Preface
This work blends together classic inequality results with brand new problems, some of which devised only a few days ago What could be special about it when so many inequality problem books have already been written? We strongly believe that even if the topic we plunge into is so general and popular our book is very different Of course, it is quite easy to say this, so we will give some supporting arguments This book contains a large variety of problems involving inequalities, most of them difficult, questions that became famous in competitions because of their beauty and difficulty And, even more importantly, throughout the text we employ our own solutions and propose a large number of new original problems There are memorable problems in this book and memorable solutions as well This is why this work will clearly appeal to students who are used to use Cauchy-Schwarz as a verb and want to further improve their algebraic skills and techniques They will find here tough problems, new results, and even problems that could lead to research The student who is not as keen in this field will also be exposed to a wide variety of moderate and easy problems, ideas, techniques, and all the ingredients leading to a good preparation for mathematical contests Some of the problems we chose to present are known, but we have included them here with new solutions which show the diversity of ideas pertaining to inequalities Anyone will find here a challenge to prove his or her skills If we have not convinced you, then please take a look at the last problems and hopefully you will agree with us
Finally, but not in the end, we would like to extend our deepest appreciation to the proposers of the problems featured in this book and to apologize for not giving all complete sources, even though we have given our best Also, we would like to thank Marian Tetiva, Dung Tran Nam, Constantin Tanadsescu, Calin Popa and Valentin Vornicu for the beautiful problems they have given us and for the precious comments, to Cristian Baba, George Lascu and Calin Popa, for typesetting and for the many pertinent observations they have provided
Trang 7CHAPTER 1
Trang 81 Prove that the inequality JES OF + VPS oP + EF ap > holds for arbitrary real numbers a, b,c Komal 2 | Dinu Serbanescu | If a,b,c € (0,1) prove that Vøabe+ w(1— a)(1— b)(1— e) < 1 Junior TST 2002, Romania 3 | Mircea Lascu | Let a,b,c be positive real numbers such that abc = 1 Prove that b+e Tat et Fe 2 Vat vb+ ve +3 cta atb Gazeta Matematica 4 If the equation x* + ax? + 227 + be + 1 = O has at least one real root, then a? +b? > 8
Tournament of the Towns, 1993
5 Find the maximum value of the expression z° + y? + 2° — 3xyz where x? + y? + z* =1and z,y,z are real numbers
Trang 9Old and New Inequalities 9 When does equality hold? JBMO 2002 Shortlist 10 [ loan Tomescu | Let x,y, z > 0 Prove that +z (1 + 32)(x + 8y)(y + 9z)(z + 6) When do we have equality? 1 Sma: Gazeta Matematica
11 [ Mihai Piticari, Dan Popescu | Prove that
5(a? + b2 + e2) < 6(aŸ + bỶ + c3) + 1,
for all a,b,c > O witha+6+c=1
12 [| Mircea Lascu | Let 71, %2, ,%, € R,n > 2 anda > 0 such that x + 2 T Prove that x; € [ *) , for all đa + +0„ = a and #7 +z2 + +2 < ¿€{1,2, ,n} 18 [ Adrian Zahariuc | Prove that for any a,b,c € (1,2) the following inequality holds b/a + cvb + a/c >1 4bf/e—cJa 4eVWa-aVvdb 4aVb-bVc — -
14 For positive real numbers a,b,c such that abc < 1, prove that
a be
+-+—=>a+b+c
b ec oa
15 [ Vasile Cirtoaje, Mircea Lascu | Let a,b,c,2,y,z be positive real numbers
such thata+a>b+y>c+zanda+b+c=2+y+2z Prove that ay+bzr > ac+2z
16 | Vasile Cirtoaje, Mircea Lascu | Let a,b,c be positive real numbers so that
Trang 1018 Prove that ifn > 3 and x%1,%2, ,%, > 0 have product 1, then 1 + 1 f+ + ——— 1 > 1 l+zi+4+ 122 1+ 222+ %2%3 1+2%,+%n21 Russia, 2004 19 [| Marian Tetiva | Let 2, , z be positive real numbers satisfying the condition a? ty +27 4+ 2Qaeyz = 1 Prove that a) ryz <=; ) yz <2 3 b)z++z< 3i c) ry taztyz<—<a ty? 42’; d) sytaztyz < = 4+ 2zyz ho | S| Co 20 | Marius Olteanu | Let 21, 22,73, 74,25 € Rsothat x1) +%2+¢3+24+25 = 0 Prove that | cos z;| + | cos zg| + | cos x3| + | cosx4|+|cosz5| > 1 Gazeta Matematica 21 | Florina Carlan, Marian Tetiva | Prove that if x,y, z > 0 satisfy the condition %z + +Z—=xụz then ø + #z +z > 3+ vwz3+1~+vw2+1+vz? +1 22 | Laurentiu Panaitopol | Prove that 1I+z? 1+? I+z7 I+/+z2 I+z+z? 1+z+ ` for any real numbers x,y,z > —1 JBMO, 2003 23 Let a,b,c > 0 with a+6+c= 1 Show that 2 2 2 a +b 0 Hee tal yg b+e c+a a+b —
24 Let a,b,c > 0 such that at + 64 + ct < 2(a?b? + bc? + c?a”) Prove that aŠ + bŠ + e? < 2(ab + be + ca)
Trang 11Old and New Inequalities 11 25 Let n > 2 and %1, ,2, be positive real numbers satisfying 1 + 1 Ta 1 oi a, +1998 22+1998 ~“ 2,+1998 1998” —— nme > 1998 Prove that Vietnam, 1998 26 | Marian Tetiva | Consider positive real numbers 2, y, z so that +2 +y? +27 = LYZ Prove the following inequalities a) xyz > 27; b) z + zz + 0z > 2ï; c)z++z>9; đ) z +zz+z >> 2(z++z)+9 27 Let x,y,z be positive real numbers with sum 3 Prove that V + + Vz 3 zụ + 9z + zz Russia, 2002 28 D Olteanu | Let a,b,c be positive real numbers Prove that
a+b a ote b ete Cc 3
b+e 2a+b+c c+a 2b+e+a a+b 2c+a+b—4 Gazeta Matematica 29 For any positive real numbers a, b,c show that the following inequality holds ab c_ c+àa a+b b+c _+-+_> b c¢ a ce+b + ate + b+ta India, 2002 30 Let a,b,c be positive real numbers Prove that a3 b3 c 3(ab + be + ca)
RP—k+e @Ồ -ae+da2 @-adth = a+b+e
Proposed for the Balkan Mathematical Olympiad 31 | Adrian Zahariuc | Consider the pairwise distinct integers 71, %2, ,2n, n > 0 Prove that
Trang 1232 [| Murray Klamkin ] Find the maximum value of the expression #7 + #23 +
-+ + 9212, +2722, when 21, %2, ,U%n_—1,£n > 0 add up to 1 and n > 2
Crux Mathematicorum
33 Find the maximum value of the constant c such that for any
L1,02, -,%n,°*- > O for which xp4) > 4%, +4 + -+ 2% for any k, the inequality Vi + fiz to + Vin <cVui Fant Fy
also holds for any n IMO Shortlist, 1986 34 Given are positive real numbers a,b,c and x,y,z, for which a+ a2 =b+y= c+2z=1 Prove that 1 1 1 (abe + xy2)(— + + —) > 3 Russia, 2002 35 [ Viorel Vajaitu, Alexandru Zaharescu | Let a,b,c be positive real numbers Prove that ab + be + ca < Ì(a+b+e) s+b+2c b+ec+2a c+a+92b— 4 ‘ Gazeta Matematica
36 Find the maximum value of the expression
a”(b+ec+đd) +~b?(e+d+a) +c(d+a+b) + dđ”(a+b+ e)
where a, b,c,d are real numbers whose sum of squares is 1
Trang 13Old and New Inequalities 13 AO Let @1,@2, ,@, > 1 be positive integers Prove that at least one of the numbers %/a2, %%/a3, , °»-¥/@n, *%/a1 is less than or equal to V3
Adapted after a well-known problem
41 | Mircea Lascu, Marian Tetiva | Let x,y,z be positive real numbers which
satisfy the condition # + #z + 9z + 2zz = 1 Prove that the following inequalities hold 1 a ) oye <5 <=; b)z++z> 1 1 1 c) —=+—=+—->4(z++2); roy 2 1 1.1 (2z — 1)” d) Ty z tự tU†?)2 t0 (0z+1D) 3 bo] Go , where z = max {z, y, z}
42 | Manlio Marangelli | Prove that for any positive real numbers 2, y, z, 3(z2 + y?z + 272) (ay? + yz? + za") > xuz(œ + + z)
43 [| Gabriel Dospinescu |] Prove that if a,b,c are real numbers such that
max{a, b,c} — min{a, b,c} < 1, then
1+a@?4+b% +3 + 6abe > 3a7b + 3bŠc + 3c2a
Trang 1448 [ Gabriel Dospinescu ] Prove that if /x + /y+./z = 1, then (—=z)?1—ø)”q~ 2z)” > 2'zwz(z + w)(w + z)(z + #) 49 Let zø, 9, z be positive real numbers such that #z = #++z+2 Prove that (1) zu+z+zz>2(œ++2); (3) V#+ VW+ v#< ŠV2yz 50 Prove that if x,y,z are real numbers such that x? + y? + z? = 2, then z++z<zyz+2 IMO Shortlist, 1987
51 | Titu Andreescu, Gabriel Dospinescu | Prove that for any %1,%2, ,%n € (0,1) and for any permutation o of the set {1,2, ,n}, we have the inequality l—#; nr ny dm n >|l+ i=1 i=1 = 1 Prove nr 52 Let 21, %2, ,£p be positive real numbers such that › m ‘ =1 vj that Tr Tr 1 4; >Ín — Ì — ve 2 ( )2_ vn Vojtech Jarnik
Trang 15Old and New Inequalities 15 56 Prove that if a,b,c > 0 have product 1, then
(a+ b)(6b+c)\(e+a) > 4(a+b+c-1)
MOSP, 2001
57 Prove that for any a,b,c > 0,
(a7 + b` + c?)(a+b— e)(b+e— a)(e+a— b) < abe(ab + be + ca) 58 [| D.P.Mavlo | Let a,b,c > 0 Prove that
1 161 1)(b + 1)(c + 1
Btatbtesn4 rere Sal fy gle We Mer) b b Mes Dery) 1+ abe
Kvant, 1988 59 [ Gabriel Dospinescu | Prove that for any positive real numbers 21, 2%2, ,2n with product 1 we have the inequality n n n 4 n mn, “+1)> j — | án :]@?+Ð> 5 c2] w=l1 w=1 ¿=1 60 Let a,b,c,d > 0 such that ø + b+ e= 1 Prove that 11 d 3+3 + c bcđ > mìn 4 —,— + ——= è¿ œ”+ 0” +c” + dbc > min {5.5 +3} Kvant, 1993 61 Prove that for any real numbers a, b,c we have the inequality
3 (1+42)?(1+ð2)?(ø— e)?(b— e)® > (1+a?)(1+ð2)(1+ c?)(a — b)”(b — e)?(c— a)?
AMM
62 | Titu Andreescu, Mircea Lascu | Let a, x,y,z be positive real numbers such
Trang 1664 | Laurentiu Panaitopol | Let a1,a2, ,a@, be pairwise distinct positive inte- gers Prove that 2n+1 aj +a5+ -+a;,> 23 (a, tag + -+4y) TST Romania 65 [ Calin Popa ] Let a,b,c be positive real numbers such that a+b+c¢= 1 Prove that b/c cự avb 3v3
a(Vầ + Vab) b(Vần+ Và) c(VAb+ ve +7
66 [ Titu Andreescu, Gabriel Dospineseu | Let a, 6, c,d be real numbers such that
(1 + a?)(1 + 67)(1 +c?)(1 + d?) = 16 Prove that —3 < ab+bce+cd+da+ac+ bd — abcd < 5 67 Prove that (a + 2)(b? + 2)(c? + 2) > 9(ab + be + ca) for any positive real numbers a, b,c APMO, 2004 68 | Vasile Cirtoaje | Prove that ifÍ 0 < #z < < z and z + + z = zz +2, then a) (L— #p)(1— z)(1 — #z) > 0) 2 3,2 b) ay <1,2°y < mm
Trang 17Old and New Inequalities 17 71 | Marian Tetiva | Prove that for any positive real numbers a, b,c,
a®—b bì—c3 -a? (a — b)? + (b-c)* + (c—a)? + < a+b b+e c+a |— 4 Moldova TST, 2004 72 | Titu Andreescu | Let a,b,c be positive real numbers Prove that (a° — a? +3)(0? —b7 4+3)(2 —c +3) > (at+b+e)® USAMO, 2004 73 [ Gabriel Dospinescu ] Let n > 2 and 21, 2%2, ,%p, > 0 such that S2) (>: ¬ =n?+1 %k , k=1 k=1 2) - S2) >n®P+4+— rat k=1 Ly n(n — 1) Prove that
74 | Gabriel Dospinescu, Mircea Lascu, Marian Tetiva ] Prove that for any po- sitive real numbers a, b,c,
a2 + b2 + e° + 2abe+ 3 > (1+ ø)(1+b)(1+ e)
75 [ Titu Andreescu, Zuming Feng | Let a,b,c be positive real numbers Prove
that
(Qa+b+c)? (2b+a+c)? (2c+a+b)? 3
2a2 + (b+c)? 26?+(at+c)? 2c? + (a+b)? ~~
USAMO, 2003
76 Prove that for any positive real numbers x,y and any positive integers m,n,
(n—1)(m—1)(a™*"ty™*") + (mtn-1 (ary +ary™) > mnlartr ty pyr" ag),
Austrian-Polish Competition, 1995
77 Let a,b,c, d,e be positive real numbers such that abcde = 1 Prove that
a+abc b + bcd c+ cde d+ dea e+eab
ltab+abed 1+6bc+bcde 1+cd+cdea 1+de+deab l+ca+ cabe
> 10 — 3
Trang 1878 [ Titu Andreescu | Prove that for any a,b,c, € (0, 3) the following inequality
holds
sỉn ø - sin(œ — Ư) - sin(œ —e) sinb-sin(6 — e) - sin(b — ø)_ sinc- sin(e — a) - sin(e — b) >0 sin( + c) sin(e + ø}) sin(a + b) —
TST 2003, USA
79 Prove that if a,b,c are positive real numbers then,
Va4 + b1 + c+ + Veh? + Pet 2a? > Va3b+ Bet Gat Vab? + be? + ca
KMO Summer Program Test, 2001
80 | Gabriel Dospinescu, Mircea Lascu | For a given n > 2 find the smallest constant k, with the property: if a1, ,@, > 0 have product 1, then
a1 Q2 + a203 fives $ — AanG1 F< ky
(a? +a2)(az +a) (a3 +.a3)(a? + a2) (a2 + a1)(a? +an) — 81 [ Vasile Cirtoaje | For any real numbers a, b,c, x,y, z prove that the inequality holds Ww] 2 az + bụ + cz + v/(a3 + b2 + c2)(2 + 2+ z?) > s(œ+b+e)(z+ +2) Kvant, 1989 82 [ Vasile Cirtoaje | Prove that the sides a, b, c of a triangle satisfy the inequality 3(0 4242-1) 50(2 4622) b ¢ oa a b oe 83 | Walther Janous | Let n > 2 and let 71, 2%2, ,%, > 0 add up to 1 Prove that Crux Mathematicorum
84 | Vasile Cirtoaje, Gheorghe Eckstein | Consider positive real numbers #1,Z2, ,„ such that #+zs #„ = l Prove that 1 + + +®———— <1 m-lt+a, n-1+22 nm—-14+ 2p TST 1999, Romania
85 | Titu Andreescu | Prove that for any nonnegative real numbers a, b,c such
that a? + 6? + c? + abc = 4 we have 0 < ab+ be + ca — abc < 2
Trang 19Old and New Inequalities 19
86 | Titu Andreescu | Prove that for any positive real numbers a, b, c the following
inequality holds
OFFS | Save < maz{ (Va — v5)?, (vb Ve)”, (Ve - Va}
TST 2000, USA
87 | Kiran Kedlaya | Let a,b,c be positive real numbers Prove that
a + Vab+ Ÿabc _ af a+b atbte
3 — 2 3 ‘
88 Find the greatest constant & such that for any positive integer n which is not
a square, |(1 + /n) sin(zn)| > È
Vietnamese IMO Training Camp, 1995
89 | Dung Tran Nam ] Let #,,z > 0 such that (x + y+ 2)? = 32zyz Find the ei ty* +24
minimum and maximum of ——————_ (ct+y+z)
Vietnam, 2004
90 | George Tsintifas ] Prove that for any a,b,c,d > 0,
(a+ 6)?(b+ e)3(e+ đ)®(d+ a)? > 16a?b?c2d?(œ + b+ e+ đì!
Crux Mathematicorum
91 [ Titu Andreescu, Gabriel Dospinescu | Find the maxinum value oÊ the ex-
pression
(ab)” | bc)” | (ca)”
l—ab l1-be l—ca
Trang 2094 | Vasile Cirtoaje | Let a,b,c be positive real numbers Prove that
(of) (OE i)e(oe£a) (ced ra(oed 1) (ba) ea
95 [ Gabriel Dospinescu |] Let n be an integer greater than 2 Find the greatest real number m, and the least real number Ä⁄„ such that for any positive real numbers £1,02, -,%n (with ty, = %,%n41 = #1), Mn < : < My "Sd +92(nT— 1)#¿ +.” 96 | Vasile Cirtoaje | If x,y, z are positive real numbers, then 1 1 1 9 2 3T 2 zt 2 52 2° #2 + #U +9 2 tụz+z z2 + zz + z (z++z) Gazeta Matematica
97 | Vasile Cirtoaje | For any a, b,c,d > 0 prove that
2(aŠ + 1)(b3 + 1)(eŸ + 1)(đ + 1) > (1+ abeđ)(1 + a”)(1 + 02)(1+ e2)(1+ d?) Gazeta Matematica
98 Prove that for any real numbers a, b,c,
(z+b)*+(b+e)*+(e+a)°®> sa) (a1 + b* + €) Vietnam TST, 1996 99 Prove that if a,b,c are positive real numbers such that abc = 1, then 1 1 + 1 < 1 + 1 + 1 l+a+6 lI+ư+c ltet+a724+a 2406 2+c Bulgaria, 1997 1.2 8
100 | Dung Tran Nam | Find the minimum value of the expression ¬ + 3 + :
Trang 21Old and New Inequalities 102 Let a,b,c be positive real numbers Prove that (b+e— a)? + (c+ø— b)? (b+ @)2 + a? (c+ a)2 + b2 (a+b)?+c? ~ 5 (a+b—c)? >< 3 Japan, 1997 103 [ Vasile Cirtoaje, Gabriel Dospinescu | Prove that if a1, ae, .,đ„ > 0 then aj + g5 † ++- TÐ da — ngida dạ > (n — Ì) (5m ?ì n—1 )
where a,, is the least among the numbers a1, a2, ,@n
104 [ Turkevici |] Prove that for all positive real numbers z, y, z, t,
ai+yttzt+tt+2eyzt> oe ytyest PP 4Prr testy’ Kvant 105 Prove that for any real numbers a1, a2, ,@,, the following inequality holds he 2 mr oa 1) ` đ¿ | » ———f¡đ/ (> ijai +7—1
106 Prove that 1Í aI,ds, , an, ÐỊ, ., 6, are real numbers between 1001 and
2002, inclusively, such that øŸ + gã + - + a2 = b‡ + bã + - + b2, then we have the
inequality
Tạ (đŸ + đổ + + + đã)
TST Singapore 107 [ Titu Andreescu, Gabriel Dospinescu | Prove that if a, b,c are positive real numbers which add up to 1, then
(a7 + b”)(b2 + c?)(c? + a2) > 8(a?bŸ + b?e? + ca”)
Trang 22110 | Gabriel Dospinescu | Let a1, a2, ,@,, be real numbers and let S be a non-empty subset of {1,2, ,2} Prove that
» < » (a; + +4a;)? ¿c8 1<i<j<n
'TST 2004, Romania 111 [| Dung Tran Nam ] Let 71, 22 , Z2004 be real numbers in the interval [—1, 1]
such that x? + x3 + + #3004 = 0 Find the maximal value of the 7, +22 + -+ 22904
112 | Gabriel Dospinescu, Calin Popa | Prove that if n > 2 and a1,a2, ,Gn are real numbers with product 1, then 2n nm—1 - n — l(œ + đa + - + đạ — mì g7 + gã +-:- a2 —Tn > 113 [ Vasile Cirtoaje | If a,b,c are positive real numbers, then 2a + 2b + 2c <3 a+b b+€c cta 114 Prove the following inequality for positive real numbers x, y, z 1 1 1 9 (oy +ye+ en ( To Gea mì >1 Gazeta Matematica Iran, 1996 115 Prove that for any x,y in the interval [0, 1], V1+z2+~+v1+z?+V(-—z)?+(1—g)? > (1+ v5)(1— zp)
116 [ Suranyi | Prove that for any positive real numbers ø,ds, , đ„ the fol- lowing inequality holds
(n—1)(a? +a? + -+a")+nayaz Gn > (a, +ag+-+-+an)(ap | tant +-+-+ar-t),
Trang 23Old and New Inequalities 23
118 | Gabriel Dospinescu | Find the minimum value of the expression » 4142 - Aan - —m wh©r© đ1,đa, ,đ„ < 1 add up to 1 and n > 2 is an integer Th — 119 | Vasile Cirtoaje | Let a1,a2, ,G@, < 1 be nonnegative real numbers such that ai t+az+ +a2 _ V3 a= 4, om “>_— n — 3 Prove that, ay 4 ag 4 4 an > na
l-da la IlTa2 — l1—a2
120 | Vasile Cirtoaje, Mircea Lascu | Let ø, , e, #,,z be positive real numbers such that (ø+b+)œ ++z) = (a2 +? + c?)(g” +2 + z7) =4 Prove that beryz < 3 A0CLY Z —— Ue S 36°
121 [ Gabriel Dospinescu | For a given n > 2, find the minimal value of the
constant k,, such that if 71,272, ,2%, > 0 have product 1, then 1 1 1 + + - + — VI+kzạzi V1tkn2ze V1 + kn#„ <n-1 Mathlinks Contest
122 [ Vasile Cirtoaje, Gabriel Dospinescu | For a given n > 2, find the maximal
value of the constant k„ such that for any 21, 22, ,2%n > 0 for which z?+23+ -+
x? = 1 we have the inequality
Trang 25CHAPTER 2
Solutions
Trang 261 Prove that the inequality
VEO OP + VRE oP + JPET ae > SX
holds for arbitrary real numbers a, Ư, e
a
Komal
First solution:
Applying Minkowsky’s Inequality to the left-hand side we have
V4 +(1—ð)?+02 +(1— e?+V@+(1—a)® > Jlatb+o24 (3—-a—b_-o
Denoting a+b+c=<2 we get
8\" 9 _ 9 (a+b+c)?+(3-a-—b-c) =2(x-3) +5 > 3
and the conclusion follows
Second solution:
We have the inequalities
Ja? + (1-6)? + fb? + (1-0)? + Ve? + (1-a)? > 5 lal += 8) Wl + ite, lel + [tal — V2 v2 v3 32 and because |x| + |1 — | > 1 for all real numbers z the last quantity is at least > 2 | Dinu Serbanescu | If a,b,c € (0,1) prove that Vøbe+ w(1— a)(1— b)(1— e) < 1 Junior TST 2002, Romania First solution: Observe that x? < #3 for x € (0,1) Thus Vabe < Vabe, and
(—ad—b1—-o < 7% —-a (i _b(1_o
Trang 27Old and New Inequalities 27 Summing up, we obtain Vøbe+ w(1— a)(1 — b)(1— e) < as desired a+b+c+l-arl-b+tl-c_¡ 3 —— 3 Second solution: We have
Vabe + V{1— a)(1T— b)(1— e) < Vb-We+ W1—b-WT1—e< 1,
by the Cauchy-Schwarz Inequality Third solution:
Let a = sin?z,b = sin? y,c = sin? z, where z,y,z € (0, 3): The inequality becomes
sinz:siny:sinz+cosx:-cosy:cosz < Ì and it follows from the inequalities
sinz-siny:sinz+cosx-cosy-cosz < sinx-siny +cosz-cosy = cos(x —y) <1
Trang 28Solution: Let « be the real root of the equation Using the Cauchy-Schwarz Inequality we infer that (z4 + 2z? + 1)” "eae = because the last inequality is equivalent to (a? — 1)* > 0 a? +b? >
5 Find the maximum value of the expression z° + y? + 2° — 3xyz where x? + y? + z* =1and z,y,z are real numbers
Solution:
Let t= xy + yz + zx Let us observe that
(2? +y? + 23 — 32yz)? = (@ ty +2)? — xy — yz — za)? = (L+2#)(1-— t)Ẻ
1
We also have —5 <t< 1 Thus, we must find the maximum value of the expression
1
(1+ 2t)(1—t)?, where =5 < ‡< 1.In this case we clearly have (1+ 2#) -— 1) <1 t?(3—2t) > 0 and thus |x? +y?+2?—32yz| < 1 We have equality for z = l1, =z= 0
and thus the maximum value is 1
6 Let a,b,c, x,y,z be positive real numbers such that «+ y+ z= 1 Prove that
aœ + bụ + cz +2\/(xy + 0z + z#)(ab + be + ca) <a+b+e
Ukraine, 2001 First solution:
We will use the Cauchy-Schwarz Inequality twice First, we can write ax+by+ cz < Va2 + b2 + cÈ - +2 + 2 + z2 and then we apply again the Cauchy-Schwarz
Inequality to obtain:
ax+by+cz + 2/(ry + yz + z#)(ab + be + ca) <
Vie Sia? + V2ab- V2” zụ < 13 .v.» v.vẻ lA lA Second solution:
Trang 29Old and New Inequalities 29
the last one being equivalent to (a — a)? + (y— 6)? +(z—c)? > 0
7 | Darij Grinberg | If a, 6, c are three positive real numbers, then a + b + Cc ` 9 (b+c)? (c+ø)Ÿ (a+b)? 4(atb+e) First solution:
We rewrite the inequality as
ø+5+9{ “ )> (b+eŸ (e+a)Š (a+b)
Applying the Cauchy-Schwarz Inequality we get
(at+b+c) a Cc — , +— > ( —+ ” +— )
(b+ce)? (c+ø) (at+b)?)}/~ \b+e cta artb
It remains to prove that * d>[ a b Cc - - b+e cta a+b 3 > — —9 which is well-known Second solution: Without loss of generality we may assume that a+ b+c = 1 Now, consider x
the functi e function f= (0,1) + (0,00), F(®) = {+ Tmp : (0,1 0 = —-
shows that f is convex Thus, we may apply Jensen’s Inequality and the conclusion A short computation of derivatives
follows
8 | Hojoo Lee | Let a,b,c > 0 Prove that
Jat + a2b2 + bt + M + b?c2 + ct—+ V/e1 + c2a2 + a4 > > av 2a? + be + by 2b? + ca + eV 2c? + ab Gazeta Matematica Solution: We start from (a* — 6”)? > 0 We rewrite it as 4a*+4a7b? +.4b* > 3a*+6a7b? +30" v3
It follows that Vat + a2b2 + b2 > ae + 6°)
Using this observation, we find that
(> a* + a?b? +o) >3 » a?)
But using the Cauchy-Schwarz Inequality we obtain
(> av 2a? + be) < (> a”) (> (2a? + be) ) <3 (> 23)
Trang 309 If a,b,c are positive real numbers such that abc = 2, then a +0 4+ >avb+ce+bVetaticvatb When does equality hold? JBMO 2002 Shortlist First solution: Applying the Cauchy-Schwarz Inequality gives 3(a? +b? +c”) > 3(a + b+)? (1) and (2 +b? +c?) <(a+b+oj(a®+b +c’) (2) These two inequalities combined yield (a? +b? +c?)(at+b+c) 3 (a* +b? +e)[(b+0) + (a+) +(a+8)] 6 (aVb+e+bVa+c+cva +Ù)Ÿ 6 a”-+b”+c7 > (3) Using the AM-GM Inequality we obtain aVb+e+bVa+e+ecVa+b > 3 [abe ( (a+ dO + e)(e + a)) > 3V/abeV8abe = 38 = 6 Thus (aVb+e+b/ate+cevat+b) > 6(avb+e+bVate+evatb) (4) The desired inequality follows from (3) and (4) Second solution: We have
avb +e+bVetateVvatb < /3(43 + b2 + c2)(œ + b+ e)