Nghiên cứu khu hệ vi sinh vật vùng rễ cây nghệ vàng curcuma longa l nhằm định hướng tăng năng suất và chất lượng củ nghệ

137 13 0
Nghiên cứu khu hệ vi sinh vật vùng rễ cây nghệ vàng curcuma longa l  nhằm định hướng tăng năng suất và chất lượng củ nghệ

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ - Hoàng Kim Chi NGHIÊN CỨU KHU HỆ VI SINH VẬT VÙNG RỄ CÂY NGHỆ VÀNG Curcuma longa L NHẰM ĐỊNH HƯỚNG TĂNG NĂNG SUẤT VÀ CHẤT LƯỢNG CỦ NGHỆ LUẬN ÁN TIẾN SĨ SINH HỌC Hà Nội – 2020 BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ Hoàng Kim Chi NGHIÊN CỨU KHU HỆ VI SINH VẬT VÙNG RỄ CÂY NGHỆ VÀNG Curcuma longa L NHẰM ĐỊNH HƯỚNG TĂNG NĂNG SUẤT VÀ CHẤT LƯỢNG CỦ NGHỆ Chuyên ngành: Vi sinh vật học Mã số: 42 01 07 LUẬN ÁN TIẾN SĨ SINH HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: GS TS Lê Mai Hương TS Trần Thị Như Hằng Hà Nội – 2020 MỤC LỤC Trang MỤC LỤC .i LỜI CAM ĐOAN v LỜI CẢM ƠN .vi DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT vii DANH MỤC CÁC BẢNG ix DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ xi MỞ ĐẦU CHƯƠNG TỔNG QUAN 1.1 Một số vấn đề liên quan đến phân bón suất trồng 1.1.1 Phân bón hóa học, phân bón hữu hay phân bón sinh học? .3 1.1.2 Quản lý dinh dưỡng tổng hợp 1.1.3 Một số nhóm VSV hữu hiệu sản xuất phân sinh học 1.2 Cây nghệ vàng Cucuma longa L hợp chất curcumin củ nghệ 1.2.1 Hợp chất curcumin củ nghệ vàng 10 1.2.1.1 Thành phần hóa học củ nghệ vàng 10 1.2.1.2 Hoạt tính sinh y dược học hoạt chất curcumin củ nghệ vàng .11 1.2.2 Một số khía cạnh liên quan đến suất nghệ vàng 12 1.2.2.1 Khía cạnh sinh học 12 1.2.2.2 Khía cạnh nơng nghiệp 14 1.2.2.3 Chất lượng đất trồng, phân bón suất nghệ vàng 15 1.3 Vi sinh vật vùng rễ cộng sinh với nghệ vàng 16 1.3.1 Vi sinh vật vùng rễ thực vật .16 1.3.2 Một số nhóm VSVVR liên quan đến suất nghệ vàng .19 1.3.2.1 Vi khuẩn rễ kích thích sinh trưởng nghệ vàng 20 1.3.2.2 Nấm rễ cộng sinh nghệ vàng 21 1.3.3 Mối liên hệ khu hệ vi sinh vật cộng sinh hàm lượng curcumin nghệ vàng 22 1.3.3.1 Sự tổng hợp curcuminoid nghệ vàng 22 1.3.3.2 Vi sinh vật tạo thành curcumin nghệ 23 1.4 Bước phát triển công nghệ nghiên cứu khu hệ VSV vùng rễ 24 1.4.1 Một số phương pháp nghiên cứu khu hệ VSV đất 24 1.4.2 Metagenomics nghiên cứu khu hệ VSV vùng rễ 25 i CHƯƠNG VẬT LIỆU VÀ PHƯƠNG PHÁP NGHIÊN CỨU 2.1Nguyên vật liệu 2.1.1 Giống 2.1.1.1 Đặc điểm sinh học 2.1.1.2 Mùa vụ chế độ chăm sóc Hóa ch 2.1.2 2.2Phương pháp nghiên cứu Thu mẫ 2.2.1 Thu mẫ 2.2.1.1 2.2.1.2 Xác định số lý hóa đất • Thành • pH • Hàm lư • Hàm lư • Hàm lư • Hàm lư • Hàm lư • Hàm lư 2.2.2 Nghiên 2.2.2.2 suất Bố tr 32 2.2.2.3 Xác định tiêu nghiên cứu • Tiến hà • Xác địn • Xác địn 2.2.3 VSVVR nghệ Nghiên 2.2.3.1 Tách DNA tổng số từ mẫu đất vùng rễ nghệ 2.2.3.2 Giải trình tự metagenome amplicons 2.2.3.3 Phân tích tin sinh học • Tiền xử • Xác địn • Phân tí Phân lậ 2.2.4 2.2.4.1 Phân lập vi khuẩn vùng rễ có khả hịa tan phosphate vơ ii 2.2.4.2 Xác định khả sinh IAA kháng nấm gây bệnh thực vật 2.2.4.3 Xác định đặc tính sinh lý, sinh hóa PGPR 2.2.4.4 Xác định tên phân loại dựa trình tự đoạn gene 16S rDNA Phân lập nấm AM 2.2.5 2.2.5.1 Phân lập bào tử nấm AM từ mẫu đất vùng rễ nghệ 2.2.5.2 Khảo sát đa dạng nấm AM in situ dựa trình tự vùng gen 18S rRNA 2.2.5.3 Xác định tên phân loại nấm AM kỹ thuật Nested PCR 2.2.5.4 Xác định đặc điểm hình thái bào tử nấm AM Nghiên cứu tạo 2.2.6 2.2.6.1 Tạo chế phẩm VSV vùng rễ cho nghệ • Xác định khả • Nhân ni nấm AM • Nhân sinh khối, tạo • Thu hồi bào tử, tạo • Phối trộn, tạo chế p 2.2.6.2 Thử nghiệm hiệu chế phẩm VSV vùng rễ cho nghệ • Bố trí thí nghiệm • Xác định tiê • Xác định khả CHƯƠNG KẾT QUẢ VÀ THẢO LUẬN 3.1 Khảo sát ảnh hưởng chế độ bón phân đạm hóa học đến suất nghệ 47 3.1.1 Xác định chất lượng nghệ 3.1.2 Điều kiện thổ nhưỡng khu 3.1.2.1 Đặc điểm khí hậu 3.1.2.2 Khảo sát số môi trường đất trồng nghệ 3.1.3 Xác định suất nghệ t 3.1.4 Xác định suất curcu 3.2Khảo sát số nhóm vi sinh vật hữu hiệu vùng rễ nghệ 3.2.1 Khảo sát vi khuẩn rễ kích 54 3.2.1.1 Phân lập tuyển chọn vi khuẩn PGPR 3.2.1.2 Đặc điểm hình thái, sinh lý, sinh hóa phân loại học chủng vi khuẩn lựa chọn 57 3.2.2 Khảo sát nấm AM vùng rễ nghệ 62 iii 3.2.2.1 Phân lập khả 3.2.2.2 Đặc điểm hình t vùng rễ nghệ 3.3Nghiên cứu tác động chế độ bón phân N đến đa dạng khu hệ vi sinh vật vùng rễ nghệ 3.3.1 Kết tách DNA 3.3.2 Kết giải trình t 3.3.3 Đánh giá đa dạng bón phân N 3.3.3.1 Phân tích 3.3.3.2 Thành phần phân 3.3.4 phân N 77 Đánh giá đa dạng 3.3.4.1 Phân tích 3.3.4.2 Thành phần phân 3.3.5 Luận giải tác độ vùng rễ nghệ 3.3.5.1 Chế độ bón phân 3.3.5.2 Cơ chế tác động c 3.3.6 nghệ Khác biệt 3.3.6.1 Vi khuẩn thuộc họ 3.3.6.2 Nấm thuộc ngành 3.4 Bước đầu nghiên cứu tạo chế phẩm sinh học làm tăng suất nghệ 87 3.4.1 Thử nghiệm tính an t 3.4.2 Tạo chế phẩm sinh họ 3.4.3 Thử nghiệm tác động KẾT LUẬN VÀ KIẾN NGHỊ DANH MỤC CÁC CÔNG TRÌNH LIÊN QUAN ĐẾN LUẬN ÁN TÀI LIỆU THAM KHẢO iv LỜI CAM ĐOAN Tơi xin cam đoan: Đây cơng trình nghiên cứu riêng hướng dẫn khoa học GS TS Lê Mai Hương TS Trần Thị Như Hằng Các số liệu kết thu luận án hoàn toàn trung thực chưa cơng bố cơng trình khác Tác giả luận án Hoàng Kim Chi v LỜI CẢM ƠN Luận án hoàn thành Học viện Khoa học Công nghệ – Viện Hàn lâm Khoa học Công nghệ Việt Nam Với kính trọng, lịng biết ơn chân thành sâu sắc nhất, tơi xin bày tỏ lịng biết ơn tới GS TS Lê Mai Hương TS Trần Thị Như Hằng người thầy hướng dẫn tận tình tạo điều kiện giúp đỡ thời gian thực luận án Tôi xin trân trọng cảm ơn quan tâm giúp đỡ Ban lãnh đạo Học viện Khoa học Cơng nghệ, Viện Hóa học hợp chất thiên nhiên Viện Công nghệ Sinh học tạo điều kiện giúp đỡ tơi hồn thành luận án Tơi xin bày tỏ lịng biết ơn tới tập thể cán Phòng Sinh học thực nghiệm, Viện Hóa học hợp chất thiên nhiên giúp đỡ tơi nhiệt tình suốt thời gian thực luận án Tôi xin gửi lời cảm ơn đặc biệt tới TS Eiko Kuramae, TS Trần Hồ Quang, TS Phạm Hồng Nam, TS Hồ Bích Hải, TS Tjalf de Boer, GS Bram Brouwer cho giúp đỡ trình tơi thực luận án Tơi xin cảm ơn đề tài nghiên cứu mã số ĐTĐLCN.14/14 Bộ Khoa học Công nghệ, đề tài VAST 0205/17-18 Viện Hàn lâm Khoa học Công nghệ, đề tài “Nghiên cứu sản xuất ứng dụng chế phẩm vi sinh vật phân hủy phốt hữu (OP) góp phần giảm thiểu nhiễm mơi trường tăng suất trồng” Bộ Nông nghiệp Phát triển Nông thôn tài trợ cho nghiên cứu luận án Tôi xin chân thành cảm ơn đồng nghiệp, bạn bè gần xa cổ vũ, động viên tơi hồn thành tốt luận án Cuối cùng, tơi xin bày tỏ lịng kính trọng biết ơn sâu sắc đến gia đình tơi, người khơng ngại khó khăn vất vả, ln giúp đỡ tạo điều kiện cho thực tốt luận án Tôi xin trân trọng cảm ơn! Hà Nội, ngày tháng năm 2020 Tác giả luận án Hoàng Kim Chi vi DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT Chữ viết tắt ACE AM AMF AOB BDMC C c CoA cs Cur CUS DGGE DMC DSE FISH FYM GC% H HSD IAA K k LTR N NF NGS NF-κB O OTU P p PAL PCA 99 39 M L Gupta, and K K Janardhanan, Mycorrhizal association of Glomus aggregatum with palmarosa enhances growth and biomass, Plant and soil, 1991, 131(2), 261-263 40 E A Weiss, Spice Crops, CAB International publishing, 2002, Oxon 41 F Thomas, PDR for Herbal Medicine, Medical Economics Company, 2000, Montvale, 775-776 42 Đỗ Tất Lợi, Những thuốc vị thuốc Việt Nam, NXB Y học, 2006, Hà Nội, 227-230 43 T Nisar, M Iqbal, A Raza, M Safdar, F Iftikhar, and M Waheed, Turmeric: A promising spice for phytochemical and antimicrobial activities, Am Eur J Agric Environ Sci, 2015, 15(7), 1278-1288 44 K R Dahal, and S Idris, Plant Resources of South-East Asia - No 13 Spices, Backhuys Publishers, 1999, Leiden, 111-116 45 M Akram, A.A Shahab-Uddin, K Usmanghani, A Hannan, E Mohiuddin, and M Asif, Curcuma longa and curcumin: a review article, Rom J Biol Plant Biol, 2010, 55(2), 65-70 46 S K Sandur, M K Pandey, B Sung, K S Ahn, A Murakami, G Sethi, and B B Aggarwal, Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism, Carcinogenesis, 2007, 28(8), 1765-1773 47 J H Naama, G H Alwan, H R Obayes, A A Al-Amiery, A A Al-Temimi, A A H Kadhum, and A B Mohamad, Curcuminoids as antioxidants and theoretical study of stability of curcumin isomers in gaseous state, Research on Chemical Intermediates, 2013, 39(9), 4047-4059 48 G K Jayaprakasha, L J Rao, and K K Sakariah, Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin, Food chemistry, 2006, 98(4), 720-724 49 C.S Beevers, and S Huang, Pharmacological and clinical properties of curcumin, Botanics: Targets and Therapy, 2011, 1, 5-18 50 V R Yadav, and B B Aggarwal, Curcumin: a component of the golden spice, targets multiple angiogenic pathways, Cancer biology and therapy, 2011, 11(2), 236-241 51 C N Sreekanth, S V Bava, E Sreekumar, and R J Anto, Molecular evidences for the chemosensitizing efficacy of liposomal curcumin in paclitaxel chemotherapy in mouse models of cervical cancer, Oncogene, 2011, 30(28), 3139-3152 52 K Neelofar, S Shreaz, B Rimple, S Muralidhar, M Nikhat, and L A Khan, Curcumin as a promising anticandidal of clinical interest, Canadian Journal of Microbiology, 2011, 57(3), 204-210 100 53 H S Zhang, Z Ruan, and W W Sang, HDAC1/NFκB pathway is involved in curcumin inhibiting of Tat‐mediated long terminal repeat transactivation, Journal of cellular physiology, 2011, 226(12), 3385-3391 54 M R Guimarães, L S Coimbra, S G de Aquino, L C Spolidorio, K L Kirkwood, and C Rossa Jr, Potent anti‐inflammatory effects of systemically administered curcumin modulate periodontal disease in vivo, Journal of periodontal research, 2011, 46(2), 269-279 55 P N Ravindran, K N Babu, and K Sivaraman, Turmeric: the genus Curcuma, CRC Press, 2007, Boca Raton 56 A M Rao, R Jagdeeshwar, and K Sivaraman, Advances in Spices Research, Agribios, 2006, Jodhpur, 433-492 57 P A Nazeem, R Menon, and P A Valsala, Blossom, biological and hybridization studies in turmeric (Curcuma spp.), Indian Cocoa Arecanut and Spices Journal, 1994, 16, 106-109 58 K P Nair, The agronomy and economy of turmeric and ginger: the invaluable medicinal spice crops, Elsevier, 2013, Waltham 59 M Meerabai, B K Jayachandran, K R Asha, and V Geetha, Boosting spice production under coconut gardens of Kerala: maximizing yield of turmeric with balanced fertilization, Better Crops International, 2000, 14, 10-12 60 Y Ishimine, M A Hossain, K Motomura, H Akamine, and T Hirayama, Effects of planting date on emergence, growth and yield of turmeric (Curcuma longa L.) in Okinawa prefecture, Southern Japan, Japanese Journal of Tropical Agriculture, 2004, 48, 10-20 61 M.R Rao, and V.R Reddy, Effect of different levels of nitrogen, phosphorus and potassium on yield of turmeric (Curcuma longa L.), Journal of Plantation Crops, 1977, 5, 60–63 62 S S Nanda, S Mohapatra, and S K Mukhi, Integrated effect of organic and inorganic sources of nutrients on turmeric (Curcuma longa), Indian Journal of Agronomy, 2012, 57(2), 191-194 63 A.K Saha, Note on response of turmeric to manure and source of N and P under terrace conditions of mid altitude of Mizoram, Indian Journal of Horticulture, 1988, 45, 139-140 64 P.V Balashanmugam, K Vanangamudi, and A Chamy, Studies on the influence of farm yard manure on the rhizome yield of turmeric, Indian Cocoa Arecanut and Spices Journal, 1989, 12, 126 65 R.S Russell, Plant root systems: their function and interaction with the soil, McGraw-Hill, 1977, London, 15-36 66 M A Hossain, and Y Ishimine, Growth, yield and quality of turmeric (Curcuma longa L.) cultivated on dark-red soil, gray soil and red soil in Okinawa, Japan, Plant Production Science, 2005, 8(4), 482-486 101 67 H Akamine, M A Hossain, Y Ishimine, K Yogi, K Hokama, Y Iraha, and Y Aniya, Effects of application of N, P and K alone or in combination on growth, yield and curcumin content of turmeric (Curcuma longa L.), Plant production science, 2007, 68 L Longyun, and Q Songyun, Effect of Organic Fertilizer and Mineral Fertilizer on the Tuber Yield of Curcuma longa L., China Journal of Chinese Materia Medica, 1996, 21(11), 651-654 69 B S Gill, S Kaur, and S S Saini, Influence of planting methods, spacing and farmyard manure on growth, yield and nutrient content of turmeric (Curcuma longa L.), Journal of Spices and Aromatic Crops, 2004, 13(2), 117-120 70 M R Rondon, R M Goodman, and J Handelsman, The Earth’s bounty: assessing and accessing soil microbial diversity, Trends in biotechnology, 1999, 17(10), 403-409 71 N W Osorio-Vega, A review on beneficial effects of rhizosphere bacteria on soil nutrient availability and plant nutrient uptake, Revista Facultad Nacional de Agronomía Medellín, 2007, 60(1), 3621-3643 72 B Reinhold-Hurek, W Bünger, C S Burbano, M Sabale, and T Hurek, Roots shaping their microbiome: global hotspots for microbial activity, Annual review of phytopathology, 2015, 53, 403-424 73 L Hiltner, Über neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie und unter Besonderer Berücksichtigung der Gründüngung und Brache, Arbeiten der Deutchen Landwirtschafts Gesellschaft, 1904, 98, 5978 74 R Mendes, Garbeva, and J M Raaijmakers, The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms, FEMS microbiology reviews, 2013, 37(5), 634-663 75 P R Darrah, The rhizosphere and plant nutrition: a quantitative approach, Plant and Soil, 1993, 155(1), 1-20 76 R L Berendsen, C M Pieterse, and P A Bakker, The rhizosphere microbiome and plant health, Trends in plant science, 2012, 17(8), 478-486 77 A Lareen, F Burton, and P Schäfer, Plant root-microbe communication in shaping root microbiomes, Plant molecular biology, 2016, 90(6), 575-587 78 J A Lau, and J T Lennon, Rapid responses of soil microorganisms improve plant fitness in novel environments, Proceedings of the National Academy of Sciences, 2012, 109(35), 14058-14062 79 D Egamberdieva, S Shrivastava, and A Varma, Plant-growth-promoting rhizobacteria (pgpr) and medicinal plants, Springer, 2015, New York, 247-260 80 H Marschner, Marschner's mineral nutrition of higher plants 3rd edition, Academic press, 2011, London, 180-234 102 81 F el Zahar Haichar, C Santaella, T Heulin, and W Achouak, Root exudates mediated interactions belowground, Soil Biology and Biochemistry, 2014, 77, 69-80 82 X F Huang, J M Chaparro, K F Reardon, R Zhang, Q Shen, and J M Vivanco, Rhizosphere interactions: root exudates, microbes, and microbial communities, Botany, 2014, 92(4), 267-275 83 C D Broeckling, A K Broz, J Bergelson, D K Manter, and J M Vivanco, Root exudates regulate soil fungal community composition and diversity, Applied Environmental Microbiology, 2008, 74(3), 738-744 84 S A Micallef, M P Shiaris, and A Colón-Carmona, Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates, Journal of Experimental Botany, 2009, 60(6), 1729-1742 85 R Mendes, M Kruijt, I De Bruijn, E Dekkers, M van der Voort, J H Schneider, and J M & Raaijmakers, Deciphering the rhizosphere microbiome for disease-suppressive bacteria, Science, 2011, 332(6033), 1097-1100 86 D V Badri, and J M Vivanco, Regulation and function of root exudates, Plant, cell & environment, 2009, 32(6), 666-681 87 L C Carvalhais, G Dennis, D V Badri, G W Tyson, J M Vivanco, and P M Schenk, Activation of the jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities, PLoS One, 2013, 8(2) 88 K Akiyama, K I Matsuzaki, and H Hayashi, Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi, Nature, 2005, 435(7043), 824-827 89 T Rudrappa, K J Czymmek, W Paré, and H P Bais, Root-secreted malic acid recruits beneficial soil bacteria, Plant physiology, 2008, 148(3), 1547-1556 90 E Somers, J Vanderleyden, and M Srinivasan, Rhizosphere bacterial signalling: a love parade beneath our feet, Critical reviews in microbiology, 2004, 30(4), 205-240 91 U Mathesius, Comparative proteomic studies of root–microbe interactions, Journal of proteomics, 2009, 72(3), 353-366 92 J I Horiuchi, B Prithiviraj, H P Bais, B A Kimball, and J M Vivanco, Soil nematodes mediate positive interactions between legume plants and rhizobium bacteria, Planta, 2005, 22(5), 848-857 93 V Bianciotto, D Minerdi, S Perotto, and P Bonfante, Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria, Protoplasma, 1996, 193(1-4), 123-131 94 J M Marques, T F da Silva, R E Vollu, A F Blank, G C Ding, L Seldin, and K Smalla, Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants, FEMS microbiology ecology, 2014, 88(2), 424-435 95 K Smalla, G Wieland, A Buchner, A Zock, J Parzy, S Kaiser, and G Berg, Bulk and rhizosphere soil bacterial communities studied by denaturing gradient 103 gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed, Applied Environmental Microbioly, 2001, 67(10), 4742-4751 96 R Bajaj, A Agarwal, K Rajpal, S Asthana, R Kumar, R Prasad, and A Varma, Co-cultivation of Curcuma longa with Piriformospora indica enhances the yield and active ingredients, American Journal of Current Microbiology, 2014, 2(1), 6-17 97 A Kumar, M Singh, P Singh, S K Singh, K Singh, and K D Pandey, Isolation of plant growth promoting rhizobacteria and their impact on growth and curcumin content in Curcuma longa L, Biocatalysis and agricultural biotechnology, 2016, 8, 1-7 98 K J Ferdous, F Afroz, M R Islam, M A Mazid, and M H Sohrab, Isolated Endophytic Fungi from the Plant Curcuma longa and Their Potential Bioactivity —A Review, Pharmacology & Pharmacy, 2019, 10(5), 244-270 99 R E Jalgaonwala, and R.T Mahajan, Production of anticancer enzyme asparaginase from endophytic Eurotium sp isolated from rhizomes of Curcuma longa, European Journal of Experimental Biology, 2014, 4(3), 36-43 100 J K Vessey, Plant growth promoting rhizobacteria as biofertilizers, Plant and soil, 2003, 255(2), 571-586 101 B Lugtenberg, and F Kamilova, Plant-growth-promoting rhizobacteria, Annual review of microbiology, 2009, 63, 541-556 102 M Ghorbanpour, M Hatami, K Kariman, and K Khavazi, Plant-Growth- Promoting Rhizobacteria (PGPR) and Medicinal Plants: Enhanced efficiency of medicinal and aromatic plants by PGPRs, Springer, 2015, Heidelberg, 43-70 103 A Kumar, R Singh, D D Giri, K Singh, and K D Pandey, Effect of Azotobacter chroococcum CL13 inoculation on growth and curcumin content of turmeric (Curcuma longa L.), International Journal of Current Microbiology and Applied Science, 2014, 3(9), 275-28 104 C Anisha, J Mathew, and A Radhakrishnanek, Plant growth promoting properties of endophytic Klebsiella sp isolated from Curcuma longa, International Journal of Biology, 2013, 2(3), 593-601 105 A J Aswathy, B Jasim, M Jyothis, and E K Radhakrishnan, Identification of two strains of Paenibacillus sp as indole acetic acid-producing rhizomeassociated endophytic bacteria from Curcuma longa, Biotech, 2013, 3(3), 219224 106 P Sampath, and S B Sullia, The occurrence of VAM fungi in the scale leaves of turmeric, Mycorrhiza News, 1992, 14(5), 5-11 107 S W Khade, and B F Rodrigues, Incidence of arbuscular mycorrhizal (AM) fungi in some angiosperms with underground storage organs from western ghat region of Goa, Tropical Ecology, 2007, 48(1), 115-118 104 108 S P Khodke, Arbuscular mycorrhizal fungi and dark septate endophytic association in Curcuma species, International Journal of Innovations in BioSciences, 2013, 3(1), 06-09 109 T Kita, S Imai, H Sawada, H Kumagai, and H Seto, The biosynthetic pathway of curcuminoid in turmeric (Curcuma longa) as revealed by 13C-labeled precursors, Bioscience, biotechnology, and biochemistry, 2008, 72(7), 17891798 110 Y Katsuyama, T Kita, N Funa, and S Horinouchi, Curcuminoid biosynthesis by two type III polyketide synthases in the herb Curcuma longa, Journal of Biological Chemistry, 2009, 284(17), 11160-11170 111 Y Katsuyama, M Matsuzawa, N Funa, and S Horinouchi, Production of curcuminoids by Escherichia coli carrying an artificial biosynthesis pathway, Microbiology, 2008, 154(9), 2620-2628 112 R Leonardi, Y.M Zhang, C.O Rock, and S Jackowski, Coenzyme A: back in action, Progress in lipid research, 2005, 44(2-3), 125-153 113 R Jagadeeswaran, V Murugappan, and M Govindaswamy, Effect of slow release NPK fertilizer sources on the nutrient use efficiency in turmeric (Curcuma longa L.), World Journal of Agricultural Science, 2005, 1(1), 65-69 114 P Simanjuntak, T K Prana, D Wulandari, A Dharmawan, E Sumitro, and M R Hendriyanto, Chemical studies on a curcumin analogue produced by endophytic fungal transformation, Asian Journal of Applied Sciences, 2010, 3(1), 60-66 115 I Sherameti, B Shahollari, Y Venus, L Altschmied, A Varma, and R Oelmüller, The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif, Journal of Biological Chemistry, 2005, 280, 26241-26247 116 M Kumar, R Sharma, A Jogawat, Singh, M Dua, S S Gill, and A K Johri, Piriformospora indica, a root endophytic fungus, enhances abiotic stress tolerance of the host plant, Wiley-Blackwell, 2012, Weinheim, 543-548 117 P L Nongbri, and R Oelmüller, Role of Piriformospora indica in sulfur metabolism in Arabidopsis thaliana, Springer, 2013, Heidelberg, 295-307 118 V Torsvik, and L Øvreås, Microbial diversity and function in soil: from genes to ecosystems, Current opinion in microbiology, 2002, 5(3), 240-245 119 J L Garland, Analysis and interpretation of community-level physiological profiles in microbial ecology, FEMS microbiology ecology, 1997, 24(4), 289-300 120 L Zelles, Q Y Bai, T Beck, and F Beese, Signature fatty acids in phospholipids and lipopolysaccharides as indicators of microbial biomass and community structure in agricultural soils, Soil Biology and Biochemistry, 1992, 24(4), 317-323 105 121 F Hammes, and T & Egli, Cytometric methods for measuring bacteria in water: advantages, pitfalls and applications, Analytical and Bioanalytical Chemistry, 2010, 397, 1083–1095 122 H B Wang, Z X Zhang, H Li, H B He, C X Fang, A J Zhang, and L K Wu, Characterization of metaproteomics in crop rhizospheric soil, Journal of proteome research, 2010, 10(3), 932-940 123 S J Bent, J D Pierson, and L J Forney, Measuring species richness based on microbial community fingerprints: the emperor has no clothes, Applied Environmental Microbiology, 2007, 73(7), 2399-2401 124 T L Marsh, Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products, Current opinion in microbiology, 1999, 2(3), 323-327 125 F O Glöckner, B M Fuchs, and R Amann, Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization, Applied Environmental Microbiology, 1999, 65(8), 3721-3726 126 J Borneman, and E W Triplett, Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation, Applied Environmental Microbiology, 1997, 63(7), 2647-2653 127 C S Riesenfeld, D Schloss, and J Handelsman, Metagenomics: genomic analysis of microbial communities, Annual review of genetics, 2004, 38, 525-552 128 J A Gilbert, and C L Dupont, Microbial metagenomics: beyond the genome, Annual Review of Marine Science, 2011, 3, 347-371 129 M B Scholz, C C Lo, and P S Chain, Next generation sequencing and bioinformatic bottlenecks: the current state of metagenomic data analysis, Current opinion in biotechnology, 2012, 23(1), 9-15 130 J K Jansson, and K S Hofmockel, The soil microbiome—from metagenomics to metaphenomics, Current opinion in microbiology, 2018, 43, 162-168 131 R Daniel, The metagenomics of soil, Nature Reviews Microbiology, 2005, 3(6), 470-478 132 J G Caporaso, C L Lauber, W A Walters, D Berg-Lyons, J Huntley, N Fierer, and N Gormley, Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms, The ISME journal, 2012, 6(8), 1621-1624 133 T J White, T Bruns, S Lee, and J Taylor, PCR protocols, a guide to methods and applications, Academic, 1990, San Diego 134 F Sambo, F Finotello, E Lavezzo, G Baruzzo, G Masi, E Peta, and B Di Camillo, Optimizing PCR primers targeting the bacterial 16S ribosomal RNA gene, BMC bioinformatics, 2018, 19(1), 343-353 135 L Simon, M Lalonde, and T D Bruns, Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots, Applied Environmental Microbiology, 1992, 58(1), 291-295 106 136 T Helgason, T J Daniell, R Husband, A H Fitter, and J P W Young, Ploughing up the wood-wide web?, Nature, 1998, 394(6692), 431-431 137 M Gardes, and T D & Bruns, ITS primers with enhanced specificity for basidiomycetes‐application to the identification of mycorrhizae and rusts, Molecular ecology, 1993, 2(2), 113-118 138 G W Gee, and J W Bauder, Methods of soil analysis, Part1, Physical and mineralogical methods, American Society of Agronomy, 1986, Madison 139 J M Bremner, Determination of nitrogen in soil by the Kjeldahl method, The Journal of Agricultural Science, 1960, 55(11), 11-33 140 P F Pratt, Methods of soil analysis, Part 2: Chemical and Microbiological Properties, American Society of Agronomy, 1986, Madison, 1019-1021 141 S R Olsen, C V Cole, F S Watanabe, and L A Dean, Estimation of available phosphorus in soils using NaHCO3, United States Department of Agriculture Circular, 1954, 939 142 R B Thomas, Estimating total suspended sediment yield with probability sampling, Water Resources Research, 1985, 21(9), 1381-1388 143 V Mandal, S Dewanjee, R Sahu, and S C Mandal, Design and optimization of ultrasound assisted extraction of curcumin as an effective alternative for conventional solid liquid extraction of natural products, Natural product communications, 2009, 4(1), 95-100 144 I Ali, A Haque, and K Saleem, Separation and identification of curcuminoids in turmeric powder by HPLC using phenyl column, Analytical Methods, 2014, 6(8), 2526-2536 145 E., Rideout, J R., Dillon, M R., Bokulich, N A., Abnet, C C., Al-Ghalith, G A., & Caporaso, J G Bolyen, Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2, Nature Biotechnology, 2019, 37, 852– 857 146 J Hang, V Desai, N Zavaljevski, Y Yang, X Lin, R V Satya, and R A Kuschner, 16S rRNA gene pyrosequencing of reference and clinical samples and investigation of the temperature stability of microbiome profiles, Microbiome, 2014, 2(1), 31 147 T Magoč, and S L Salzberg, FLASH: fast length adjustment of short reads to improve genome assemblies, Bioinformatics, 2011, 27(21), 2957-2963 148 J G Caporaso, J Kuczynski, J Stombaugh, K Bittinger, F D Bushman, E K Costello, and G A & Huttley, QIIME allows analysis of high-throughput community sequencing data, Nature methods, 2010, 7(5), 335-336 149 R C Edgar, B J Haas, J C Clemente, C Quince, and R Knight, UCHIME improves sensitivity and speed of chimera detection, Bioinformatics, 2011, 27(16), 2194-2200 150 R C Edgar, UPARSE: highly accurate OTU sequences from microbial amplicon reads, Nature methods, 2013, 10(10), 996 107 151 U Kõljalg, R H Nilsson, K Abarenkov, L Tedersoo, A F Taylor, M Bahram, and B & Douglas, Towards a unified paradigm for sequence‐ based identification of fungi, Molecular ecology, 2013, 22(21), 5271-5277 152 C Quast, E Pruesse, Yilmaz, J Gerken, T Schweer, Yarza, J Peplies, and F.O Glöckner, The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, Nucleic acids research, 2013, 41(D1), D590D596 153 C E Shannon, and W Weaver, The Mathematical Theory of Communication, University of Illinois Press, 1949, Illinois 154 E H Simpson, Measurement of diversity, Nature, 1949, 163(4148), 688-688 155 A Chao, and S M Lee, Estimating the number of classes via sample coverage, Journal of the American statistical Association, 1992, 87(417), 210-217 156 A Chao, Nonparametric estimation of the number of classes in a population, Scandinavian Journal of statistics, 1984, 11, 265-270 157 A Chao, R L Chazdon, R K Colwell, and T J Shen, Abundance‐based similarity indices and their estimation when there are unseen species in samples, Biometrics, 2006, 62(2), 361-371 158 Y Li, X Hu, S Yang, J Zhou, L Qi, X Sun, M Fan, S Xu, M Cha, M Zhang, S Lin, Q Liu, and D Hu, Comparison between the fecal bacterial microbiota of healthy and diarrheic captive musk deer, Frontiers in microbiology, 2018, 9, 300 159 J B Hughes, J J Hellmann, T H Ricketts, and B J Bohannan, Counting the uncountable: statistical approaches to estimating microbial diversity, Applied and environmental microbiology, 2001, 67(10), 4399-4406 160 J Oksanen, Multivariate analysis of ecological communities in R: vegan tutorial, R package version, 2011, 1(7), 1-43 161 E C Pielou, Pielou, E C 1984 The Interpretation of Ecological Data: A Primer on Classification and Ordination, Wiley, 1984, New York 162 A Zuur, E N Ieno, and G M Smith, Analyzing ecological data, Springer, 2007, New York 163 J S Gordon, O Rauprich, and J Vollmann, Applying the Four‐Principle Approach, Bioethics, 2011, 25(6), 293-300 164 D H Huson, A F Auch, J Qi, and S C Schuster, MEGAN analysis of metagenomic data, Genome research, 2007, 17(3), 377-386 165 K L Heck Jr, G van Belle, and D Simberloff, Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size, Ecology, 1975, 56(6), 1459-1461 166 S C Verma, J K Ladha, and A K Tripathi, Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice, Journal of biotechnology, 2001, 91(2-3), 127-141 108 167 A Ehmann, The Van Urk-Salkowski reagent—a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives, Journal of Chromatography A, 1977, 132(2), 267-276 168 I Ahmad, Z Mehmood, and F Mohammad, Screening of some Indian medicinal plants for their antimicrobial properties, Journal of ethnopharmacology, 1998, 62(2), 183-193 169 P Vos, G Garrity, D Jones, N R Krieg, W Ludwig, F A Rainey, and W B Whitman, Bergey's manual of systematic bacteriology: Volume 3: The Firmicutes, Springer, 2011, Michigan 170 D J Brenner, N R Krieg, J T Staley, and G M Garrity, Bergey's Manual® of Systematic Bacteriology: Volume Two: The Proteobacteria, Springer, 2005, Michigan 171 M S Mirza, W Ahmad, F Latif, J Haurat, R Bally, Normand, and K A Malik, Isolation, partial characterization, and the effect of plant growth-promoting bacteria (PGPB) on micro-propagated sugarcane in vitro, Plant and Soil, 2001, 237(1), 47-54 172 T Hall, BioEdit: an important software for molecular biology, GERF Bulletin of Biosciences, 2011, 2(1), 60-61 173 K Tamura, and M Nei, Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees, Molecular biology and evolution, 1993, 10(3), 512-526 174 S Kumar, G Stecher, M Li, C Knyaz, and K Tamura, MEGA X: molecular evolutionary genetics analysis across computing platforms, Molecular biology and evolution, 2018, 35(6), 1547-1549 175 J W Gerdemann, and T H Nicolson, Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting, Transactions of the British Mycological society, 1963, 46(2), 235-244 176 D Redecker, Specific PCR primers to identify arbuscular mycorrhizal fungi within colonized roots, Mycorrhiza, 2000, 10(2), 73-80 177 G R Carter, Diagnostic procedures in veterinary bacteriology and mycology - Fourth Edition, Academic Press, 1984, Illinois, 205-209 178 R J Liu, and X S Luo, A new method to quantify the inoculum potential of arbuscular mycorrhizal fungi, New Phytologist, 1994, 128(1), 89-92 179 V R Reddy, and M R Rao, Effect of N, P, K Fertilization on Curing Percentage and Curcumin Content of Turmeric (Curcuma Longa L.), Indian Journal of Horticulture, 1978, 35(2), 143-144 180 V T Yamgar, D K Kathmale, S Belhekar, R C Patil, and P S Paul, Effect of different levels of nitrogen, phosphorus and potassium and split applicaton of N on growth and yield of turmeric (Curcuma longa), Indian Journal of Agronomy, 2001, 46(2), 372-374 109 181 J E Harper, Nitrogen metabolism, Physiology and determination of crop yield, 1994, 285-302 182 Bùi Thị Ngọc, Đánh giá trạng môi trường nước mặt số sông, hồ khu vực tỉnh Hưng Yên, Luận án tiến sĩ, 2017, Đại học Dân lập Hải Phòng 183 Nguyễn Thị Huệ, Nghiên cứu tiềm du lịch huyện Khoái Châu tỉnh Hưng Yên, Luận án tiến sĩ, 2010, Hải Phòng 184 A K Srivastava, R R Mishra, M A Tewari, H S Shukla, and B K Roy, Evaluation of major determinants in soil nutrients ameliorate for production of cancer chemopreventive agent curcumin in rhizomes of Curcuma longa L., International Journal of Agricultural Science and Research, 2013, 3(3), 197-210 185 J W Kloepper, J Leong, M Teintze, and M N Schroth, Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria, Nature, 1980, 286(5776), 885-890 186 J W Kloepper, S Tuzun, G W Zehnder, and G Wei, Multiple disease protection by rhizobacteria that induce systemic resistance—historical precedence, Phytopathology, 1997, 87(2), 136-137 187 C Brady, I Cleenwerck, S Venter, T Coutinho, and P De Vos, Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): proposal to reclassify, Systematic and applied microbiology, 2013, 36(5), 309-319 188 Y Liu, Q Lai, M Göker, J P Meier-Kolthoff, M Wang, Y Sun, and Z Shao, Genomic insights into the taxonomic status of the Bacillus cereus group, Scientific reports, 2015, 5(1), 1-11 189 K Kavitha, S Nakkeeran, and G Chandrasekar, Rhizobacterial-mediated induction of defense enzymes to enhance the resistance of turmeric (Curcuma longa L) to Pythium aphanidermatum causing rhizome rot., Archives of phytopathology and plant protection, 2012, 45(2), 199-219 190 M N Rreddy, M C Devi, and N V Sridevi, Evaluation of turmeric cultivars for VAM colonization, Indian Phytopathology, 2003, 56(4), 465-466 191 T Muthukumar, M Senthilkumar, M Rajangam, and K Udaiyan, Arbuscular mycorrhizal morphology and dark septate fungal associations in medicinal and aromatic plants of Western Ghats, Southern India, Mycorrhiza, 2006, 17(1), 1124 192 M Moreira, D Baretta, S M Tsai, and E J B N Cardoso, Spore density and root colonization by arbuscular mycorrhizal fungi in preserved or disturbed Araucaria angustifolia (Bert.) O Ktze ecosystems, Scientia Agricola, 2006, 63(4), 380-385 193 Trần Thị Như Hằng, Trần Thị Hồng Hà, Nguyễn Đình Luyện, Posta Katalin, and Lê Mai Hương, Phân lập, nhân nuôi lưu giữ định tên số nấm rễ nội cộng sinh lúa cà chua Bắc Việt Nam, Tạp chí Khoa học Công nghệ, 2012, 50(4), 521-527 110 194 Nguyễn Thị Kim Liên, Lê Thị Thủy, Nguyễn Viết Hiệp, and Nguyễn Huy Hoàng, Nghiên cứu đa dạng hệ nấm cộng sinh Arbuscular Mycorrhiza đất rễ cam Quỳ Hợp, Nghệ An, Tạp chí Sinh học, 2012, 34(4), 436-440 195 Lê Thị Hoàng Yến, Mai Thị Đàm Linh, Lê Hồng Anh, and Dương Văn Hợp, Nghiên cứu phân lập nấm rễ nội cộng sinh Arbuscular Mycorrhiza đất trồng ngơ sản xuất chế phẩm phân bón vi sinh, Tạp chí Khoa học Đại học Quốc gia Hà Nội, 2018, 34(3), 1-9 196 T Thapa, U K De, and B Chakraborty, Association and root colonization of some medicinal plants with Arbuscular Mycorrhizal Fungi, Journal of Medicinal Plants Studies, 2015, 3(2), 25-35 197 J W Doran, Soil Biology: Microbial ecology of conservation management systems, CRC Press, 2018, Ohio, 1-27 198 G.T Hill, N.A Mitkowski, L Aldrich-Wolfe, L.R Emele, D.D Jurkonie, A Ficke, and E.B Nelson, Methods for assessing the composition and diversity of soil microbial communities, Applied soil ecology, 2000, 15(1), 25-36 199 E R Reichenberger, G Rosen, U Hershberg, and R Hershberg, Prokaryotic nucleotide composition is shaped by both phylogeny and the environment, Genome biology and evolution, 2015, 7(5), 1380-1389 200 H Nacke, A Thürmer, A Wollherr, C Will, L Hodac, N Herold, and R Daniel, Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils, PloS one, 2007, 6(2), e17000 201 N T Miyashita, H Iwanaga, S Charles, B Diway, J Sabang, and L Chong, Soil bacterial community structure in five tropical forests in Malaysia and one temperate forest in Japan revealed by pyrosequencing analyses of 16S rRNA gene sequence variation, Genes & genetic systems, 2013, 88(2), 93-103 202 B M Tripathi, M Kim, D Singh, L Lee-Cruz, A Lai-Hoe, A N Ainuddin, and J M Adams, Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too, Microbial ecology, 2012, 64(2), 474-484 203 T Větrovský, and P Baldrian, The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses, PloS one, 2013, 8(2), e57923 204 L F Roesch, R R Fulthorpe, A Riva, G Casella, A K Hadwin, A D Kent, and E W Triplett, Pyrosequencing enumerates and contrasts soil microbial diversity, The ISME journal, 2007, 1(4), 283-290 205 E Smit, Leeflang, S Gommans, J van den Broek, S van Mil, and K Wernars, Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods, Applied and environmental microbiology, 2001, 67(5), 2284-2291 206 A M Kielak, C C Barreto, G A Kowalchuk, J A van Veen, and E E Kuramae, The ecology of Acidobacteria: moving beyond genes and genomes, Frontiers in microbiology, 2016, 7, 744 111 207 J M DeBruyn, L T Nixon, M N Fawaz, A M Johnson, and M Radosevich, Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil, Applied Environmental Microbiology, 2011, 77(17), 6295-6300 208 M T Madigan, J M Martinko, and J Parker, Brock biology of microorganisms (Vol 11), Prentice Hall, 1997, New Jersey 209 Z Yin, X Bi, and C Xu, Ammonia-oxidizing archaea (AOA) play with ammonia-oxidizing bacteria (AOB) in nitrogen removal from wastewater, Archaea, 2018, 1-9 210 M Hartmann, B Frey, J Mayer, Mäder, and F Widmer, Distinct soil microbial diversity under long-term organic and conventional farming, The ISME journal, 2015, 9(5), 1177-1182 211 D Francioli, E Schulz, G Lentendu, T Wubet, F Buscot, and T Reitz, Mineral vs organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies, Frontiers in Microbioly, 2016, 7, 1446-1448 212 C B Blackwood, M P Waldrop, D R Zak, and R L Sinsabaugh, Molecular analysis of fungal communities and laccase genes in decomposing litter reveals differences among forest types but no impact of nitrogen deposition, Environmental Microbiology, 2007, 9(5), 1306-1316 213 F Martin, A Kohler, C Murat, C Veneault-Fourrey, and D S Hibbett, Unearthing the roots of ectomycorrhizal symbioses, Microbiology, 2016, 14(12), 760 Nature Reviews 214 K L Chadha, and P Rethinam, Advances in Horticulture, Plantation and Spice Crops, Malhotra, 1994, New Delhi, 477-489 215 F Breuillin, J Schramm, M Hajirezaei, A Ahkami, Favre, U Druege, and C Kuhlemeier, Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning, The Plant Journal, 2010, 64(6), 1002-1017 216 L Bonneau, S Huguet, D Wipf, N Pauly, and H N Truong, Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in M edicago truncatula, New Phytologist, 2013, 199(1), 188-202 217 P Barak, B O Jobe, A R Krueger, L A Peterson, and D A Laird, Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin, Plant and soil, 1997, 197(1), 61-69 218 M S Strickland, and J Rousk, Considering fungal: bacterial dominance in soils– methods, controls, and ecosystem implications, Soil Biology and Biochemistry, 2010, 42(9), 1385-1395 219 J Rousk, C Brookes, and E Bååth, Fungal and bacterial growth responses to N fertilization and pH in the 150-year ‘Park Grass’ UK grassland experiment, FEMS Microbiology Ecology, 2011, 76(1), 89-99 112 220 K Yoneyama, X Xie, T Kisugi, T Nomura, and K Yoneyama, Nitrogen and phosphorus fertilization negatively affects strigolactone production and exudation in sorghum, Planta, 2013, 238(5), 885-894 221 R E Gordon, W C Haynes, and C H N Pang, The genus Bacillus - Agriculture Handbook no 427, Agricultural Research Service, 1973, Washington D.C 222 V Govindasamy, M Senthilkumar, V Magheshwaran, U Kumar, Bose, V Sharma, and K Annapurna, Bacillus and Paenibacillus spp.: potential PGPR for sustainable agriculture In: Plant growth and health promoting bacteria, Springer, 2010, Berlin 223 J M Barea, and C Azcón-Aguilar, Production of plant growth-regulating substances by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae, Applied Environmental Microbiology, 1982, 43(4), 810-813 224 M Filion, and M., Fortin, J A St-Arnaud, Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms, The New Phytologist, 1999, 141(3), 525-533 225 J P Toussaint, M Kraml, M Nell, S E Smith, F A Smith, S Steinkellner, and J & Novak, Effect of Glomus mosseae on concentrations of rosmarinic and caffeic acids and essential oil compounds in basil inoculated with Fusarium oxysporum, Plant Pathology, 2008, 57(6), 1109-1116 226 N Ceccarelli, M Curadi, L Martelloni, C Sbrana, Picciarelli, and M Giovannetti, Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant, Plant and Soil, 2010, 335(1-2), 311-323 227 K Yamawaki, A Matsumura, R Hattori, A Tarui, M A Hossain, Y Ohashi, and H Daimon, Effect of inoculation with arbuscular mycorrhizal fungi on growth, nutrient uptake and curcumin production of turmeric (Curcuma longa L.)., Agricultural Sciences, 2013, 4(2), 66-71 228 M F Silva, R Pescador, R A Rebelo, and S L Stürmer, The effect of arbuscular mycorrhizal fungal isolates on the development and oleoresin production of micropropagated Zingiber officinale, Brazilian Journal of Plant Physiology, 2008, 20, 119-130 229 N C Johnson, Can fertilization of soil select less mutualistic mycorrhizae?, Ecological applications, 1993, 3(4), 749-757 230 D D Douds Jr, and P D Millner, Biodiversity of arbuscular mycorrhizal fungi in agroecosystems, Agriculture, ecosystems & environment, 1999, 74(1-3), 77-93 231 O B Weber, Biofertilizers with arbuscular mycorrhizal fungi in agriculture In Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration, Springer, 2014, Berlin, Heidelberg 232 G P Kumar, N Kishore, E L D Amalraj, S M H Ahmed, A Rasul, and S Desai, Evaluation of fluorescent Pseudomonas spp with single and multiple PGPR traits for plant growth promotion of sorghum in combination with AM fungi, Plant growth regulation, 2012, 67(2), 133-140 113 233 S Desai, G P Kumar, L D Amalraj, D J Bagyaraj, and R & Ashwin, Exploiting PGPR and AMF biodiversity for plant health management In "Microbial inoculants in sustainable agricultural productivity", Springer, 2016, New Delhi, 145-160 234 J M Phillips, and D S Hayman, Improved Procedures for Clearing Roots and Staining Parasitic Vesicular-Arbuscular Mycorrhizal Fungi for Rapid Assessment of Infection, Transactions of the British Mycological Society, 1970, 55, 158-161 ... DỤC VÀ ĐÀO TẠO VI? ??N HÀN L? ?M KHOA HỌC VÀ CÔNG NGHỆ VI? ??T NAM HỌC VI? ??N KHOA HỌC VÀ CÔNG NGHỆ Hoàng Kim Chi NGHIÊN CỨU KHU HỆ VI SINH VẬT VÙNG RỄ CÂY NGHỆ VÀNG Curcuma longa L NHẰM ĐỊNH... cứu mối liên hệ chế độ bón phân đạm hóa học suất nghệ; (ii) Phân l? ??p nghiên cứu hoạt tính số nhóm vi sinh vật vùng rễ nghệ vàng; (iii) Nghiên cứu đa dạng khu hệ vi sinh vật vùng rễ mối liên hệ. .. công nghệ sinh học để l? ?m tăng phẩm chất hàm l? ?ợng chất đối tượng nghiên cứu 1.2.1 Hợp chất curcumin củ nghệ vàng 1.2.1.1 Thành phần hóa học củ nghệ vàng Thành phần hóa học củ nghệ vàng C longa

Ngày đăng: 28/10/2020, 05:32

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan