ✷✸ ỵ ỳ t tt P ❇✳P✳❑✳▲ ❇❙▼ ❈❑❙ ❉▼ ▲❍❈ ▲◆❈ ▲◆❱ ▼æ ❤➻♥❤ ▼✸✸✶ ▼æ ❤➻♥❤ ✸✲✸✲✶✲β P❱ P❱❊❙ ❙▼ ❲■▼P ❱✐ ♣❤↕♠ t➼♥❤ ❝❤➤♥ ❧➫ tr♦♥❣ ♥❣✉②➯♥ tû ✭❆t♦♠ P❛r✐t② ❱✐♦❧❛t✐♦♥✮ ❇➻♥❤ ♣❤÷ì♥❣ ❦❤è✐ ❧÷đ♥❣ ▼ỉ ❤➻♥❤ ♠ð rë♥❣ tø ▼ỉ ❤➻♥❤ ❝❤✉➞♥ ✭❇❡②♦♥❞ ❙t❛♥❞❛r❞ ▼♦❞❡❧✮ ❚ø ✈✐➳t t➢t ❝õ❛ t➯♥ ❝→❝ t→❝ ❣✐↔✿ ❈→r❝❛♠♦✱ ❑♦✈❛❧❡♥❦♦ ✈➔ ❙❝❤♠✐❞t ❱➟t ❝❤➜t tè✐ ▼→② ❣✐❛ tè❝ ❤❛❞r♦♥ ❧ỵ♥ ✭▲❛r❣❡ ❍❛❞r♦♥ ❈♦❧❧✐❞❡r✮ ❇↔♦ t♦➔♥ sè ❧❡♣t♦♥ ✭▲❡♣t♦♥ ♥✉♠❜❡r ❝♦♥s❡r✈❛t✐♦♥✮ ❱✐ ♣❤↕♠ sè ❧❡♣t♦♥ ✭▲❡♣t♦♥ ♥✉♠❜❡r ✈✐♦❧❛t✐♦♥✮ ▼æ ❤➻♥❤ ✸✲✸✲✶ tè✐ t❤✐➸✉ ✭▼✐♥✐♠❛❧ ✸✲✸✲✶ ♠♦❞❡❧✮ ▼æ ❤➻♥❤ ✸✲✸✲✶ ✈ỵ✐ t❤❛♠ sè β tr♦♥❣ ❜✐➸✉ t❤ù❝ t♦→♥ tû ✤✐➺♥ t➼❝❤ ❝õ❛ ♠æ ❤➻♥❤ ❱✐ ♣❤↕♠ t➼♥❤ ❝❤➤♥ ❧➫ ✭P❛r✐t② ❱✐♦❧❛t✐♦♥✮ ❚→♥ ①↕ ❡❧❡❝tr♦♥ ✈✐ ♣❤↕♠ t➼♥❤ ❝❤➤♥ ❧➫ ✭P❛r✐t② ❱✐♦❧❛t✐♦♥ ❊❧❡❝tr♦♥ ❙❝❛tt❡r✐♥❣✮ ▼æ ❤➻♥❤ ❝❤✉➞♥ ✭❙t❛♥❞❛r❞ ▼♦❞❡❧✮ ❍↕t ♥➦♥❣ t÷ì♥❣ t→❝ ②➳✉ ✭❲❡❛❦❧② ■♥t❡r❛❝t✐♥❣ ▼❛ss✐✈❡ P❛rt✐❝❧❡✮ ✹ P❤➛♥ tt t t ỵ ❤↕t ❝ì ❜↔♥ ❧➔ ♠ët ♥❣➔♥❤ ❦❤♦❛ ❤å❝ ♥❣❤✐➯♥ ❝ù✉ ♥❤ú♥❣ ✈➜♥ ✤➲ ❝ì ❜↔♥ ♥❤➜t ❝õ❛ ❦❤♦❛ ❤å❝✱ tr↔ ❧í✐ ♥❤ú♥❣ ❝➙✉ ❤ä✐ ❝ü❝ ❦ý q✉❛♥ trå♥❣ ✈➲ ♥❤ú♥❣ t❤➔♥❤ tè ❣➻ ❝ì ❜↔♥ ♥❤➜t t↕♦ ♥➯♥ ♠å✐ t❤ù ✈➔ ❦❤→♠ ♣❤→ ❝→❝ q✉② ❧✉➟t✱ t÷ì♥❣ t→❝ ❣✐ú❛ ❝→❝ t❤➔♥❤ tè ✤â✳ ❈ơ♥❣ ♥❤÷ ♥❤✐➲✉ ♥❣➔♥❤ ❦❤♦❛ ❤å❝ ❦❤→❝✱ t ỵ t ỡ ỹ ự ỵ t❤✉②➳t ✈➔ ♥❣❤✐➯♥ ❝ù✉ t❤ü❝ ♥❣❤✐➺♠✳ ✣➸ ✤↕t ❝→❝ ♠ö❝ t r t ỵ t ỡ ỵ t❤✉②➳t t✐➳♥ ❤➔♥❤ ❤♦↕t ✤ë♥❣ ♠æ ❤➻♥❤ ❤â❛✱ tù❝ ❧➔ ỹ ỵ tt t ỵ ổ t ởt ❝→❝❤ ❝â ❤➺ t❤è♥❣ ❝→❝ ❤↕t ❝ì ❜↔♥ ✈➔ ❝→❝ t÷ì♥❣ t→❝ ❝õ❛ ❝❤ó♥❣✱ tr➯♥ ❝ì sð ✤â ✤✐➲✉ ❝❤➾♥❤✱ ❤♦➔♥ t❤✐➺♥ ♥❤ú♥❣ ❤✐➸✉ ❜✐➳t ❝ô ✤➣ ❜à t❤ü❝ ♥❣❤✐➺♠ ọ ỗ tớ t r ỳ t ✈➔ ❦➳t q✉↔ ♠ỵ✐✱ ❣â♣ ♣❤➛♥ t❤ó❝ ✤➞② sü t✐➳♥ ❜ë ❝õ❛ ♥➲♥ ❦❤♦❛ ❤å❝✱ ❝æ♥❣ ♥❣❤➺ ❝õ❛ ◗✉è❝ ❣✐❛ ✈➔ ❝õ❛ ♥❤➙♥ ❧♦↕✐✳ ✣➲ t➔✐ ♥➔② t❤✉ë❝ ❝❤✉②➯♥ ♥❣➔♥❤ t ỵ t ỡ ỵ tt st ♣❤↕♠ ✈✐ ♥❣❤✐➯♥ ❝ù✉ ✈➔ ♠ö❝ t✐➯✉ ♥❣❤✐➯♥ ❝ù✉ ❝❤✉♥❣ ♥❤÷ ✤➣ ♥â✐ ð ♣❤➛♥ tr➯♥✱ tø ✤â tr✐➸♥ ❦❤❛✐ t❤ü❝ ❤✐➺♥ ❝→❝ ❤♦↕t ✤ë♥❣ ♥❣❤✐➯♥ ❝ù✉ ✈ỵ✐ ♠ư❝ t✐➯✉ ✈➔ ♣❤↕♠ ✈✐ ♥❣❤✐➯♥ ❝ù✉ ❝ư t❤➸ ❤ì♥✱ ♥❤÷ s➩ ữủ tr ữợ q t ự ữợ tr ữợ t➜t ②➳✉ ♣❤↔✐ ♠ð rë♥❣ ▼æ ❤➻♥❤ ❝❤✉➞♥✿ ▼æ ❤➻♥❤ t t ỵ t ỡ ❜↔♥✱ ♥â ✤➣ ✤÷❛ r❛ ❝→❝ ❦➳t q✉↔ ✈➔ t✐➯♥ ✤♦→♥ ♣❤ị ❤đ♣ t✉②➺t ✈í✐ ✈ỵ✐ ❝→❝ sè ❧✐➺✉ t❤ü❝ ♥❣❤✐➺♠✱ ♠➔ sü ❦✐➺♥ ♥ê✐ ❜➟t ❣➛♥ ✤➙② ❧➔ ❤↕t ❜♦s♦♥ ❍✐❣❣s ✶✷✻ ●❡❱ ♠➔ ♠æ ❤➻♥❤ ♥➔② t✐➯♥ ✤♦→♥ ✤➣ ✤÷đ❝ ❦❤→♠ ♣❤→ ð ▲❍❈✳ ◆❣➔② ♥❛② ❙▼ ✤➣ ✤÷đ❝ ❝ỉ♥❣ ♥❤➟♥ rë♥❣ r➣✐ ❧➔ ♠ỉ ❤➻♥❤ ❣✐→♦ ❦❤♦❛ ♠ỉ t↔ ❝→❝ ❤↕t ❝ì ❜↔♥ ♣❤ị ❤đ♣ ♥❤➜t ✈ỵ✐ t❤ü❝ ♥❣❤✐➺♠ ❤✐➺♥ ✤↕✐✳ ❙▼ ✤➣ ❤♦➔♥ t❤➔♥❤ sù ♠↕♥❣ ❝õ❛ ♥â ①➨t ð ❦❤➼❛ ❝↕♥❤ ✤➣ ♠ỉ t↔ ✤÷đ❝ sü ✈➟♥ ✤ë♥❣ ❝õ❛ t❤➳ ❣✐ỵ✐ ❝→❝ ❤↕t ❝ì ❜↔♥ ✤➣ ❜✐➳t t❤ỉ♥❣ q✉❛ ❝→❝ ❝→❝ t÷ì♥❣ t→❝ ♠↕♥❤✱ ✤✐➺♥ tø ✈➔ ②➳✉❀ ♥ë✐ ❞✉♥❣ ❤↕t ❝ì ❜↔♥ ♠➔ ♥â ①➙② ❞ü♥❣ t➜t ❝↔ ✤➲✉ ✤➣ ✤÷đ❝ t❤ü❝ ♥❣❤✐➺♠ ①→❝ ũ ởt ỵ tt t ổ ♥❤÷♥❣ ❙▼ ❝â ♠ët sè ❤↕♥ ❝❤➳ ❦❤ỉ♥❣ t❤➸ ❣✐↔✐ t❤➼❝❤✴❣✐↔✐ q✉②➳t ✤÷đ❝✱ ✈➼ ❞ư ♥❤÷✿ ✭✶✮ ✈➜♥ ✤➲ ❦❤è✐ ữủ tr sỹ ợ ❝õ❛ ♣❤ê ❦❤è✐ ❧÷đ♥❣ ✈➔ ❣â❝ trë♥ ❝→❝ ❤↕t ❢❡r♠✐♦♥ ✈➔ ✭✸✮ ❦❤ỉ♥❣ ❝â ❝ì sð ❝❤♦ ✈✐➺❝ ①➙② ❞ü♥❣ sè t❤➳ ❤➺ ❤↕t ♣❤↔✐ ❧➔ ❜❛✳ ▼ët ❝→❝❤ ✤➸ qt tỗ t rë♥❣ ♠æ ❤➻♥❤ ♥➔②✱ t❤➔♥❤ ❝→❝ ♠æ ❤➻♥❤ ♠ð rë♥❣ tø ❙▼ ✭❇❙▼✮✳ ✲ ◆❣❤✐➯♥ ❝ù✉ ❝→❝ ♠æ ❤➻♥❤ ✸✲✸✲✶ ð ❱✐➺t ◆❛♠✿ ❚❤❡♦ ①✉ t❤➳ ♣❤→t tr✐➸♥ ❝❤✉♥❣ ❝õ❛ t ỵ t ỡ tr t ợ t ◆❛♠ ❝ô♥❣ ✤➣ ❤➻♥❤ t❤➔♥❤ ✈➔ ♣❤→t tr✐➸♥ ❝→❝ ♥❤â♠ ự ỵ tt trữớ ữủ tỷ t ỵ t ỡ ỵ tt t tr ự ✤↕t ✤÷đ❝ ♥❤✐➲✉ t❤➔♥❤ tü✉ tr♦♥❣ ①➙② ❞ü♥❣ ✈➔ ♥❣❤✐➯♥ ❝ù✉ ❤✐➺♥ t÷đ♥❣ ❧✉➟♥ ❝❤♦ ❝→❝ ♠ỉ ❤➻♥❤ ✸✲✸✲✶✱ ✤✐➸♥ ❤➻♥❤ ♥❤÷ ♥❤â♠ ❝õ❛ ●❙✳ ❍♦➔♥❣ ◆❣å❝ ▲♦♥❣ ✭❱✐➺♥ ❱➟t ỵ ởt t ủ ợ ❝→❝ ♥❣❤✐➯♥ ❝ù✉ s✐♥❤ ❦❤✐ ❤å❝ t➟♣✱ ❧➔♠ ✈✐➺❝ tr♦♥❣ ♥❤â♠ ♥❣❤✐➯♥ ❝ù✉ ♥➔②✳ P❤➙♥ t➼❝❤✱ ✤→♥❤ ❣✐→ ♥❤ú♥❣ ✈➜♥ ỏ tỗ t q t ổ tr trữợ õ ữ qt ữ trt ợ ổ ợ ỡ ữủ ổ ỳ ữ õ ợ ♠æ ❤➻♥❤ ✸✲✸✲✶✱ ♠æ ❤➻♥❤ ♥➔② ❝á♥ t❤➸ ❤✐➺♥ ♥❤ú♥❣ ÷✉ ✤✐➸♠ ♥ê✐ ❜➟t ❤ì♥ ❤➥♥✿ ❧➔ ♠ỉ ❤➻♥❤ ✸✲✸✲✶ t qt ỗ tớ t ❝❤✉➞♥ ❤â❛ ✤÷đ❝ ✈➔ sü ♣❤➙♥ ❜➟❝ ❝õ❛ ❦❤è✐ ❧÷đ♥❣ ✈➔ ❣â❝ trë♥ ❝õ❛ ♣❤➛♥ ❢❡r♠✐♦♥✳ ◆❣♦➔✐ r❛ ♠æ ❤➻♥❤ ❝ô♥❣ ❝❤♦ ❞ü ✤♦→♥ ✈➲ ❝→❝ ù♥❣ ✈✐➯♥ ❝❤♦ ✈➟t t tố ổ ợ ữủ ợ t tr♦♥❣ t❤í✐ ❣✐❛♥ ❣➛♥ ✤➙②✱ ✈ỵ✐ ♣❤ê ❤↕t ♠ỵ✐ ✤❛ t rt tữỡ t ợ ♥❣❤✐➯♥ ❝ù✉ ✤➸ ✤↔♠ ❜↔♦ ♠ỉ ❤➻♥❤ ♣❤ị ❤đ♣ ✈ỵ✐ ❞ú ❧✐➺✉ t❤ü❝ ♥❣❤✐➺♠ ✈➔ ❞ü ✤♦→♥ ❝→❝ t➼♥ ❤✐➺✉ t ỵ ợ t t s➩ t➟♣ tr✉♥❣ ✈➔♦ ♠ët sè ❤✐➺♥ t÷đ♥❣ ❧✉➟♥ ✈➟t ỵ ữủ s tọ ỡ tr ổ ổ ố trữợ ữ tợ t t ỵ õ ❧✐➯♥ q✉❛♥ ✤➳♥ t❤ü❝ ♥❣❤✐➺♠ ❤✐➺♥ t↕✐ ✈➔ t÷ì♥❣ ❧❛✐ ❞ị♥❣ ✤➸ ❦❤➥♥❣ ✤à♥❤ t➼♥❤ ÷✉ ✈✐➺t ❤ì♥ ❤❛② ❧♦↕✐ ❜ä ♠ët ♠ỉ ❤➻♥❤ ✸✲✸✲✶ ❝ư t❤➸ ✈➝♥ ❧➔ ♠ët ✈➜♥ ✤➲ r➜t t❤í✐ sü ❤✐➺♥ ♥❛②✳ ▼ët tr♦♥❣ sè ❝→❝ ♥ë✐ ❞✉♥❣ ❝❤➼♥❤ ❝õ❛ ❧✉➟♥ →♥ ♥➔② t➟♣ tr✉♥❣ ✈➔♦ ✈➜♥ ✤➲ tr➯♥✱ tr♦♥❣ ✤â ❝❤ó♥❣ tỉ✐ s➩ ①❡♠ ①➨t t➼♥ ❤✐➺✉ ♣❤➙♥ ❜✐➺t ❝→❝ ♠æ ❤➻♥❤ ✸✲✸✲✶ ❞ü❛ tr➯♥ sü ❦➳t ❤ñ♣ t➜t ❝↔ ❝→❝ ❞ú ❧✐➺✉ t❤ü❝ ♥❣❤✐➺♠ ♠ỵ✐ ♥❤➜t ❝õ❛ t❤❛♠ sè ρ✱ t➼❝❤ ②➳✉ ❝õ❛ ♥❣✉②➯♥ tû ❈❡s✐✉♠ ✈➔ ❝õ❛ ♣r♦t♦♥✳ ❚ø ✤➙②✱ ❝❤ó♥❣ tỉ✐ ❝❤➾ r❛ ✤÷đ❝ r➡♥❣✱ ❦➳t q✉↔ tø tê♥❣ ❤đ♣ ❝→❝ sè ❧✐➺✉ t❤ü❝ ♥❣❤✐➺♠ ♥â✐ tr➯♥ ❝â ❦❤↔ ♥➠♥❣ ✤→♥❤ ❣✐→ ✤÷đ❝ ❝→❝ ♠ỉ ❤➻♥❤ ✸✲✸✲✶ ♥➔♦ ❝á♥ ♣❤ị ❤đ♣✱ ♥➳✉ ✤ë ♥❤↕② ❝→❝ ✻ t❤ü❝ ♥❣❤✐➺♠ tr➯♥ t✐➳♣ tö❝ ✤÷đ❝ ♥➙♥❣ ❝➜♣✳ ◆❤ú♥❣ ✈➜♥ ✤➲ ♠➔ ❧✉➟♥ →♥ ❝➛♥ t➟♣ tr✉♥❣ ❣✐↔✐ q✉②➳t ❛✮ ❚r♦♥❣ ❦❤✉æ♥ ❦❤ê ♠æ ❤➻♥❤ ✸✲✸✲✶ ❈❑❙✿ ✭✶✮ ①➙② ❞ü♥❣ ♣❤➛♥ ❜♦s♦♥ ❝❤✉➞♥ ✈➔ ❍✐❣❣s ❝õ❛ ♠æ ❤➻♥❤ ✈➔ ✭✷✮ ❞ü❛ ✈➔♦ ❝→❝ ❞ú ❧✐➺✉ tỹ õ q q tr t ỵ ❞ü ✤♦→♥ ❜ð✐ ♠ỉ ❤➻♥❤ ✤➸ ❣✐ỵ✐ ❤↕♥ ❝→❝ t❤❛♠ sè ❝õ❛ ♠ỉ ❤➻♥❤✳ ❜✮ ❑➳t ❤đ♣ t➜t ❝↔ ❝→❝ ❞ú ❧✐➺✉ t➼❝❤ ②➳✉ ❝õ❛ ♥❣✉②➯♥ tû ❈❡s✐✉♠ ✈➔ ❝õ❛ rt ợ số tữỡ t→❝ ❨✉❦❛✇❛ s✐♥❤ ❦❤è✐ ❧÷đ♥❣ ❝❤♦ q✉❛r❦ t♦♣ ✤➸ ❞ü ✤♦→♥ ♠ỉ ❤➻♥❤ ✸✲✸✲✶ ♥➔♦ ✈➝♥ ❝á♥ ❦❤↔ ♥➠♥❣ ♣❤ị ❤đ♣ ✈ỵ✐ t❤ü❝ ♥❣❤✐➺♠ tr♦♥❣ sè ❝→❝ ❝→❝ ♠ỉ ❤➻♥❤ ✸✲✸✲✶ ❤✐➺♥ ❝â✳ ▼ö❝ t✐➯✉ ♥❣❤✐➯♥ ❝ù✉ ✲ ❚↕♦ r❛ ❝→❝ ❦➳t q✉↔ ♥❣❤✐➯♥ ❝ù✉ ♠ỵ✐ ✤↕t ❝❤✉➞♥ t❤❡♦ q✉② ✤à♥❤ ✤➸ ❤♦➔♥ t❤➔♥❤ ❜➟❝ ❤å❝ t✐➳♥ s➽✳ ✲ ❈â t tử tr t tr ữợ ♥❣❤✐➯♥ ❝ù✉ s❛✉ ❦❤✐ ❦➳t t❤ó❝ ❜➟❝ ❤å❝✳ ✣è✐ t÷đ♥❣ ✈➔ ♣❤↕♠ ✈✐ ♥❣❤✐➯♥ ❝ù✉ ✲ ❈→❝ ♠æ ❤➻♥❤ ✸✲✸✲✶ ✭♣❤↕♠ ✈✐ ♥❣❤✐➯♥ ❝ù✉✿ tê♥❣ q✉❛♥✮✳ ✲ ▼æ ❤➻♥❤ ✸✲✸✲✶ ✈ỵ✐ ❝ì ❝❤➳ ❈❑❙ ✭♣❤↕♠ ✈✐ ♥❣❤✐➯♥ ❝ù✉✿ ♥ë✐ ❞✉♥❣ ❝→❝ tr÷í♥❣ ❜♦s♦♥ ❝❤✉➞♥ ✈➔ tr÷í♥❣ ❍✐❣❣s✱ ❝→❝ ❦❤è✐ ❧÷đ♥❣ ✈➔ ❣â❝ trë♥✮✳ ✲ ❳→❝ ✤à♥❤ ❝→❝ ❜✐➸✉ t❤ù❝ r➔♥❣ ❜✉ë❝ ✈➔ ❣✐ỵ✐ ❤↕♥ ❦❤ỉ♥❣ ❣✐❛♥ ❝→❝ t❤❛♠ sè ❝õ❛ ❝→❝ ♠æ ❤➻♥❤ ✸✲✸✲✶ ✭♣❤↕♠ ✈✐ ♥❣❤✐➯♥ ❝ù✉✿ ♣❤➙♥ t➼❝❤ ✈➔ ❜✐➺♥ ❧✉➟♥ ❞ü❛ tr➯♥ ❞ú ❧✐➺✉ t❤ü❝ ♥❣❤✐➺♠ ❝õ❛ t❤❛♠ sè ρ ✈➔ t➼❝❤ ②➳✉ QW tr♦♥❣ ❤✐➺♥ t÷đ♥❣ P ố ợ s tr tữủ P ố ✈ỵ✐ ♣r♦t♦♥ ❦➳t ❤đ♣ ✈ỵ✐ sè ❧✐➺✉ ✈➲ ❣✐ỵ✐ ❤↕♥ số tữỡ t ố ợ qr t Pữỡ ự Pữỡ ỵ t❤✉②➳t tr÷í♥❣ ❧÷đ♥❣ tû✳ ✲ ❑❤↔♦ s→t sè ✈➔ ❜✐➺♥ ❧✉➟♥ ❝→❝ ❦➳t q✉↔ ❞ü❛ ✈➔♦ ♣❤➛♠ ♠➲♠ ♠→② t➼♥❤ t t ữỡ ổ ợ ỡ ❝❤➳ ❈❑❙ ✶✳✶ ▼ỉ ❤➻♥❤ ✸✲✸✲✶ ✈ỵ✐ ❝ì ❝❤➳ ❈❑❙ ✶✳✶✳✶ P❤➛♥ ❢❡r♠✐♦♥ ❝õ❛ ♠ỉ ❤➻♥❤ ✸✸✶ ✈ỵ✐ ❝ì ❝❤➳ ❈❑❙ ✣è✐ ①ù♥❣ ✤➛② ✤õ ❝õ❛ ♠æ ❤➻♥❤ ♥➔② ❧➔ SU (3)C × SU (3)L × U (1)X × Z4 × Z2 × U (1)L ✱ tr♦♥❣ ✤â Lg sè ❧❡♣t♦♥ t♦➔♥ ♣❤➛♥✳ ❈➠♥ ❝ù ✈➔♦ t❤❛♠ sè β ✤÷đ❝ ❞ò♥❣ ✤➸ ✤à♥❤ ♥❣❤➽❛ t♦→♥ tû ✤✐➺♥ t➼❝❤ ❝→❝ ❤↕t tr ổ ữ ữợ s Q = T3 +βT8 +X ✳ ❈→❝ ♠æ ❤➻♥❤ ✸✲✸✲✶ √♣❤ê ❜✐➳♥ ♥❤➜t ✤÷đ❝ ①➳♣ ✈➔♦ ❤❛✐ ❧♦↕✐✴♣❤✐➯♥ ❜↔♥ ❝❤➼♥❤✿ ♥❤ú♥❣ ♠ỉ ❤➻♥❤ ✈ỵ✐ β = t❤✉ë❝ ❧♦↕✐ ❝→❝ ♠ỉ ❤➻♥❤ ✸✲✸✲✶ tè✐ t❤✐➸✉ ✭♠✐♥✐♠❛❧ ✸✲✸✲✶ ♠♦❞❡❧s✮✱ ✈➔ β = − 13 tữỡ ự ợ õ ổ ợ ❝→❝ ♥❡✉tr✐♥♦ ♣❤➙♥ ❝ü❝ ♣❤↔✐ ✭✸✲✸✲✶ ♠♦❞❡❧ ✇✐t❤ r✐❣❤t✲❤❛♥❞❡❞ ♥❡✉tr✐♥♦s✮✳ ◆ë✐ ❞✉♥❣ q✉❛r❦ ✤÷đ❝ ①➙② ❞ü♥❣ t❤❡♦ ❜✐➸✉ ❞✐➵♥ SU (3)C × SU (3)L × U (1)X ✿ g QnL = (Dn , −Un , Jn )TL ∼ (3, 3∗ , 0), Q3L = (U3 , D3 , T )TL ∼ 3, 3, , n = 1, 2, , UiR ∼ 3, 1, , i = 1, 2, 3, 3 2 ∼ 3, 1, − , TR ∼ 3, 1, , TL,R ∼ 3, 1, , BL,R ∼ 3, 1, − 3 3 DiR ∼ 3, 1, − JnR P t ỗ , eiR (1, 1, −1), i = 1, 2, 3, ∼ (1, 1, −1), NiR ∼ (1, 1, 0), ΨR ∼ (1, 1, 0) LiL = (ν i , ei , ν ci )TL ∼ 1, 3, − EiL ∼ (1, 1, −1), EiR ✭✶✳✷✮ ✭✶✳✸✮ ð ✤➙② ν ci ≡ ν ciR ❧➔ ❝→❝ ❧❡♣t♦♥ tr✉♥❣ ❤á❛ ♠ỵ✐✳ P❤➛♥ ❜♦s♦♥ ❍✐❣❣s ỗ t t ổ ữợ ρ ✈➔ ❜↔② ✤ì♥ t✉②➳♥ + + + ϕ01 ✱ ϕ02 ✱ ξ ✱ φ+ ✱ φ2 ✱ φ3 ✈➔ φ4 ✱ ✤÷đ❝ s➢♣ ①➳♣ ❝ư t❤➸ ♥❤÷ s❛✉✿ , χ = χ = χ + χ ∼ 1, 3, − ρ= ρ+ , √ (Rρ − iIρ ) , ρ+ vχ 0,0, √ T ∼ 1, 3, , ✽ T , χ = χ01 , χ− , √ (Rχ03 − iIχ03 ) T , 1.0007 1.0006 1.0005 v Χ TeV Ρ vΧ 1.0004 Ρ Ρmax v Χ m2Z2 v Χ max Ρmin 1.0003 v Χ 1.0002 1.0001 3 10 mZ2 TeV2 v TeV ỗ t tr ♠æ t↔ t❤❛♠ sè ρ ✭vχ✮ ❧➔ ❤➔♠ ❝õ❛ vχ ✭MZ2 ✮✱ ❝→❝ ✤÷í♥❣ t❤➥♥❣ ♥❣❛♥❣ ❧➔ ❝➟♥ tr➯♥ ✈➔ ữợ v ỹ t t ❞✐➺♥ t→♥ ①↕ t♦➔♥ ♣❤➛♥ ❝❤♦ q✉→ tr➻♥❤ s✐♥❤ ❜♦s♦♥ t ỡ r ỗ t❤à tr→✐ tr♦♥❣ ❤➻♥❤√✶✳✷ ❜✐➸✉ ❞✐➵♥ t✐➳t ❞✐➺♥ t♦➔♥ ♣❤➛♥ s✐♥❤ Z2 t❤❡♦ ❝ì ❝❤➳ ❉r❡❧❧✲❨❛♥ ð ▲❍❈ ✈ỵ✐ S = 13 ❚❡❱✱ ❧➔ ❤➔♠ t❤❡♦ MZ ✳ ●✐ỵ✐ ❤↕♥ ữợ MZ 2 t t→♥ ①↕ t♦➔♥ ♣❤➛♥ s✐♥❤ Z2 t❤❡♦ ❝ì ❝❤➳ ❉r❡❧❧✲❨❛♥ t ố ữủZ2 ỗ t tr tr tữỡ ự ợ ữủ S = 28✮ ❚❡❱ ð ▲❍❈✳ S = 13 ✭❞ü ❚❡❱ ♣❤ị ❤đ♣ ✈ỵ✐ ❝→❝ ❞ú ❧✐➺✉ t❤ü❝ ♥❣❤✐➺♠ ❤✐➺♥ ♥❛② ❝❤♦ sü trë♥ ❝→❝ ♠❡s♦♥ K ✱ D ✈➔ B ✳ ❚✐➳t ❞✐➺♥ t→♥ ①↕ ♥➔② ♥➡♠ tr♦♥❣ ❦❤♦↔♥❣ 85 ❢❜ ✤➳♥ 10 ❢❜ ❝❤♦ ❦❤♦↔♥❣ ❣✐ỵ✐ ❤↕♥ ❚❡❱ ≤ MZ ≤ ❚❡❱✳ Ð t❤❛♥❣ ♥➠♥❣ ❧÷đ♥❣ ❦❤è✐ t➙♠ ✷✽ ❚❡❱ ✤÷đ❝ ✤➲ ①✉➜t ♥➙♥❣ ❝➜♣ t↕✐ ▲❍❈✱ t✐➳t ❞✐➺♥ t→♥ ①↕ t♦➔♥ ♣❤➛♥ s✐♥❤ Z2 t❤❡♦ ❝ì ❝❤➳ ❉r❡❧❧✲❨❛♥ ❝â ❣✐→ trà t➠♥❣ ❧➯♥ ✤→♥❣ ❦➸ tø 2.5 ♣❜ ✤➳♥ 0.7 ♣❜✱ ♥❤÷ ♠ỉ t↔ ð ỗ t õ rở r ð ▲❍❈ ❝õ❛ q✉→ tr➻♥❤ ❝ë♥❣ ❤÷ð♥❣ pp → Z2 → l+l− ð S = 28 ❚❡❱ s➩ ❝â ❣✐→ trà ❜➟❝ 10−2 ♣❜ ✤è✐ ✈ỵ✐ ❜♦s♦♥ ❝❤✉➞♥ ❚❡❱✱ tữỡ ự ợ ữợ tr t❤ü❝ ♥❣❤✐➺♠ ð ▲❍❈✳ ✶✵ ❈❤÷ì♥❣ ✷ ❚❤➳ ❍✐❣❣s ✈➔ ♠ët sè ❤✐➺♥ t÷đ♥❣ ❧✉➟♥ ❝â ❧✐➯♥ q✉❛♥ ✤➳♥ ❍✐❣❣s tr♦♥❣ ▼ỉ ❤➻♥❤ ✸✲✸✲✶ ✈ỵ✐ ❝ì ❝❤➳ ❈❑❙ ✷✳✶ ❚❤➳ ❍✐❣❣s t♦➔♥ ♣❤➛♥ ❚❤➳ ❍✐❣❣s t♦➔♥ ♣❤➛♥ ❧➔ tê♥❣ ❝õ❛ ❜❛ ♣❤➛♥ ✭①✐♥ ①❡♠ ❝❤✐ t✐➳t tr♦♥❣ ❜↔♥ ✤➛② ✤õ✴t♦➔♥ ✈➠♥ ❝õ❛ ❧✉➟♥ →♥✮✿ V = VLN C + VLN V + Lscalars sof t ✳ ❈→❝ t÷ì♥❣ t→❝ ❝➛♥ ✤➸ s✐♥❤ ❦❤è✐ ❧÷đ♥❣ ❝→❝ ❧❡♣t♦♥ ♠❛♥❣ ✤✐➺♥ ✈➔ ❝→❝ q✉❛r❦✿ + − 0 LHiggsqcl = λ1 χρηϕ01 +λ3 η † ρφ− ξ +λ4 φ1 φ2 ϕ2 ξ +w1 ϕ2 ϕ01 +w2 χ† ρφ− +h.c ✭✷✳✶✮ ✣➸ s✐♥❤ ❦❤è✐ ❧÷đ♥❣ ♥❡✉tr✐♥♦✱ ♥❣♦➔✐ sè ❤↕♥❣ ✤➛✉ t✐➯♥ ð ✭✷✳✶✮✱ ❝➛♥ t❤➯♠✿ + LHiggsneutrino = λ13 (χ† χ)2 + λ5 (χ† χ)(η † η) + λ27 (ρ† ρ)(χ† η + η † χ) + µ23 φ− φ3 + h.c ✷✳✷ ❚❤➳ ❍✐❣❣s t số t P ổ ữợ s ❝â ❤❛✐ tr÷í♥❣ ❦❤ỉ♥❣ ❦❤è✐ ❧÷đ♥❣ η+2 ✈➔ χ+2❀ ❜❛ tr÷í♥❣ ❝â ❦❤è✐ ❧÷đ♥❣ φ+1, φ+2 ✈➔ φ+4❀ ✈➔ ❜❛ tr↕♥❣ t❤→✐ trë♥ tr♦♥❣ ❝ì sð ✭ρ+1 , φ+3✱ ρ+3✮✳ r ợ v v +1 trữớ t ỵ ợ ố ữủ m2 = A + 21 v2 (6 + 9) trữớ ổ ữợ t õ ❦❤è✐ ❧÷đ♥❣ ρ+3 ✈➔ φ+3 trë♥ ♥❤❛✉✳ P❤➛♥ ❍✐❣❣s ❈P✲❧➫ ✭❈P✲♦❞❞ ❍✐❣❣s✮✿ ❝â ❜❛ tr÷í♥❣ ❦❤ỉ♥❣ ❦❤è✐ ❧÷đ♥❣ ❧➔ Iχ , Iη ✈➔ Iξ ✱ tr÷í♥❣ Iϕ ❝â ❜➻♥❤ ♣❤÷ì♥❣ ố ữủ m2I = à2 + B2 = à2 + χϕ ηϕ ϕξ ✱ tr÷í♥❣ G ✈➔ A ✭tr♦♥❣ ❝ì sð (I , I )✮✱ tr÷í♥❣ A ✈➔ 1 χ η vχ λ2 + vη λ2 + vξ λ2 A3 ✭tr♦♥❣ ❝ì sð (Iχ , Iη )✳ P❤➛♥ ❍✐❣❣s ❈P✲❝❤➤♥✿ tr÷í♥❣ Rϕ ❝â m2R = m2I ✱ tr÷í♥❣ RG ✈➔ H1 ✭tr♦♥❣ ❝ì sð (Rχ , Rη )✮✱ tr÷í♥❣ H2 ✈➔ H3 ✭tr♦♥❣ ❝ì sð (Rρ , Rϕ )✮✱ ❜❛ tr↕♥❣ t❤→✐ trë♥ tr♦♥❣ ❝ì sð (Rχ , Rη , Rξ ) ✈➔ ù♥❣ ✈✐➯♥ ✈➟t ❝❤➜t tè✐✳ + ϕ2 1 ϕ2 3 ϕ2 3 1 ✶✶ t t tố trữớ ổ ữợ t ϕ02 ❧➔ ù♥❣ ✈✐➯♥ ✈➟t ❝❤➜t tè✐ ❦❤↔ ❞➽✱ ❝â ❜➻♥❤ ♣❤÷ì♥❣ ❦❤è✐ ❧÷đ♥❣ ❧➔ m2R = m2I = 21 vη2ληϕ ✳ ✣➳♥ ✤➙② t❛ ❝â t❤➸ ✈✐➳t ❧↕✐ ♠ët ♣❤➛♥ ❝õ❛ ♥ë✐ ❞✉♥❣ ❍✐❣❣s✿ χ (GX , GY , √12 (vχ+ √1 (Rρ − iIρ ), ρ+ )T ✱ η Rχ − iGZ ))T ✱ ρ = (ρ+ ( √12 (vη + h − iGZ ), GW , ω)T ✱ 1, ϕ02 = √12 (Rϕ − iIϕ ) ∼∼ ❉▼, ξ = √12 (vξ + Rξ − iGM )✳ ϕ2 ϕ2 − − 2 ✷✳✸ ❈→❝ tr÷í♥❣ ❤đ♣ ❣✐↔♥ ❧÷đ❝ P s P P s P ữợ ❣✐↔♥ ❧÷đ❝ ✤÷đ❝ tâ♠ t➢t tr♦♥❣ ❇↔♥❣ ✷✳✶✳ ❇↔♥❣ ✷✳✶✿ ❇➻♥❤ ♣❤÷ì♥❣ ❦❤è✐ ❧÷đ♥❣ ❝õ❛ ❝→❝ tr÷í♥❣ ❍✐❣❣s ❈P✲❧➫ ❚r÷í♥❣ ❇✳P✳❑✳▲ Iχ01 = G1 ∈ GX Iχ03 = GZ Iη01 = GZ Iη03 = A1 Iρ = A2 Iϕ01 = A3 Iϕ02 = DM Iξ = GM m2A1 m2A2 m2A3 m2I ϕ 0 ✷✳✸✳✷ P❤➛♥ ❍✐❣❣s ❈P✲❝❤➤♥ ✈➔ ❍✐❣❣s ♥❤÷ ♠ỉ ❤➻♥❤ ❝❤✉➞♥ P s P ữợ ữủ ữủ tr♦♥❣ ❜↔♥❣ ✷✳✷✳ ❇↔♥❣ ✷✳✷✿ ❇➻♥❤ ♣❤÷ì♥❣ ❦❤è✐ ❧÷đ♥❣ ❝õ❛ ❝→❝ tr÷í♥❣ ❍✐❣❣s ❈P✲❝❤➤♥ ❚r÷í♥❣ ❇✳P✳❑✳▲ Rχ01 ∈ GX 0 Rχ03 λvχ2 H4 Rη01 = h λvη Rη03 = H1 m2H1 = m2A1 Rρ = H2 Rϕ01 = H3 m2H2 m2H3 Rϕ02 = DM m2R ϕ = Rξ m2I ϕ H5 3λvχ2 P s ỗ trữớ ổ ❦❤è✐ ❧÷đ♥❣ ❧➔ GW ✈➔ GY ✳ ❈→❝ tr÷í♥❣ ❝â ❦❤è✐ ❧÷đ♥❣ ❧➔ + + + + + φ+ , φ2 ✈➔ φ4 ✈➔ ❜❛ tr↕♥❣ t❤→✐ trë♥ tr♦♥❣ ❝ì sð ✭ρ1 , ρ3 , φ3 ✮✳ ✷✳✹ ❚❤➳ ❍✐❣❣s ✈✐ ♣❤↕♠ sè ❧❡♣t♦♥ ❚❤➳ ❍✐❣❣s ✈✐ ♣❤↕♠ sè ❧❡♣t♦♥✱ tù❝ ❧➔ Vf ull = VLN C + VLN V t q ợ trú t tữỡ tü ♥❤÷ tr÷í♥❣ ❤đ♣ t❤➳ ❍✐❣❣s ❜↔♦ t♦➔♥ sè ❧❡♣t♦♥✳ + + ✷✳✺ ▼ët sè ❤✐➺♥ t÷đ♥❣ ❧✉➟♥ ❧✐➯♥ q✉❛♥ ✤➳♥ ♥ë✐ ❞✉♥❣ ❍✐❣❣s tr♦♥❣ ▼ỉ ❤➻♥❤ ✸✲✸✲✶ ✈ỵ✐ ❝ì õ õ ổ ữợ t❤❛♠ sè ρ ❈→❝ ❜♦s♦♥ ❍✐❣❣s ♠ỵ✐ ❝â t❤➸ ❝❤♦ ✤â♥❣ ❣â♣ ✈➔♦ t❤❛♠ sè ρ ð ❜➟❝ ♠ët ✈á♥❣✱ ợ tự tờ qt ữủ ữ s ΠW W (0) ΠZZ (0) ∆ρ = ρ − = − ✭✷✳✷✮ M2 M2 W ✶✷ Z ❚r♦♥❣ ♠æ ❤➻♥❤ ✤❛♥❣ ①➨t✱ ❜✐➸✉ t❤ù❝ ✤â♥❣ ❣â♣ ❍✐❣❣s ❦❤→❝ ❦❤æ♥❣ ❞✉② ♥❤➜t ❧➔ √ 2GF g2 = fs (mH1+ , mRρ ) = fs (mH1+ , mRρ ) 2 16π 16π mW ∆ρH ✭✷✳✸✮ ▼✐➲♥ ✤÷đ❝ ♣❤➨♣ ổ t số tữỡ ự ợ ởt số ❣✐→ trà ❝ư t❤➸ ❝õ❛ ∆m2 ✤÷đ❝ ❞✐➵♥ t↔ ð ❤➻♥❤ ✷✳✶✳ ❈❤ó♥❣ t❛ ❝â t❤➸ t❤➜② r➡♥❣ MZ ≥ ❚❡❱ ❧➔ ❤♦➔♥ Δρ×104 , mZ' [TeV], Δm2 =0.2462 3.0 1.4 2.5 mH + [TeV] 2.0 3.7 1.5 1.0 0.5 4.5 1.5 10 v [TeV] ỗ t ữớ ♠ỉ t↔ t❤❛♠ sè ρ ✭❝→❝ ✤÷í♥❣ ❣↕❝❤✲❝❤➜♠✮ ✈➔ ❝õ❛ MZ ✭❝→❝ ✤÷í♥❣ ❧✐➲♥ ♠➔✉ ✤❡♥✮ ❧➔ ❤➔♠ ❝õ❛ vχ ✈➔ mH ✳ ❈→❝ ♠✐➲♥ ♠➔✉ ①❛♥❤ ❜à ❧♦↕✐ trø t❤❡♦ ❞ú ❧✐➺✉ t❤ü❝ ♥❣❤✐➺♠ ρ✳ + t♦➔♥ ✤÷đ❝ ♣❤➨♣ ♥➳✉ ∆m2 ✤õ ❧ỵ♥✱ ❝❤➥♥❣ ❤↕♥ ❦❤✐ ∆m2 ≥ (0.246 TeV)2 t ủ ỵ ❦❤è✐ ❧÷đ♥❣ ❝→❝ ❜♦s♦♥ ❍✐❣❣s tr✉♥❣ ❤á❛ ♥➦♥❣ ✤÷đ❝ t✐➯♥ ✤♦→♥ ❝â ❣✐→ trà ð t❤❛♥❣ ❚❡❱ ♥❣♦➔✐ ✈ò♥❣ ❧♦↕✐ trø ❝õ❛ ▲❍❈✱ ❝❤♦ t❤➜② ❦❤è✐ ❧÷đ♥❣ ❝õ❛ ❜♦s♦♥ ❍✐❣❣s ♠❛♥❣ ✤✐➺♥ H1+ ♥❤✐➲✉ ❦❤↔ ♥➠♥❣ ❝ô♥❣ ð t❤❛♥❣ ❚❡❱✳ ✷✳✺✳✷ ❍✐➺♥ t÷đ♥❣ ❧✉➟♥ ✈➲ ❜♦s♦♥ ❍✐❣❣s ♥➦♥❣ ❍✹ ❱ỉ ữợ H4 ữủ s r t ỡ tr tr ỗ ỏ ✤✐➸♠ ❝❤ù❛ ❝→❝ q✉❛r❦ ♥❣♦↕✐ ❧❛✐ ♥➦♥❣ T ✱ J1 ✈➔ J2✳ ❉♦ ✤â✱ t✐➳t ❞✐➺♥ t→♥ ①↕ t♦➔♥ ♣❤➛♥ s✐♥❤ H4 t❤❡♦ ❝ì ❝❤➳ ♥➔② tr♦♥❣ ♠→② ✈❛ ❝❤↕♠ ♣r♦t♦♥✲♣r♦t♦♥ ð ✶✸ ♥➠♥❣ ❧÷đ♥❣ ❦❤è✐ t➙♠ √ S ✤÷đ❝ t➼♥❤ t❤❡♦ ❜✐➸✉ t❤ù❝ s❛✉ α2S m2H4 |(RCP even3 )22 |2 σ pp→gg→H4 (S) = I 64πvχ2 S − ln × ln m2 H4 S m2H4 fp/g m2 H4 S S m2H4 +I m2T y e ,µ m2H4 +I m2J1 m2H4 fp/g m2H4 S m2J2 e−y , µ2 dy r ỗ t tr tt ❞✐➺♥ t→♥ ①↕ t♦➔♥ ♣❤➛♥ tr♦♥❣ ❍➻♥❤ ✷✳✷✿ ❚✐➳t ❞✐➺♥√t→♥ ①↕ t♦➔♥ ♣❤➛♥ s✐♥❤ H4 t❤❡♦ ❝ì ❝❤➳ tr✉②➲♥ ❣❧✉♦♥ ð ▲❍❈ √ ❧➔ ❤➔♠ t❤❡♦ vχ ✈ỵ✐ S = 13 S = 28 tữỡ ự ỗ t tr→✐ ✭♣❤↔✐✮✳ √ √ tr÷í♥❣ ❤đ♣ S = 13 ✭ S = 28✮ ❚❡❱ ✤÷đ❝ ❜✐➸✉ ❞✐➵♥ t❤❡♦ ❤➔♠ ❝õ❛ vχ✱ tr♦♥❣ ❦❤♦↔♥❣ 10 TeV ≤ vχ ≤ 20 ❚❡❱✱ tữỡ ự ợ 4.4 TeV mH 8.9 ❚r÷í♥❣ √ ❤đ♣ S = 28 ❚❡❱ ❝❤♦ σpp→gg→H (S) = 1.6 × 10−2❢❜ ❦❤✐ vχ = 10 ❚❡❱✳ ❉♦ t✐➳t ❞✐➺♥ s✐♥❤ H4 r➜t ♥❤ä ♥❤÷ ✈➟② ♥➯♥ ♥❣❤✐➯♥ ❝ù✉ ❝❤✐ t✐➳t ❝→❝ ❦➯♥❤ r➣ ❍✐❣❣s ♥➔② ❦❤æ♥❣ ❝➛♥ t❤✐➳t✳ ❈❤ó♥❣ tỉ✐ ❝➛♥ ♥❤➜♥ ♠↕♥❤ ❝→❝ t➼♥ ❤✐➺✉ ✤÷đ❝ ❦ý ✈♦♥❣ ❝❤♦ ♠æ ❤➻♥❤ ✤❛♥❣ ①➨t s➩ ❧➔ q✉→ tr➻♥❤ s✐♥❤✲r➣ Z ✈➔ ❝→❝ q✉→ tr➻♥❤ r➣ ✈✐ ♣❤↕♠ sè ❧❡♣t♦♥ ♠❛♥❣ ✤✐➺♥ µ → eγ ✳ ❑➳t q✉↔ q✉❛♥ s→t ❝❤ó♥❣ tø t❤ü❝ ♥❣❤✐➺♠ s➩ ♠❛♥❣ t➼♥❤ q✉②➳t ✤à♥❤ ✤➳♥ sü sè♥❣ ❝á♥ ❝õ❛ ♠æ ❤➻♥❤✳ 4 ✷✳✺✳✸ ▼➟t ✤ë t➔♥ ❞÷ ❝õ❛ ✈➟t ❝❤➜t tè✐ ✭❉❛r❦ ♠❛tt❡r r❡❧✐❝ ❞❡♥s✐t②✮ ▼➟t ✤ë t➔♥ ❞÷ ♠➔ t❛ ❝➛♥ t ữủ ổ tự h2 = 0.1pb ợ σv ∞ √ s gp2 T 32π σv = A = n2eq s−4m2ϕ vrel σ (ϕϕ √ → pp) K1 4m2ϕ p=W,Z,t,b,h 2 T 2π gp m2ϕ K2 p=W,Z,t,b,h ✶✹ mϕ T s T ds ✭✷✳✹✮ 0.5 0.4 Ωh 0.3 0.2 0.1 0.0 200 300 400 500 600 mφ[GeV] ❍➻♥❤ ✷✳✸✿ Ωh2 ❧➔ ❤➔♠ t❤❡♦ ❦❤è✐ ❧÷đ♥❣ mϕ✳ ❈→❝ ❣✐→ trà ❝ư t❤➸ λh ϕ 2 = 0.5, 0.7, 0.8, 0.9, tữỡ ự ợ ữớ ỗ t tứ tr ố ữợ ữớ t tr tỹ ữủ h2 = 0.1198 ỗ t t ✤ë t➔♥ ❞÷ ❉▼ t❤❡♦ mϕ ❝õ❛ ù♥❣ ✈✐➯♥ ✈➟t t tố ổ ữợ ữủ tr ✣✐➲✉ ❦✐➺♥ r➔♥❣ ❜✉ë❝ ❝õ❛ ♠➟t ✤ë t➔♥ ❞÷ ❞➝♥ ✤➳♥ ♠è✐ t÷ì♥❣ q✉❛♥ t✉②➳♥ t➼♥❤ ❣✐ú❛ ❤➺ sè tü tữỡ t ổ ữợ ố h ố ❧÷đ♥❣ mϕ ✭❤➻♥❤ ✷✳✹✮✳ ✚✛✜ ✧✦ ✗✘✙ ✷❤ ✥ ✔✕✖ ✑✒✓ ✵✎✏ ✸ ✁ ✂✄☎ ✹✆✝ ✞✟✠ ♠✢❬●✣✤❪ ✺✡☛ ☞✌✍ ữỡ q ỳ h m ợ Ωh2 = 0.1198✳ ✶✺ 2 ❈❤÷ì♥❣ ✸ ❇✐➺♥ ❧✉➟♥ ❝→❝ ✤➦❝ t➼♥❤ ❝õ❛ ❝→❝ ♠æ ❤➻♥❤ ✸✲✸✲✶ ❞ü❛ ✈➔♦ ❞ú ❧✐➺✉ t➼❝❤ ②➳✉ ❝õ❛ ✶✸✸❈s ✈➔ ❝õ❛ ♣r♦t♦♥ ✸✳✶ ●✐→ trà t❤ü❝ ♥❣❤✐➺♠ ❝õ❛ t➼❝❤ ②➳✉ ❝õ❛ ❈s✲✶✸✸✱ ♣r♦t♦♥ ✈➔ ❝æ♥❣ t❤ù❝ t➼❝❤ ②➳✉ tr♦♥❣ ❝→❝ ♠æ ❤➻♥❤ rở ữợ t P ữủ t q ữủ t ỵ ữủ ❧➔ t➼❝❤ ②➳✉ QW ✱ ❧➔ ♠ët t❤❛♠ sè ✤✐➺♥ ②➳✉ tr♦♥❣ ▲❛❣r❛♥❣✐❛♥ ✈✐ ♣❤↕♠ ❝❤➤♥ ❧➫✳ ❚r♦♥❣ ❝→❝ ♠æ ❤➻♥❤ ♠ð rë♥❣ ❙▼ ✭❇❙▼✮✱ ❞♦ ❝â t❤➯♠ ❝→❝ ❜♦s♦♥ tr ỏ ợ t ởt ỗ ✈à ✭❳✮ ♥❤➟♥ t❤➯♠ ♠ët ❧÷đ♥❣ ❣✐→ trà ♠➔ t❛ ❣å✐ ❧➔ ❜ê ✤➼♥❤ t➼❝❤ ②➳✉ ✤÷đ❝ ✤à♥❤ ♥❣❤➽❛ ♥❤÷ s❛✉✿ BSM A SM A ∆QW (A Z X) ≡ QW (Z X) − QW (Z X) ✭✸✳✶✮ 133 ❑➳t q✉↔ t❤ü❝ ♥❣❤✐➺♠ ♠ỵ✐ ✤➙② ❝õ❛ t➼❝❤ ②➳✉ ❝õ❛ ỗ s Qexp W (55 Cs) = 133 −72.62 ± 0.43✳ ❙♦ ✈ỵ✐ ❣✐→ trà t➼♥❤ tø ▼æ ❤➻♥❤ ❝❤✉➞♥ ❧➔ QSM W (55 Cs) = −73.23 ± 0.01✱ ❜ê ✤➼♥❤ t➼❝❤ ②➳✉ ∆QW ❝➛♥ ✤➸ ❣✐↔✐ t❤➼❝❤ ✤÷đ❝ t❤ü❝ ♥❣❤✐➺♠ ❧➔ exp 133 SM 133 ∆QW (133 55 Cs) ≡ QW (55 Cs) − QW (55 Cs) = 0.61 ± 0.43 , ✭✸✳✷✮ ▼ỵ✐ ✤➙②✱ ❝→❝ t❤ü❝ ♥❣❤✐➺♠ ✈➲ ✈✐ ♣❤↕♠ ❝❤➤♥ ❧➫ tr♦♥❣ t→♥ ①↕ ❡❧❡❝tr♦♥ ✭P❱❊❙✮ ✤➣ ①→❝ ✤à♥❤ ❣✐→ trà ❝➟♣ ♥❤➟t ♥❤➜t ❝õ❛ t➼❝❤ ②➳✉ ♣r♦t♦♥ ❧➔ Qexp W (1 p) = 0.0719 ± 0.0045✳ ●✐→ trà ♥➔② ✤÷đ❝ ❝ỉ♥❣ ♥❤➟♥ ♣❤ị ❤đ♣ r➜t tèt ✈ỵ✐ ❣✐→ trà t➼♥❤ t❤❡♦ ▼ỉ ❤➻♥❤ ❝❤✉➞♥✱ QSM W (1 p) = 0.0708±0.0003✱ t÷ì♥❣ ù♥❣ ❣✐→ t❤ü❝ ♥❣❤✐➺♠ ❝❤♦ ❜ê ✤➼♥❤ t➼❝❤ ②➳✉ ♣r♦t♦♥ ∆QW (11 p) = 0.0011 ± 0.0045✳ ❳➨t ♠ët ❇❙▼ ❝â t❤➯♠ ♠ët ❜♦s♦♥ ❝❤✉➞♥ tr✉♥❣ ❤á❛ ♥➦♥❣ Z ♥❣♦➔✐ ❜♦s♦♥ ❝❤✉➞♥ tr✉♥❣ ❤á❛ Z ✤➣ ❝â tr♦♥❣ ❙▼✱ ❜✐➸✉ tự t ỗ AZX A ∆QBSM W (Z X) − (A − 2.39782 × Z) ∆ρ − 2sφ A 2gV (d) + gV (u) + gA (e) ✶✻ ✭✸✳✸✮ × − Z gA (e) × 1.07512 + gV (d) − gV (u) MZ2 − 4gA (e) g(MZ2 ) g(MZ1 ) MZ2 g (MZ2 ) g (MZ1 ) × A 2gV (d) + gV (u) + Z gV (u) − gV (d) ❑➳t q✉↔ tê♥❣ ❤ñ♣ tø t➜t ❝↔ ❝→❝ ❞ú ❧✐➺✉ t❤ü❝ ♥❣❤✐➺♠ ♠ỵ✐ ♥❤➜t ❝❤♦ ❝→❝ t➼❝❤ ②➳✉✱ t❤❛♠ sè ρ✱ ✈➔ ❣✐ỵ✐ ❤↕♥ ♥❤✐➵✉ ❧♦↕♥ ❝õ❛ ❤➡♥❣ sè t÷ì♥❣ t→❝ ❨✉❦❛✇❛ s✐♥❤ ❦❤è✐ ❧÷đ♥❣ q✉❛r❦ t♦♣ s➩ ↔♥❤ ❤÷ð♥❣ r➜t ♠↕♥❤ ❝→❝ ✈ị♥❣ ❦❤ỉ♥❣ ❣✐❛♥ t❤❛♠ sè ữủ ợ ổ ❇ ✈➔ ❈ tr♦♥❣ t➟♣ ❝→❝ ♠æ ❤➻♥❤ ✸✲✸✲✶ ✤➣ t tữủ P tr ổ ợ ❝ì ❝❤➳ ❈❑❙ ❇↔♥❣ ✸✳✶✿ ❈→❝ ❤➡♥❣ sè t÷ì♥❣ t→❝ ✈❡❝t♦r ✈➔ ✈❡❝t♦r✲trư❝ ❞ị♥❣ ❝❤♦ ❝→❝ t➼♥❤ t♦→♥ ❆P❱ tr♦♥❣ ❙▼ ✈➔ ✸✲✸✲✶❈❑❙✳ ▼æ ❤➻♥❤ ❝❤✉➞♥ gA (e) = gV (u) = − ▼æ ❤➻♥❤ ✸✲✸✲✶ ❈❑❙ gA (e) = + √ − 12 3−4s2W −3+8s2W 4s2W gV (d) = − 12 + gV (u) = √ 3−4s2W −3+2s2W 2s2W gV (d) = √ 3−4s2W ✸✳✷✳✶ ❇✐➸✉ t❤ù❝ ❜ê ✤➼♥❤ t➼❝❤ ②➳✉ tr♦♥❣ ▼ỉ ❤➻♥❤ ✸✲✸✲✶ ❈❑❙ ❙û ❞ư♥❣ ❝→❝ ✤à♥❤ ♥❣❤➽❛ ✈➔ ❦➳t q✉↔ s❛✉ ✤➙② ρ= m2W , ∆ρ ≡ ρ − c2W MZ2 αT, T = TZZ + Toblique , TZZ tan2 φ α MZ2 −1 MZ2 ữ ổ tự ợ trà gA(e), gA(d)✱ ✈➔ gA(u) ð ❇↔♥❣ ✸✳✶ t❛ ✤÷đ❝✿ 133 CKS CKS ∆QCKS W (55 Cs) = −1.12004 × α(TZZ + Toblique ) g(MZ2 ) + sφ × 122.655 × + 120.743 g(MZ1 ) MZ2 MZ2 g (MZ2 ) × g (MZ1 ) ✭✸✳✹✮ ❚➼❝❤ ②➳✉ ❝õ❛ ♣r♦t♦♥ ✤÷đ❝ ①→❝ ✤à♥❤ ❜ð✐ ❜✐➸✉ t❤ù❝✿ ∆QCKS W (1 p) = 1.140∆ρ + 0.437 × MZ2 g(MZ2 ) g (MZ2 ) + 0.777 × g(MZ1 ) g (MZ1 ) MZ2 ●✐ỵ✐ MZ t ữủ tứ ỗ t 1.27 TeV ≤ MZ 2 ✶✼ ≤ 2.66 ❚❡❱✳ ✭✸✳✺✮ 1.2 {1.11, 1.0} {1.27, 5.6} 1.0 ΔQCKS W (p)×10 [ΔQW (p)]max ×103 ΔQCKS W (Cs) 0.6 [ΔQW (Cs)]max [ΔQW (Cs)]min 0.4 {2.66, 0.18} 0.2 0.0 ΔQCKS W (p)×10 CKS ΔQW (Cs) 0.8 [ΔQW (p)]min ×103 -2 -4 6 MZ (TeV) MZ (TeV) CKS ❍➻♥❤ ✸✳✶✿ ∆QCKS W (Cs) ✈➔ ∆QW (p) ❧➔ ❤➔♠ ❝õ❛ MZ ✸✳✸ ❍✐➺♥ t÷đ♥❣ ❆P❱ tr♦♥❣ ❝→❝ ♠æ ❤➻♥❤ ✸✲✸✲✶✲β ❈â ❜❛ ❝→❝❤ ❣→♥ ❦❤→❝ ♥❤❛✉ ✤è✐ ✈ỵ✐ ❝→❝ q✉❛r❦ ♣❤➙♥ ❝ü❝ tr→✐✱ tù❝ ❧➔ ❣→♥ t❤➳ ❤➺ q✉❛r❦ t❤ù ❜❛✱ t❤ù ❤❛✐ ❤♦➦❝ t❤ù ♥❤➜t ❧➔ t❛♠ t✉②➳♥ ♥❤â♠ SU (3)L✳ ❇❛ ❝→❝❤ ❣→♥ ♥➔② t÷ì♥❣ ù♥❣ ❝❤♦ r❛ ❜❛ ❧♦↕✐ ♠ỉ ❤➻♥❤ ❧♦↕✐ ❆✱ ❇✱ ✈➔ ❈✱ tr♦♥❣ ✤â ❤❛✐ ♠æ ❤➻♥❤ ❆✱ ❇ ❝❤♦ ❝ò♥❣ ♣❤➨♣ ❣→♥ t❤➳ ❤➺ t❤ù ♥❤➜t✱ ❝❤♦ ❤➺ q✉↔ ❞ü ✤♦→♥ ❆P❱ ♥❤÷ ♥❤❛✉✳ ❱➻ ✈➟②✱ ❜↔♥❣ ✸✳✷ ❝❤➾ ❧✐➺t ❦➯ ❝→❝ t÷ì♥❣ t→❝ ❝❤♦ ❤❛✐ ♠ỉ ❤➻♥❤ ❆ ✈➔ ❈✳ ❚✐➳♣ t❤❡♦ ❝❤ó♥❣ ❇↔♥❣ ✸✳✷✿ ❈→❝ ❤➡♥❣ sè t÷ì♥❣ t→❝ ✈❡❝t♦r ✈➔ ✈❡❝t♦r✲trư❝ ❝➛♥ ✤➸ t➼♥❤ ❆P❱ tr♦♥❣ ♠æ ❤➻♥❤ ✸✲✸✲✶β ✳ ▼æ ❤➻♥❤ ❝❤✉➞♥ gA (e) = − gV (u) = − gV (d) = − + 4s2 W 2s2 W ▼æ ❤➻♥❤ ✸✲✸✲✶ ❧♦↕✐ ❆ √ 1−(1+ 3β)s2 W gA (e) = √ 1−(1+β )s2 W √ −3+(3−5 3β)s2 W gV (u) = √ 1−(1+β )s2 W √ −3+(3+ 3β)s2 W gV (d) = √ 1−(1+β )s2 W ▼æ ❤➻♥❤ ✸✲✸✲✶ ❧♦↕✐ ❈ √ 1−(1+ 3β)s2 W gA (e) = √ 1−(1+β )s2 W √ 3−(3+5 3β)s2 W gV (u) = √ 1−(1+β )s2 W √ 3−(3− 3β)s2 W gV (d) = √ 1−(1+β )s2 W tæ✐ t➼♥❤ ❜ê ✤➼♥❤ t➼❝❤ ②➳✉ ∆Q331 W (Cs) ❝❤♦ ♠æ ❤➻♥❤ ✸✲✸✲✶✲β ✱ sû ❞ö♥❣ ❜✐➸✉ t❤ù❝ ❣â❝ trë♥ Z − Z ❝❤ù❛ t❤❛♠ sè β ✱ ❜ä q✉❛ ✤â♥❣ ❣â♣ ❝õ❛ sè ❤↕♥❣ ❝❤ù❛ ∆ρ✳ ❚❤❛♠ sè tv tr♦♥❣ ❝→❝ ♠ỉ ❤➻♥❤ ✸✲✸✲✶ ❜à r➔♥❣ ❜✉ë❝ ❜ð✐ t÷ì♥❣ t→❝ ❨✉❦❛✇✇❛ s✐♥❤ ❦❤è✐ ❧÷đ♥❣ q✉❛r❦ t♦♣✱ t÷ì♥❣ tü ❝→❝ t❤↔♦ ❧✉➟♥ ❝❤♦ ❝→❝ ♠ỉ ❤➻♥❤ ❤❛✐ ❧÷ï♥❣ t✉②➳♥ ❍✐❣❣s✭✷❍❉▼✮ ✤➣ ❜✐➳t✳ ❉♦ ✤â ❝❤ó♥❣ tỉ✐ ❞ị♥❣ ❣✐ỵ✐ ❤↕♥ tv ≤ 3.4 ❝❤♦ ♠æ ❤➻♥❤ ❧♦↕✐ ❆ ✈➔ tv ≥ 0.3 ❝❤♦ ❝→❝ ♠æ ❤➻♥❤ ❧♦↕✐ ❇✱ ❈✳ ❚r♦♥❣ ❦❤↔♦ s→t sè ❝❤ó♥❣ tỉ✐ s➩ t➻♠ ♠✐➲♥ ❦❤ỉ♥❣ ❣✐❛♥ t❤❛♠ sè ❤ñ♣ ❧➺✱ tù❝ ❧➔ t❤ä❛ ♠➣♥ ❝↔ ❜❛ r➔♥❣ ❜✉ë❝ ❜ð✐ ❞ú ❧✐➺✉ ❆P❱ ❝õ❛ ❈❡s✐✉♠✱ ❞ú ❧✐➺✉ P❱❊❙ ❝õ❛ rt ợ số tữỡ t→❝ ❨✉❦❛✇❛ ✤è✐ ✈ỵ✐ q✉❛r❦ t♦♣✳ ❈❤ó♥❣ tỉ✐ s➩ t➟♣ tr✉♥❣ ❦❤↔♦ s→t ❝❤♦ ❝→❝ ♠æ ❤➻♥❤ ❧♦↕✐ ❆ ✈➔ ❈✳ ❱✐➺❝ ❦❤↔♦ s→t ❝❤♦ ♠æ ❤➻♥❤ ❧♦↕✐ ❇ s➩ ✤÷đ❝ ①→❝ ✤à♥❤ ❞ü❛ tr➯♥ t➼❝❤ ②➳✉ t✐➯♥ ✤♦→♥ ❜ð✐ ♠æ ❤➻♥❤ ❧♦↕✐ ❆ ✈➔ ✤✐➲✉ ❦✐➺♥ tv ≥ 0.3✳ ❈❤ó♥❣ tỉ✐ t❤✉ ✤÷đ❝ ❦➳t q✉↔ ❦❤↔♦ s→t sè ✤÷đ❝ tr ữ ữợ P tr ổ ❤➻♥❤ ✸✲✸✲✶ ✈ỵ✐ β = ±√3 ❛✮ ✣è✐ ✈ỵ✐ ♠ỉ ❤➻♥❤ ❝❤ù❛ ❧❡♣t♦♥ ♥❣♦↕✐ ❧❛✐√ ❑➳t q✉↔ ❦❤↔♦ s→t sè tr♦♥❣ tr÷í♥❣ ❤đ♣ β = ± ✤÷đ❝ rót r❛ ❞ü❛ ✈➔♦ ❞ú ❧✐➺✉ ❆P❱ ❝õ❛ ❈❡s✐✉♠ ✤÷đ❝ ♠✐♥❤ ❤å❛ tứ tr ữợ ❝õ❛ β= - , rep C β= - , rep A 1.0 0.6 tv=0 tv=3.4 tv=0.3 tv=50 ΔQ331 W (Cs) ΔQ331 W (Cs) 0.8 -1 tv=0 tv=3.4 tv=0.3 tv=50 tv=1 tv=1 0.4 -2 0.2 4.6 4.8 5.0 5.2 5.4 5.6 5.8 -3 6.0 β= , rep A β= , rep C 1.0 1.0 tv=0 tv=0.3 0.8 ΔQ331 W (Cs) tv=1 ΔQ331 W (Cs) MZ (TeV) MZ (TeV) tv=3.4 0.6 tv=50 0.5 tv=0 tv=3.4 tv=0.3 tv=50 tv=1 0.0 0.4 0.2 10 12 -0.5 MZ (TeV) 10 MZ (TeV) ỗ t tr ổ t↔ ∆Q331 W (Cs) ❧➔ ❤➔♠ t❤❡♦ MZ ❝❤♦ ♠æ ❤➻♥❤ ❧♦↕✐ ❆ ✭❈✮✳ ❍❛✐ ✤÷í♥❣ ♥❣❛♥❣ ♠➔✉ ✤ä ự ợ tr ữợ tr tỹ ♥❣❤✐➺♠ ∆QW (Cs)✳ MZ2 ✤÷đ❝ ❧✐➺t ❦➯ tr♦♥❣ ❇↔♥❣ ✸✳✸✳ ữợ MZ tv √ β=− 0.3 3.4 50 tv ❆ ✺✳✸✼ ✺✳✸✺ ✺✳✷✹ ✺✳✶✷ ✺✳✶✵ ❈ ✘ ✘ ✘ ✹✳✷✹ ✺✳✹✸ √ β=+ 0.3 3.4 50 ❆ ✶✵✳✽✹ ✶✵✳✸✽ ✼✳✻✻ ✸✳✵✺ ✵✳✶✹ ❈ ✘ ✘ ✘ ✘ ✘ ❜✮ ▼æ ❤➻♥❤ ✸✲✸✲✶ tè✐ t❤✐➸✉ ❈→❝ ❦➳t q✉↔ ❦❤↔♦ s→t sè ❝❤♦ ♣❤➛♥ ♥➔② ✤÷đ❝ ♠✐♥❤ ❤å❛ ð ❍➻♥❤ ✸✳✸✳ ❉➵ t❤➜② r➡♥❣ tr♦♥❣ ♠æ ❤➻♥❤ ❧♦↕✐ ❆✱ ỗ t t số ữủ ♣❤➨♣✳ ◆❣÷đ❝ ❧↕✐✱ ♠ỉ ❤➻♥❤ ❧♦↕✐ ❈ ✈➝♥ ❝❤♦ ♣❤➨♣ tỗ t tr ữủ MZ t❤❡♦ ❣✐→ trà tv ❣✐↔♠✳ ▼ët sè ❣✐→ trà ❜✐➯♥ ❝ư t❤➸ ✤÷đ❝ tâ♠ t➢t tr♦♥❣ ❇↔♥❣ ✸✳✹✳ ✶✾ M331, rep C M331, rep A 1.0 1.0 tv=0 tv=3.4 tv=0.3 tv=50 0.8 tv=1 ΔQM331 (Cs) W ΔQM331 (Cs) W 0.5 0.0 0.6 tv=0 tv=3.4 tv=0.3 tv=50 tv=1 0.4 0.2 -0.5 0.0 -1.0 MZ (TeV) 10 MZ (TeV) ❍➻♥❤ ✸✳✸✿ ∆QM331 (Cs) ❧➔ ❤➔♠ t❤❡♦ MZ ✤è✐ ✈ỵ✐ ♠ỉ ❤➻♥❤ ✸✲✸✲✶ ❧♦↕✐ ❆ ✭❈✮ ✤÷đ❝ ♠ỉ t↔ W ð ❤➻♥❤ ❜➯♥ tr→✐ ✭♣❤↔✐✮✳ ❚➼♥❤ t♦→♥ ✈ỵ✐ s2W (MZ2 ) = 0.246 ✈➔ g = 0.636 ✳ ❇↔♥❣ ✸✳✹✿ ▼✐➲♥ ❣✐→ trà ❝õ❛ MZ ✤÷đ❝ t✐➯♥ ✤♦→♥ ❜ð✐ ♠ỉ ❤➻♥❤ ✸✸✶ tè✐ t❤✐➸✉✳ tv ❆ ❈ ✘ ✘ 0.3 ✘ ✘ 3.4 ✘ 50 ✘ ❬✸✳✶✶✱ ✼✳✹✼❪ ❬✼✳✻✻✱ ✶✽✳✹✶❪ ❬✶✵✳✹✵✱ ✷✹✳✾✾❪ ❬✶✵✳✽✸✱ ✷✻✳✵✹❪ ❈❤ó♥❣ tỉ✐ ❝ơ♥❣ t❤➜② r➡♥❣ ❞ú ❧✐➺✉ ❆P❱ ❝õ❛ ❈❡s✐✉♠ ✤➣ ❧♦↕✐ ❜ä ♠æ ❤➻♥❤ ✸✲ ✸✲✶ ❧♦↕✐ ❆ ♥❤÷♥❣ ✈➝♥ ❝❤♦ ♣❤➨♣ ♠ỉ tỗ t ợ tv ọ mZ ≥ 3.11 ❚❡❱ ❦❤✐ tv = 0.3✳ ❑➳t ❤ñ♣ ✈ỵ✐ ✤✐➲✉ ❦✐➺♥ tv ≥ 0.3 ✈➔ ❞ú ❧✐➺✉ P❱❊❙ rt s t r tr ữợ ❝❤➦t ❤ì♥ mZ ≥ 4✱ ♥❤÷ t❤➸ ❤✐➺♥ ð ❍➻♥❤ ỡ ỳ tr ữợ MZ ữủ rót r❛ tø ❞ú ❧✐➺✉ P❱❊❙ ❝õ❛ ♣r♦t♦♥ ❧➔ ♥❣❤✐➯♠ ♥❣➦t ❤ì♥ tø ❞ú ❧✐➺✉ ❆P❱ ❝õ❛ ❈❡s✐✉♠✳ 2 ✸✳✸✳✷ ❆P❱ tr♦♥❣ ♠ỉ ❤➻♥❤ ✸✲✸✲✶ ✈ỵ✐ β = ± √13 ❑➳t q✉↔ t➼♥❤ sè t❤✉ ✤÷đ❝ ❞ü❛ ✈➔♦ ❞ú ❧✐➺✉ ❆P❱ ❝õ❛ ❈❡s✐✉♠ ✤÷đ❝ t❤➸ ❤✐➺♥ ð ❤➻♥❤ ởt số ợ t ữủ tr trữớ ủ β = ± √13 ✤÷đ❝ tê♥❣ ❤đ♣ tr♦♥❣ ❇↔♥❣ ✸✳✺✳ ❇↔♥❣ ✸✳✺✿ ▼✐➲♥ ❣✐→ trà ❝õ❛ MZ ✭❚❡❱✮ tr♦♥❣ tr÷í♥❣ ❤ñ♣ β = ± √13 ✳ β= − √13 β = + √13 tv 0.3 3.4 50 ❆ ❬✶✳✶✶✱ ✷✳✻✻❪ ❬✶✳✵✻✱ ✷✳✺✼❪ ❬✵✳✽✻✱ ✷✳✵✼❪ ❬✵✳✺✽✱ ✶✳✸✾❪ ❬✵✳✺✶✱ ✶✳✷✸❪ ❈ ✘ ✘ ✘ ❬✵✳✸✺✱ ✵✳✽✺❪ ❬✵✳✺✼✱ ✶✳✸✼❪ ❆ ❬✶✳✸✾✱ ✸✳✸✹❪ ❬✶✳✸✸✱ ✸✳✷✵❪ ❬✶✳✵✵✱ ✷✳✸✾❪ ❬✵✳✹✺✱ ✶✳✵✽❪ ❬✵✳✷✸✱ ✵✳✺✺❪ ❈ ✘ ✘ ✘ ✘ ❬✵✳✷✾✱ ✵✳✼✵❪ ✷✵ M331, rep C 0.8 tv 0.6 0.18 0.4 0.2 1.04 0.0 10 MZ [TeV] ❍➻♥❤ ✸✳✹✿ ▼✐➲♥ ❦❤ỉ♥❣ ❣✐❛♥ t❤❛♠ sè ✤÷đ❝ ♣❤➨♣ tr♦♥❣ ♠➦t ♣❤➥♥❣ MZ ❝❤♦ ♠ỉ ❤➻♥❤ ▼✸✸✶ ❧♦↕✐ ❈✳ ❱ị♥❣ ♠➔✉ ❝❛♠✱ ①❛♥❤ ✈➔ ✈➔♥❣ ❧➛♥ ❧÷đt ❜à ❧♦↕✐ trø ❞♦ ✤✐➲✉ ❦✐➺♥ tv ≥0.3✱ ❞ú ❧✐➺✉ ❆P❱ ❝õ❛ ❈❡s✐✉♠✱ ✈➔ ❞ú ❧✐➺✉ P❱❊❙ ❝õ❛ ♣r♦t♦♥✳ β= -1/ , rep A − tv β= -1/ , rep C 1.0 1.0 0.8 0.6 tv=0 tv=3.4 tv=0.3 tv=50 ΔQ331 W (Cs) ΔQ331 W (Cs) 0.8 tv=1 0.4 0.6 0.4 tv=0 tv=3.4 tv=0.3 tv=50 tv=1 0.2 0.0 0.2 -0.2 MZ (TeV) β=1/ , rep A β= 1/ , rep C 1.0 1.0 tv=0 tv=3.4 tv=0.3 tv=50 0.8 ΔQ331 W (Cs) 0.8 ΔQ331 W (Cs) MZ (TeV) tv=1 0.6 0.6 0.4 tv=0 tv=3.4 tv=0.3 tv=50 tv=1 0.4 0.2 0.2 0.0 0.0 -0.2 MZ (TeV) MZ (TeV) √1 ❍➻♥❤ ✸✳✺✿ ∆Q331 W (Cs) ❧➔ ❤➔♠ t❤❡♦ MZ ✈ỵ✐ β = ± ✤è✐ ✈ỵ✐ ♠ỉ ❤➻♥❤ ❧♦↕✐ ❆ ✭❈✮ ✤÷đ❝ ♠✐♥❤ ❤å❛ ð ❤➻♥❤ ❜➯♥ tr→✐ ✭♣❤↔✐✮✳ ✸✳✸✳✸ ❆P❱ tr♦♥❣ ♠ỉ ❤➻♥❤ ✸✲✸✲✶ ✈ỵ✐ β = ❑➳t q✉↔ t➼♥❤ sè tr♦♥❣ tr÷í♥❣ ❤đ♣ ♥➔② ❝❤♦ ❤❛✐ ♠ỉ ❤➻♥❤ ❧♦↕✐ ❆ ✈➔ ❈ ✤÷đ❝ t❤➸ ❤✐➺♥ ð ❍➻♥❤ ✸✳✻✳ ❈→❝ ❦➳t q✉↔ ❦❤→❝ ✤÷đ❝ tâ♠ t➢t tr♦♥❣ ❇↔♥❣ ✸✳✻✳ Ð ✤➙② ❝❤ó♥❣ tỉ✐ t❤➜② ❝â sỹ tữỡ tỹ ữ ợ trữớ ủ = √13 ✱ ❝❤♦ ❦➳t q✉↔ ❞ü ✤♦→♥ MZ ❦❤→ ♥❤➭✱ ữủ tr ổ trữợ ✣✐➸♠ ❦❤→❝ ❜✐➺t ❧➔ ❦❤♦↔♥❣ ✷✶ β=0, rep A β= 0, rep C 1.0 1.0 tv=0 tv=3.4 tv=0.3 tv=50 0.8 ΔQ331 W (Cs) ΔQ331 W (Cs) 0.8 tv=1 0.6 0.6 0.4 tv=0 tv=3.4 tv=0.3 tv=50 tv=1 0.4 0.2 0.2 0.0 0.0 -0.2 6 MZ (TeV) MZ (TeV) ỗ t tr Q331 W (Cs) ❧➔ ❤➔♠ t❤❡♦ MZ ✈ỵ✐ β = 0✳ ❇↔♥❣ ✸✳✻✿ ▼✐➲♥ ❣✐→ trà ✤÷đ❝ t✐➯♥ ✤♦→♥ ❝õ❛ MZ tr♦♥❣ tr÷í♥❣ ❤đ♣ β = 0✳ 2 tv 0.3 3.4 50 ❆ ❬✶✳✶✽✱ ✷✳✽✸❪ ❬✶✳✶✸✱ ✷✳✼✷❪ ❬✵✳✽✼✱ ✷✳✵✾❪ ❬✵✳✹✼✱ ✶✳✶✸❪ ❬✵✳✸✺✱ ✵✳✽✹❪ ❈ ✘ ✘ ✘ ❬✵✳✶✹✱ ✵✳✸✸❪ ❬✵✳✹✶✱ ✵✳✾✽❪ ❝❤♦ ♣❤➨♣ ❝õ❛ MZ ❞í✐ ❝❤✉②➸♥ t❤❡♦ ❝❤✐➲✉ t➠♥❣ ❦❤✐ β ❜✐➳♥ ✤ê✐ tø − √13 ✤➳♥ √13 ✳ ▼ỉ ❤➻♥❤ ❧♦↕✐ ❇ ❝❤♦ ❝ị♥❣ ❦➳t q✉↔ ❆P❱ ♥❤÷ ♠ỉ ❤➻♥❤ ❧♦↕✐ ❆✱ ❝❤➾ ❦❤→❝ ♠✐➲♥ ❦❤ỉ♥❣ ❣✐❛♥ t❤❛♠ sè ❝õ❛ ♥â ♣❤↔✐ t❤ä❛ tv > 0.3✱ ✤➣ ✤÷đ❝ ✈➩ tr♦♥❣ ❤➻♥❤ ✸✳✼✳ ▼ỉ β= 0, rep A tv 1.04 0.18 0.5 1.0 1.5 2.0 2.5 3.0 MZ [TeV] ❍➻♥❤ ✸✳✼✿ ▼✐➲♥ ❦❤ỉ♥❣ ❣✐❛♥ t❤❛♠ sè ✤÷đ❝ ♣❤➨♣ tr♦♥❣ ♠➦t ♣❤➥♥❣ MZ ✈ỵ✐ β = ❈→❝ ♠✐➲♥ ♠➔✉ ❝❛♠✱ ①❛♥❤ ❧→✱ ✈➔♥❣ ✈➔ ①❛♥❤ ❜✐➸♥ ❧➛♥ ❧÷đt ❜à ❧♦↕✐ trø ❞♦ ❝→❝ ✤✐➲✉ ❦✐➺♥ tv ≤ 3.4✱ ❞ú ❧✐➺✉ ❆P❱ ❝õ❛ ❈❡s✐✉♠✱ ❞ú ❧✐➺✉ P❱❊❙ ❝õ❛ ♣r♦t♦♥ ✈➔ tv ≥0.3✳ ❤➻♥❤ ❧♦↕✐ ❇ ❧♦↕✐ trø ✤✐ ❝→❝ ✈ò♥❣ t số tữỡ ự ợ MZ ợ tv P❤➛♥ ❦➳t ❧✉➟♥ ❚r♦♥❣ ❧✉➟♥ →♥ ♥➔②✱ tr♦♥❣ ❦❤✉æ♥ ❦❤ê ♠ỉ ❤➻♥❤ ✸✲✸✲✶❈❑❙✱ ❝❤ó♥❣ tỉ✐ ✤➣ ①➙② ❞ü♥❣ ✈➔ st s ỗ tr t t ỵ tự õ trở ✈➔ ❦❤è✐ ❧÷đ♥❣ ❝õ❛ ❝❤ó♥❣✳ ◆❣♦➔✐ r❛✱ ❞ü❛ ✈➔♦ ❞ú ❧✐➺✉ t❤ü❝ ♥❣❤✐➺♠ t❤❛♠ sè ρ ❝❤ó♥❣ tỉ✐ ①→❝ ✤à♥❤ ✤÷đ❝ ❦❤♦↔♥❣ ❣✐→ trà ✤÷đ❝ ♣❤➨♣ ❝õ❛ tr✉♥❣ ❜➻♥❤ ❝❤➙♥ ổ v ố ữủ s tr ỏ ợ Z2✳ ❚ø ✤➙②✱ ❝❤ó♥❣ tỉ✐ ❦❤↔♦ s→t t✐➳t ❞✐➺♥ t→♥ ①↕ t♦➔♥ ♣❤➛♥ s✐♥❤ Z ð ▲❍❈ t❤❡♦ ❝ì ❝❤➳ ❉r❡❧❧✲❨❛♥✳ ❚✐➳♣ t❤❡♦✱ ♣❤ê ❍✐❣❣s tr♦♥❣ ♠æ ❤➻♥❤ ✸✲✸✲✶ ❈❑❙ ụ ữủ ỹ ỗ t s t♦➔♥ ♣❤➛♥✱ t❤➳ ❍✐❣❣s ❜↔♦ t♦➔♥ sè ❧❡♣t♦♥ ✈➔ t❤➳ s số t ỗ t ữủ ❜♦s♦♥ ❍✐❣❣s ♥❤÷ ♠ỉ ❤➻♥❤ ❝❤✉➞♥ ✭❙▼✲❧✐❦❡ ✮ ✈➔ ù♥❣ ✈✐➯♥ ❱➟t ❝❤➜t tè✐✱ ❧✉➟♥ →♥ ♥➔② ❝ô♥❣ t➼♥❤ t♦→♥ ❝❤✐ t✐➳t tr÷í♥❣ ❤đ♣ ❣✐↔♥ ❧÷đ❝ ❝õ❛ ♥ë✐ ❞✉♥❣ ❍✐❣❣s✱ tứ õ t ữủ õ õ ổ ữợ ✈➔♦ t❤❛♠ sè ρ✱ ❦❤↔♦ s→t ❤✐➺♥ t÷đ♥❣ ❧✉➟♥ ✈➲ ❜♦s♦♥ ❍✐❣❣s ♥➦♥❣ H4 ✈➔ ♠➟t ✤ë t➔♥ ❞÷ ❝õ❛ ❱➟t ❝❤➜t tè✐✳ ❈❤ó♥❣ tỉ✐ ❝ơ♥❣ sû ❞ư♥❣ ♥❤ú♥❣ ❞ú ợ t t t ữủ tứ t❤ü❝ ♥❣❤✐➺♠ ❆P❱ ❝õ❛ ❈❡s✐✉♠✱ P❱❊❙ ❝õ❛ ♣r♦t♦♥ ✈➔ ❣✐ỵ✐ ❤↕♥ ♥❤✐➵✉ ❧♦↕♥ ❝õ❛ ❤➡♥❣ sè t÷ì♥❣ t→❝ ❨✉❦❛✇❛ ❝õ❛ q✉❛r❦ t♦♣ ✤➸ ✤→♥❤ ❣✐→ ♠✐➲♥ ❦❤æ♥❣ ❣✐❛♥ t❤❛♠ sè ✤÷đ❝ ♣❤➨♣ ❝õ❛ ❝→❝ ♠ỉ ❤➻♥❤ ✸✲✸✲✶ ✈➔ t✐➯♥ ✤♦→♥ ợ ố ữủ s Z2 õ ổ ữủ t ợ ♠ỉ ❤➻♥❤ ✸✲✸✲✶ ❧♦↕✐ ❆✱ ❇ ✈➔ ❈ tị② t❤❡♦ ❝→❝❤ ❣→♥ t❛♠ t✉②➳♥ SU (3)L ❝❤♦ ❜❛ t❤➳ ❤➺ q✉❛r❦ tr→✐✳ ❚ê♥❣ ❤ñ♣ ❝→❝ ❦➳t q✉↔ ❦❤↔♦ s→t sè sû ❞ư♥❣ ♣❤➛♥ ♠➲♠ ▼❛t❤❡♠❛t✐❝❛ ❝❤ó♥❣ tỉ✐ ✤➣ t❤✉ ✤÷đ❝ ❝→❝ ❦➳t q✉↔ r➜t t❤ó ✈à✱ ❝❤♦ t❤➜② ♥❣♦➔✐ ❝→❝ ✤➦❝ ✤✐➸♠ ❝❤✉♥❣✱ ❜❛ ❧ỵ♣ ♠ỉ ❤➻♥❤ tr➯♥ ❞ü ✤♦→♥ ❝→❝ ✈ị♥❣ t❤❛♠ sè ✤÷đ❝ ♣❤➨♣ ❦❤→❝ ♥❤❛✉✱ ❞➝♥ ✤➳♥ ❦❤↔ ♥➠♥❣ ❧♦↕✐ trø ♠ët sè ♠æ ❤➻♥❤ ❦❤✐ ❝→❝ t❤ü❝ ♥❣❤✐➺♠ t✐➳♣ tư❝ ✤÷đ❝ ♥➙♥❣ ❝➜♣✳ ✷✸ ❉❛♥❤ s→❝❤ ❝→❝ ❝æ♥❣ ❜è ❦❤♦❛ ❤å❝ ❝õ❛ t→❝ ❣✐↔ ✶✳ ◆✳❱✳❍♦♣✱ ❚❤❡ ♠❡❛s✉r❡♠❡♥t ♦♥ ✐♥❡rt✐❛ ♠♦♠❡♥t✉♠ ♦❢ r✐❣✐❞ ❜♦❞✐❡s ✇✐t❤ t❤❡ ❙■❈ s②st❡♠✱ ❚❤❡ ❙❝✐❡♥t✐❢✐❝ ❛♥❞ ❚❡❝❤♥♦❧♦❣② P✉❜❧✐❝❛t✐♦♥ ♦❢ ❈❚❯ ✭■❙❙◆✿ ✶✽✺✾✲ ✷✸✸✸✮✱ ✷✵✵✹✱ ❈❚❯ P✉❜❧✐s❤❡r✳ ✷✳ ▲✳❚✳❍❛✐✱ ◆✳❱✳❍♦♣✱ ◆✳❚✳P❤♦♥❣✱ ❍✳◆✳▲♦♥❣✱ ❋❡r♠✐♦♥ ♠❛ss ❝♦rr❡❝t✐♦♥ t♦ t❤❡ ❩ ♣❛rt✐❛❧ ❞❡❝❛② ✇✐❞t❤✱ ❈♦♠♠✉♥✐❝❛t✐♦♥ ♦❢ P❤②s✐❝s ✭■❙❙◆✿ ✵✽✻✽✲✸✶✻✻✮ ✈♦❧✳ ✶✸✱ ♥♦✳✶✱ ♣✳ ✺✽✲✻✶✱ ✷✵✵✸✳ ✸✳ ◆✳❱✳❍♦♣✱ ❚✳❉✳❚❤❛♠✱ ◆✳❍✳❚❤❛♦✱ ◆✉♠❡r✐❝❛❧ ❝♦♠♣❛r✐s♦♥ ♦❢ P❛ss❛r✐♥♦✲❱❡❧t♠❛♥ ❢✉♥❝t✐♦♥s ✐♥ ❛♥❛❧②t✐❝ ❢♦r♠s ✇✐t❤ ▲♦♦♣❚♦♦❧s ♦♥❡s ❢♦r ❜♦s♦♥ ❞❡❝❛②✱ ❏♦✉r♥❛❧ ♦❢ ❙❝✐✲ ❡♥❝❡ ♦❢ ❍❛♥♦✐ P❡❞❛❣♦❣✐❝❛❧ ❯♥✐✈❡rs✐t② ✷ ✭■❙❙◆✿ ✶✽✺✾✲✷✸✷✺✮ ✈♦❧✳✺✵✱ ♣✳✹✻✲✺✻✱ ✷✵✶✼✳ ✹✳ ❍✳◆✳▲♦♥❣✱ ◆✳❱✳❍♦♣✱ ▲✳❚✳❍✉❡✱ ◆✳❚✳❚✳❱❛♥✱ ❈♦♥str❛✐♥✐♥❣ ❤❡❛✈② ♥❡✉tr❛❧ ❣❛✉❣❡ ❜♦s♦♥ ❩✬ ✐♥ t❤❡ ✸✲✸✲✶ ♠♦❞❡❧s ❜② ✇❡❛❦ ❝❤❛r❣❡ ❞❛t❛ ♦❢ ❈❡s✐✉♠ ❛♥❞ ♣r♦t♦♥✱ ◆✉❝❧❡❛r P❤②s✐❝s ❇ ✭■❙❙◆✿ ✵✺✺✵✲✸✷✶✸✮ ❱♦❧✳✾✹✸✱ ✷✵✶✾✳ ✺✳ ❍✳ ◆✳ ▲♦♥❣✱ ◆✳ ❱✳ ❍♦♣✱ ▲✳ ❚✳ ❍✉❡✱ ◆✳ ❍✳ ❚❤❛♦✱ ❆✳ ❊✳ ❈→r❝❛♠♦ ❍❡r♥→♥❞❡③✱ ❍✐❣❣s ❛♥❞ ❣❛✉❣❡ ❜♦s♦♥ ♣❤❡♥♦♠❡♥♦❧♦❣② ♦❢ t❤❡ ✸✲✸✲✶ ♠♦❞❡❧ ✇✐t❤ ❈❑❙ ♠❡❝❤❛♥✐s♠✱ P❤②s✐❝❛❧ ❘❡✈✐❡✇ ❉ ✭■❙❙◆✿ ✷✹✼✵✲✵✵✶✵✮ ❱♦❧✳✶✵✵✱ ✷✵✶✾✳ ❈→❝ ❦➳t q✉↔ ❝❤➼♥❤ tr♦♥❣ ❧✉➟♥ →♥ ♥➔② ❞ü❛ tr➯♥ ❝→❝ ❝æ♥❣ ❜è sè ✹ ✈➔ ✺ ð ❞❛♥❤ s→❝❤ tr➯♥✳ ✷✹ ... , −Un , Jn )TL ∼ (3, 3? ?? , 0), Q3L = (U3 , D3 , T )TL ∼ 3, 3, , n = 1, 2, , UiR ∼ 3, 1, , i = 1, 2, 3, 3 2 ∼ 3, 1, − , TR ∼ 3, 1, , TL,R ∼ 3, 1, , BL,R ∼ 3, 1, − 3 3 DiR ∼ 3, 1, − JnR ✭✶✳✶✮ P❤➛♥... √ 1? ?? (1+ 3? ?)s2 W gA (e) = √ 1? ?? (1+ β )s2 W √ ? ?3+ (3? ??5 3? ?)s2 W gV (u) = √ 1? ?? (1+ β )s2 W √ ? ?3+ (3+ 3? ?)s2 W gV (d) = √ 1? ?? (1+ β )s2 W ▼æ ❤➻♥❤ ✸✲✸✲✶ ❧♦↕✐ ❈ √ 1? ?? (1+ 3? ?)s2 W gA (e) = √ 1? ?? (1+ β )s2 W √ 3? ?? (3+ 5... ❇↔♥❣ ✸✳✹✳ ✶✾ M 3 31 , rep C M 3 31 , rep A 1. 0 1. 0 tv=0 tv =3. 4 tv=0 .3 tv=50 0.8 tv =1 ΔQM 3 31 (Cs) W ΔQM 3 31 (Cs) W 0.5 0.0 0.6 tv=0 tv =3. 4 tv=0 .3 tv=50 tv =1 0.4 0.2 -0.5 0.0 -1. 0 MZ (TeV) 10 MZ (TeV) ❍➻♥❤