1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bộ 50 đề thi tuyển sinh môn Toán vào lớp 10 THPT chuyên năm 2018-2019 có đáp án

183 37 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 183
Dung lượng 5,86 MB

Nội dung

Mời quý thầy cô và các em học sinh tham khảo Bộ 50 đề thi tuyển sinh môn Toán vào lớp 10 THPT chuyên năm 2018-2019 có đáp án. Hi vọng tài liệu sẽ là nguồn kiến thức bổ ích giúp các em củng cố lại kiến thức trước khi bước vào kì thi tuyển sinh THPT sắp tới. Chúc các em ôn tập kiểm tra đạt kết quả cao!

BỘ 50 ĐỀ THI TUYỂN SINH MƠN TỐN VÀO LỚP 10 THPT CHUYÊN NĂM 2018-2019 (CÓ ĐÁP ÁN) SỞ GIÁO DỤC VÀ ĐÀO TẠO NGHỆ AN KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2018-2019 Mơn thi: TỐN CHUN Ngày thi: 03/06/2018 Câu a) Giải phương trình : x    x  x2  5x 1  xy  y  x b) Giải hệ phương trình:  2   y  y   x  8x Câu a) Tìm số nguyên x; y; z cho x2  y  z   xy  3x  4z b) Cho hai số nguyên dương m, n thỏa mãn m  n  ước nguyên tố  m2  n2   CMR m.n số phương Câu Cho a, b, c thực dương thỏa mãn abc  Chứng minh rằng: a  a3  ab   b4  b3  bc   c  c3  ac   Câu Cho tam giác ABC vuông A  AB  AC  nội tiếp đường tròn (O) đường cao AH Gọi D điểm đối xứng với A qua BC Gọi K hình chiếu vng góc A lên BD Qua H kẻ đường thẳng song song với BD cắt AK I Đường thẳng BI cắt đường tròn (O) N (N khác B) a) Chứng minh AN.BI  DH BK b) Tiếp tuyến (O) D cắt đường thẳng BC P Chứng minh đường thẳng BC tiếp xúc với đường tròn ngoại tiếp tam giác ANP c) Tiếp tuyến (O) C cắt DP M Đường tròn qua D tiếp xúc với CM M cắt OD Q (Q khác D) Chứng minh đường thẳng qua Q vuông góc với BM ln qua điểm cố định BC cố định A di động đường tròn (O) Câu Để phục vụ cho lễ khai mạc World Cung 2018, ban tổ chức giải đấu chuẩn bị 25000 bóng, bóng đánh số từ đến 25000 Người ta dùng màu: Đỏ, Da cam, Vàng, Lục, Lam, Chàm, Tím để sơn bóng (mỗi sơn màu) Chứng minh 25000 bóng nói tồn bóng màu đánh số a, b, c mà a chia hết cho b, b chia hết cho c abc  17 ĐÁP ÁN Câu a) Giải phương trình : x    x  x2  5x 1 Điều kiện xác định:  x  Ta có x2  5x      x  1    x 1  x 3 x 3  0 x  1  x 1 1     x  3  x    0  x 1  x  1    x  1 x  3  1    1 0 1  Do  x    2x 1  0 x  1  x 1 x  1 2  x    x    x  3(tm) Vậy phương trình có nghiệm x  b) Hệ cho tương đương với 2 xy  y  x  xy  y  x    2 2  y  y   x  x  x  y  y   xy  y  x  x  2  xy  y  x  xy  y  x    x  y    x  y     x  y   x  y  1    2  13 5  13 ;y  x  y  x  3    3 x  x    2  13 5  13 ;y  x  3     5  22 26  22  ;y x    x y  3    3 x  10 x  21   5  22 26  22  ;y x   3  Vậy hệ phương trình cho có nghiệm Câu a) Do x, y, z số nguyên nên x  y  z    xy  y  z  x  y  z   xy  y  z  2   y    x  y     1   z      2   x  y  x   y    1    y  2 z   z     Vậy x  1; y  z  số nguyên cần tìm b) Giả sử m  n Theo ta có: m  n    m  n  1 m  n  1  m  n  1   m  n     m  n   1  m  n  1     2m  2n  m  2mn  n   m  n  1   m  n  m  n  1 Do m  n  số nguyên tố  m  n  ước m  n Mà m  n  m  n  vơ lý Vậy giả sử sai  m  n  m.n  m2 số phương Ta có điều phải chứng minh Câu Ta có:  a  1 a  a  1    a  2a  1 a  a  1   a  a3  a    a  a3   a  a  a  ab   ab  a   a  a  ab   ab  a  Chứng minh hồn tồn tương tự ta có: b4  b3  bc   1 ;  bc  b  c  c3  ac  ac  c  Như VT  1 1 1          ab  a  bc  b  ac  c   ab  a  bc  b  ac  c   (Áp dụng BĐT Bunhiacopxki cho số) Lại có 1 1 a ab               ab  a  bc  b  ac  c    ab  a  abc  ab  a a bc  abc  ab  a ab         ab  a  1  ab  a a  ab   Vậy ta có điều phải chứng minh Dấu “=” xảy a  b  c  Câu A I N P C H J M D O Q K B a) Chứng minh AN.BI  DH BK Ta có chắn cung AB nên BDA  BNA  IHA  BNA  INA Suy tứ giác ANHI nội tiếp (Tứ giác có hai đỉnh nhìn cạnh góc nhau) Do đó: AHN  AIN  BIK (hai góc nội tiếp chắn cung AN ) Ta có : AK  BD  AK  IH  AIH  900 Do tứ giác AHNI tứ giác nội tiếp (cmt)  AIH  ANH  1800  ANH  900  IBK  NAH  ANH BKI ( g.g )  BK BI BI    AN BI  DH BK AN AH DH b) Gọi O1 tâm đường tròn ngoại tiếp tam giác ANP, I trung điểm NP Vì A; D đối xứng qua BC nên PA tiếp tuyến (O) Ta có: PAN  PO1 N  PO1I1 (góc nội tiếp góc tâm chắn cung NP đường tròn  O1  ) Lại có: PAN  ADN (góc nội tiếp góc tạo tiếp tuyến dây cung chắn cung AN  O  )  PO1I1  ADN Hơn ANHI nội tiếp (cmt) nên ANH  AIH  900  NAH  NHP (cùng phụ với NHA ) Ta có : NAH  NIH  NBD  NDP  NHP  NDP  tứ giác PDNH nội tiếp nên NPH  NDA  NPH  PO1I1 Mặt khác : PO1I1  O1PI1  900  NPH  O1PI1  900  O1PH  900 Suy BC tiếp xúc với đường tròn ngoại tiếp tam giác ANP c) Gọi J trung điểm OM, G trung điểm OC, E giao điểm QG BM Dễ thấy MQ đường kính đường tròn qua D tiếp xúc với MC (Do MDQ  900 )  MQ  MC Mà MC  BC  MQ / / BC Do MQ / / BC  QMO  MOP (so le trong)  QOM  Tam giác QOM cân Q  QJ  OM (trung tuyến đồng thời đường cao)  BOM  GJQ (góc có cạnh tương ứng vng góc) Mặt khác OGJ OJG( g.g )  GJ OG  JQ OJ OGJ  OCM  OG OC OB (OC  OB)   OJ OM OM GJ OB   GJQ JQ OM BOM (c.g.c)  OMB  QJM  900 (hai góc nội tiếp chắn cung QM)  QE  EM  QE  BM Vậy đường thẳng qua Q vng góc với BM ln qua trung điểm G OC cố định Câu 5: Xét tập A  1; 2;3; .; 2500 tập B  1;3;3.2;3.22 ; ;3.213 Do 3.213  24576  250000  B  A Tập B có 15 phần tử Do bóng sơn màu mà có màu nên theo nguyên lý Dirichle tập B tồn bóng màu Giả sử bóng đánh số a  b  c a chia hết cho b, b chia hết cho c abc  18  17 Vậy ta có điều phải chứng minh SỞ GIÁO DỤC – ĐÀO TẠO TỈNH KHÁNH HÒA KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2018-2019 Mơn thi: TỐN CHUN Ngày thi : 03/06/2018 Câu a) Giải phương trình : x2  x   3x x  b) Có số tự nhiên có chữ số abc cho a, b, c độ dài cạnh tam giác cân Câu a) Chứng minh với số thực a, b, c ta ln có: a  b  c  a  b2  c2   ab  ac  bc  1 1 1  2  4;    2 x y xyz x y z b) Cho số x, y, z khác thỏa mãn : x  y  z  ; Tính Q   y 2017  z 2017  z 2019  x2019  x2021  y 2021  Câu Cho đường trịn (O) đường kính BC H điểm nằm đoạn thẳng BO (điểm H không trùng với hai điểm B O) Qua H vẽ đường thẳng vng góc với BC, cắt đường trịn (O) A D Gọi M giao điểm AC BD, qua M vẽ đường thẳng vng góc với BC N a) Chứng minh tứ giác MNBA nội tiếp BO  OH b) Tính giá trị: P      AB  BH c) Từ B vẽ tiếp tuyến với đường tròn (O), cắt hai đường thẳng AC AN K E Chứng minh đường thẳng EC qua trung điểm I đoạn thẳng AH H di động đoạn thẳng BO Câu Cho a, b,c số thực dương thỏa mãn điều kiện a  b  c  abc Chứng minh  a2  b2    c2  a b Câu Để tiết kiệm chi phí vận hành đồng thời du khách tham quan hết 18 danh lam, thắng cảnh tỉnh K, công ty du lịch lữ hành KH thiết lập tuyến chiều sau: Nếu từ tỉnh A đến B từ B đến C khơng có tuyến từ A đến C Hỏi có cách thiết lập để hết 18 địa danh ? ĐÁP ÁN Câu a) Giải phương trình Điều kiện xác định x  1 x2  x   3x x   x   x  1  3x x   u  x Đặt   v  x  u  v u  2v Phương trình  u  3uv  2v    u  v  u  2v     TH 1: u  v  x2  x 1  1 x x  x 1   x  TH : u  2v x   x  2 x  x 1   x  4x   Vậy nghiệm phương trình cho : x  1 ;x  22 2 b) TH1:Tam giác a  b  c   có số lập TH2: Xét a  b  c Vì a  b  c (bất đẳng thức tam giác) nên: c  )a  b     giá trị c c  c   có cách chọn c +) a  b    c  c  )a  b     có cách chọn c c  c  )a  b     có cách chọn c c  c  10 )a  b     có cách chọn c c  c  12 )a  b     có cách chọn c c  c  14 )a  b     có cách chọn c c  c  18 )a  b     có cách chọn c c  c  18 )a  b     có cách chọn c c  Vậy trường hợp có 52 số thỏa mãn Do vai trò a, b, c nên : 52.3  156 (số) Vậy có tất  156  165 số thỏa mãn Câu a) VT   a  b  c    a  b  c  a  b  c   a  ab  ac  ab  b  bc  ac  bc  c  a  b  c   ab  bc  ca   VP b) Ta có: x yz 1   2 xyz xyz 1 1 2         xy yz xz xyz xy yz xz xyz 1 2 1 1  2 2 2    2 2 2 4 x y z xy yz xz x y z xyz x yz  1 1 1     4   2 x y z x y z Từ 1 1    x y z x yz   xy  yz  xz  x  y  z   xyz   x  y  x  z  y  z   x   y   y   z  z   x Hơn mũ Q lẻ nên có thừa số Vậy Q  ĐÁP ÁN Câu a) Rút gọn biểu thức  a  a  b2 a  a  b2 P   a  a  b2 a  a  b2       a  b  a  a  a  b2 a  2  a  a  b2 a  b2    a  a 2b , :  b   a  b 0 b2 a  a  b2  a  a  b  a a  b  a  a  b  2a a  b a   a  b2   b2 a a  b b2 a a  b2 4a a  b   b2 a a  b2 a a  b  a  b2 a    a  b2   a  b2 a0  2  a b b) Cho phương trình……… Để phương trình cho có hai nghiệm x1; x2    a2  4b   x1  x2  a (1) (2)  x1 x2  b Áp dụng định lý Vi-et ta có:  Theo đề ta có: x x 5  x1  x2     3   35 x x     x1  x2   x1  x2   x1 x2   35  x1  x2  (3)  x1  x2       5  x1  x2   x1 x2   35  x1  x2   x1 x2  (4) Thế (1) (2) vào (4) ta được:  a   b   a  b   b  a  (*) Bình phương hai vế (3) ta được:  x1  x2   52   x1  x2   x1 x2  25  a  4b  25  a   b  6  a  4a  28  25  a     a  1  b  6 Vạy  a; b   1; 6  ;  1; 6  Câu a) Giải phương trình x   3x   x  Ta có điều kiện xác định: x  1   a  x  a  x  Khi ta có hệ phương trình sau đây: Đặt   a, b     b x    b x      a  b  a b  a  a   2 2 3a  b  3a   a  a   (*)  *  3a  a  2a  a   a  2a  2a    a (a  2)   a   a      a    a  2a      a   a    a  2a     a  2(tm)   a  2(ktm)  b  a2  a     x   a2  x      x 1   x    x b    (TM ) Vậy phương trình có nghiệm x  b) Cho số thực a,b, c… a  b  2ab  Áp dụng BĐT Co si ta có: b  c  2bc c  a  2ca  1  a  b  c   a  b  a  c  b  c    2ab  2ac  2bc  2 2  a  b  c  ab  ac  bc a  b2  c2 1 ab  bc  ca a  b  c Dấu “=” xảy    a  b  c 1 a  b  c  P Vậy MinP  1khi a  b  c  Theo đề ta có:  a, b, c    a   b   c     abc   ab  ac  bc    a  b  c     abc   ab  ac  bc   12     ab  ac  bc    abc   ab  bc  ca  P P a  b  c  2ab  2ac  2bc 2 ab  ac  bc a  b  c ab  ac  bc 2 2 2  a    b  c   b    abc     a  c  Dấu "  " xảy   a  b  c    c   a  b   0  a, b, c  Vậy MaxP  abc  0, a  b  c  3,0  a, b, c  2 Câu a) Tìm cặp số nguyên tố… Ta có số phương chia cho nhận số dư nên ta có: (3k )  9k  2 (3k  1)  9k  6k   1 mod 3  2  3k    9k  12k   1 mod 3 Nếu x, y  x,y khơng chia hết cho số dư Vế trái cho  2.1  1 chia dư vô lý x  y   hai số x, y phải có số  x    y   y   y  2( y  0)  2  y   x  2.9   x  19  x  Vậy cặp số nguyên  x; y    3;2  b) Chứng minh hiệu lập phương… Gọi số tự nhiên liên tiếp a, a  1 a   , theo đề ta có:  a  1  a3  n2  a3  3a  3a   a3  n2  3a  3a   n2  a   n   02  12  a  (tm) +)Xét TH: 1  a  ta có:  2  a  1  n     a  1 (tm) a  +)Xét TH:    2a   3a  3a    2a  1  a  1 2 Vậy ta có n tổng hai số phương liên tiếp Câu (*) B J T A H S O D E C Bài a) Chứng minh ABHD nội tiếp Gọi I, J tâm đường trịn đường kính CH, AB Xét (J) ta có: ADB góc nội tiếp chắn nửa đường trịn  ADB  900 Ta có: AB, AC hai tiếp tuyến đường tròn (O) tiếp điểm B, C cắt A Và AO  BC  H  AO  BC H hay AHB  900 (tính chất hai tiếp tuyến cắt nhau) Xét tứ giác ABHD ta có: ADB  AHB  900 (cmt )  ABHD tứ giác nội tiếp b) Gọi E giao điểm thứ đường trịn… Vì tứ giác ABHD tứ giác nội tiếp (cmt)  DBH  DAH (hai góc nội tiếp chắn cung DH) Xét đường trịn (I) ta có: HDC góc nội tiếp chắn nửa đường trịn  HDC  900  BDA  HCD  900   ADH  ADB  BDH  90  BDH  Lại có:  BDC  BDH  HDC  900  BDH  ADH  BDC Xét ADH BDC ta có: HAD  DAC (cmt ); ADH  BDC (cmt )  ADH BDC ( g.g ) AD AH (các cặp cạnh tương ứng)  BD BC AD BD 2.TD TH (T trung điểm BD)     AH BC 2.HC HC AD TD Xét TAD CAH ta có:  (cmt ); TDA  CHA  900 AH CH   TAD CAH (c.g.c)  TAD  HAC (hai góc tương ứng)  TAD  TAS  HAD Mà    HAC  HAD  DAE  TAS  DAE Mặt khác : DAE  DBE (Hai góc nội tiếp chắn cung DE)   TAS  SBT  EAD   ABTS tứ giác nội tiếp  STD  BAS (góc ngồi đỉnh góc đỉnh đối diện) Mà BAS  BDH (hai góc nội tiếp chắn cung BH đường tròn (J))   STD  TDH  BAH  Lại có hai góc vị trí so le  ST / / HD(dpcm) Bài G C H A I F D B M K N E Gọi MO1  d  H ; NO2  d  I , AB  MN  K O1M  CD  H  O2 M  CD  I  Ta có : MN//CD    O1M , O2 N trung trực CA DA (đường kính dây cung)  CH  HA, MHA  90    IA  ID, NID  90    MNIH hình chữ nhật M  H  I  900  HI  MN  CD  MN / / CD  Xét CED ta có:  (cmt )  MN CD    MN đường trung bình CED  M , N trung điểm EC, ED  MC  ME, ND  NE Xét CAE ta có: M , H trung điểm CA, CE (cmt)  AM đường trung bình CAE  MN / / AE Mà MH  CD (cmt )  AE  CD (từ vuông góc đến song song) Xét MKA BKM ta có: MAK  KMB (góc nội tiếp góc tạo tiếp tuyến dây cung chắn cung AB) MKA chung  MKA BKM ( g.g )  MK KA   KM  KA.BK BK KM (1) Xét NKA BKN ta có: NAK  KNB ( góc nội tiếp góc tạo tiếp tuyến dây cung chắn cung AB) NKA chung NK KA   KN  KA.BK (2) BK KN Từ (1) (2) suy KM  KN Do MN / / FG , áp dụng định lý Ta let ta có: KN MK KB    AG  AF AG AF AB (cmt )  EG  EF (tính chất đường trung trực) (dpcm) Mặt khác AE  FG  NKA BKN ( g.g )  Câu Ta có : số có ước ngun tố khơng vượt q có dạng 2x.3y.5z.7t Do x, y, z, t số có trường hợp chẵn, lẻ nên số có tổng cộng 2.2.2.2  16 trường hợp x, y, z, t  20  Theo nguyên lý Dirichle, tồn   1  số a, b saao cho  16  x y z t  a  1.3 1.5 1.7 số mũ tương ứng tính chẵn lẻ  x2 y2 z2 t2  b   x1  x2  2m  y  y  2n    a.b   2m.3n.5 p.7 q   z1  z2  p t1  t2  2q Đây số phương Vậy ta ln chọn số cho tích chúng số phương từ 20 số tự nhiên mà số có ước nguyên tố không vượt SỞ GIÁO DỤC VÀ ĐÀO TẠO HẢI DƯƠNG ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH LỚP 10 THPT CHUYÊN NGUYỄN TRÃI NĂM HỌC 2016 - 2017 Mơn thi: TỐN (Chun) Thời gian làm bài: 150 phút, không kể thời gian giao đề (Đề thi gồm có 01 trang) Câu (2,0 điểm) a  x2 a  x2 a) Rút gọn biểu thức: A  2 a   a với a  0, x  x x b) Tính giá trị biểu thức P  ( x  y)3  3( x  y)( xy  1) biết: x  3  2  3  2 , y  17  12  17  12 Câu (2,0 điểm) a) Giải phương trình: x2   x3  x      x  x2  2x   y  y    b) Giải hệ phương trình:   x  3xy  y  Câu (2,0 điểm) a) Tìm dạng tổng quát số nguyên dương n biết: M = n.4n + 3n chia hết cho b) Tìm cặp số (x; y) nguyên dương thoả mãn: (x2 + 4y2 + 28)2  17(x4 + y4) = 238y2 + 833 Câu (3,0 điểm) Cho đường tròn tâm O đường kính BC, A điểm di chuyển đường tròn (O) (A khác B C) Kẻ AH vng góc với BC H M điểm đối xứng điểm A qua điểm B a) Chứng minh điểm M ln nằm đường trịn cố định b) Đường thẳng MH cắt (O) E F (E nằm M F) Gọi I trung điểm HC, đường thẳng AI cắt (O) G (G khác A) Chứng minh: AF2 + FG2 + GE2 + EA2 = 2BC2 c) Gọi P hình chiếu vng góc H lên AB Tìm vị trí điểm A cho bán kính đường trịn ngoại tiếp tam giác BCP đạt giá trị lớn Câu (1,0 điểm) Cho a, b, c số thực dương thay đổi thỏa mãn: a + b + c = Tìm giá trị nhỏ biểu thức : Q  14(a  b2  c )  ab  bc  ca a 2b  b2c  c 2a Hết -Họ tên thí sinh: Số báo danh: Chữ kí giám thị 1: Chữ kí giám thị 2: SỞ GIÁO DỤC VÀ ĐÀO TẠO HẢI DƯƠNG ĐÁP ÁN VÀ HƯỚNG DẪN CHẤM MƠN TỐN ĐỀ THI TUYỂN SINH LỚP 10 THPT CHUN NĂM HỌC 2016 - 2017 (Hướng dẫn chấm gồm: 04 trang) Nếu học sinh có cách làm khác cho điểm tối đa Câu Ý Nội dung a a  x2 a  x2 2 a   a với a  0, x  x x Rút gọn biểu thức: A  a  x2  2x a a  x2  2x a A  = x x  x a x a x x  a x  x  a Điểm 1,00 0,25 x 0,25 +) Với x  a x  a  x  a nên A =   x  a  x  a 2x  2 x x x 0,25 +) Với  x  a x  a   x  a  a  x nên A = 0,25 a xx a a  x x Tính giá trị biểu thức: P  ( x  y)3  3( x  y)( xy  1) biết: b x  3  2  3  2 , y  17  12  17  12 Ta có: x3   3 2  3 2      3 2 3 2 3 3 2 32 1,00 32  32   x3   3x  x3  3x  (1) Tương tự: y3  y  24 (2) Trừ vế với vế (1) (2) ta được: x3  y3  3( x  y)  20  (x - y)3 + 3(x - y)(xy + 1) = 20 Vậy P = 20 0,25 0,25 0,25 0,25 a Giải phương trình: x2   x3  x  (1) 1,00 +) ĐK: x  1 PT (1)  (x2 - 3x + 3) + 3(x + 1) = (x  1)(x  3x  3) (2) 0,25 Do x2 - 3x + > nên (2)   3(x  1) x 1 4 x  3x  x  3x  t  x 1 2 Đặt t  ; t  PT: + 3t = 4t  3t - 4t + =   (TM) t  x  3x   x 1 +) Với t = PT:   x  4x    x   2 x  3x  x 1 +) Với t = PT:   x  12x    x   42 x  3x  3     x  x  x   y  y   (1) b Giải hệ phương trình:   x  3xy  y  (2)   Ta có: (1)  x  x  2x   (Do y2   y    y2   y  0,25 0,25 0,25 1,00 y2   y  0,25 y2   y  với y)  x   (x  1)2    y  y2   x  y 1 (x  1)2  y (x  1)2   y  0   x 1 y  (x  y  1) 1  0  2   (x 1) y       x  y    2  (x  1)   (x  1)  y   y  (3) Do a 0,25 y2   y   y, y nên (3) vô nghiệm (x  1)2   x   x  1, x x  Thay y = - x - vào (2) tìm nghiệm  x     1 Với x =  y = -2; x =   y  Vậy hệ có nghiệm (1;-2),   ;  3  3 n n Tìm dạng tổng quát số nguyên dương n biết: M = n.4 + chia hết cho 2k 2k 0,25 0,25 1,00 +) n = 2k (k nguyên dương): M = 2k.4 + = 2k.16 + Ta có: 16 dư 0,25 với 2k chia  M dư với (2k.2k + 2k) = 2k.(2k + 1) chia  (2k + 1) chia hết cho  k chia 0,25 k k k k b dư 3, hay k = 7q +  n = 14q + (q  N ) +) n = 2k + (k nguyên dương): M = (2k + 1).42k + + 32k+1 = 4(2k+1).16k + 3.9k  M dư với (k + 4).2k + 3.2k = (k + 7).2k chia  k chia hết cho  k = 7p (p  N ) Vậy n = 14q + n = 14p + 1, với p q số tự nhiên Tìm cặp số (x; y) nguyên dương thoả mãn: (x2 + 4y2 + 28)2 - 17(x4 + y4) = 238y2 + 833 Ta có:  x  y  282  17( x  y )  238 y  833   x  4( y  7)   17  x  ( y  7)2  0,25 0,25 1,00 0,25  16 x4  8x ( y  7)  ( y  7)2    x  ( y  7)    x2  y   0,25 Vì x, y  N * nên x  y  x  y x  y  Do từ (1) suy ra: 0,25  (2 x  y)(2 x  y)  (1) 2 x  y   x    x y    y  0,25 KL: (x; y)=(2; 3) thoả mãn toán a Chứng minh điểm M ln nằm đường trịn cố định A 1,00 F S B C K H O I E G D M Lấy K điểm đối xứng O qua B, B O cố định nên K cố định Tứ giác OAKM hình bình hành nên KM = OA BC không đổi OA  BC  M nằm đường tròn tâm K, bán kính b Chứng minh tổng bình phương cạnh tứ giác AEGF không đổi Xét  AHB  CHA có BHC = BHA =900, BAH = ACB (cùng phụ với ABC )   AHB đồng dạng  CHA Gọi S trung điểm AH, I trung điểm HC nên 0,25 0,25 0,25 0,25 1,00 0,25  ABS đồng dạng  CAI  ABS = CAI Ta lại có BS đường trung bình  AMH  BS//MH  ABS = AMH  AMH = CAI 0,25 Mà CAI + MAI =900  AMH + MAI =900  AI  MF Xét tứ giác AEGF nội tiếp (O), có AG  EF Kẻ đường kính AD, GD  AG EF  AG nên EF // GD, tứ giác nội tiếp 0,25 EFGD hình thang cân  FG = ED  AE2 + FG2 = AE2 + ED2 = AD2 = BC2 Tương tự ta chứng minh được: AF2+ EG2 = BC2 0,25 Vậy AE2+ FG2 +AF2+ EG2 = 2BC2 c Gọi P hình chiếu vng góc H lên AB Tìm vị trí điểm A cho bán kính đường trịn ngoại tiếp tam giác BCP đạt giá trị lớn 1,00 Gọi Q hình chiếu H AC  Tứ giác APHQ hình chữ nhật (S tâm)  AQP  AHP  ABC nên tứ giác BPQC nội tiếp A Q S P B H O 0,25 C O' Đường trung trực đoạn thẳng PQ, BC, QC cắt O’ O’ tâm đường 0,25 trịn ngoại tiếp tam giác BCP Có: OO’ // AH vng góc với BC OA  PQ O'S  PQ  O’S//OA nên tứ giác ASO’O hình bình hành AH  OO’ = AS = AH Trong trường hợp A nằm cung BC ta có: OO’ = AS = 0,25 Tam giác OO’C vuông O nên O’C = OC2  AH Do OC không đổi nên O’C lớn 0,25 AH lớn  A cung BC Cho a, b, c số thực dương thay đổi thỏa mãn: a + b + c = 1,00 Tìm giá trị nhỏ biểu thức: P  14(a  b2  c )  ab  bc  ca a 2b  b2c  c 2a Ta có: a2 + b2 + c2 = (a + b + c)(a2 + b2 + c2) = a3 + b3 + c3 + a2b + b2c + c2a + ab2 + bc2 + ca2 Theo bất đẳng thức Cô si: 0,25 a + ab  2a b; b + bc  2b c; c + ca  2c a  a + b + c  3(a b + b c + c a) 2 Do đó: P  14(a  b2  c )  2 2 2 3(ab  bc  ca) a  b2  c Đặt t = a2 + b2 + c2 Ta ln có: 3(a2 + b2 + c2)  (a +b + c)2 = Do vậy: t  Khi đó: P  14t  3(1  t )  t  27t     27t   23 2t 2 2t 2 2t Vậy MinP = 23 a = b = c = 3 186 0,25 0,25 0,25 ... n  Vậy có tối đa 108 cách thi? ??t lập hết 18 địa danh  108 (Áp dụng bất SỞ GIÁO DỤC VÀ ĐÀO TẠO NAM ĐỊNH ĐỀ THI TUYỂN SINH LỚP 10 TRƯỜNG THPT CHUN ĐỀ CHÍNH THỨC Mơn thi: TOÁN (chuyên) Năm học:... trình cho có nghiệm x 1 SỞ GIÁO DỤC – ĐÀO TẠO TỈNH THANH HÓA TRƯỜNG THPT CHUYÊN LAM SƠN Câu KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2018-2019 Mơn thi: TỐN CHUYÊN Thời gian: 150 phút ĐỀ THI CHÍNH...SỞ GIÁO DỤC VÀ ĐÀO TẠO NGHỆ AN KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2018-2019 Môn thi: TOÁN CHUYÊN Ngày thi: 03/06/2018 Câu a) Giải phương trình : x    x  x2 

Ngày đăng: 26/10/2020, 22:59

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w