tuyen tap de thi dai hoc cao dang
http://tuhoctoan.net 1 CAO ĐẲN G SƯ PHẠM TP.HỒ CHÍ MIN H - 1996 Câu I: Cho hàm số : () 2x + 1 y = C x + 2 1. Khảo sát và vẽ đồ thò (C) 2. CMR: y = -x + m cắt (C) tại 2 điểm phân biệt Câu II: Cho x,y thõa mãn 0 x 3 0 y 4 ≤≤ ⎧ ⎨ ≤≤ ⎩ Tìm Max ( )( )( ) A = 3 - x 4 - y 2x + 3y Câu III: Tính diện tích hình hữu hạn chắn bởi đường cong: 22 ax = y , ay = x (a: cho trước) Câu IV a: Cho 2 đường tròn () 22 C : x + y - 1 = 0 ; ( ) ( ) 22 m C : x + y - 2 m + 1 x + 4my - 5 = 0 1. Tìm q tích tâm () m C khi m thay đổi 2. CMR : Có 2 đường tròn () m C tiếp xúc (C) ứng với 2 giá trò của m Câu IV b: Cho tứ diện ABCD: 1. CMR: Các đường thẳng nối mỗi đỉnh với trọng tâm của mặt đối diện đồng qui tại G 2. CMR: Hình chóp đỉnh G với đáy là các mặt của tứ diện có thể tích bằng nhau. Page 1 of 251 http://tuhoctoan.net 2 CAO ĐẲN G HẢI QUAN - 1996 Câu I: 1. Khảo sát và vẽ đồ thò hàm số : () 2 x f = x - 3x + 1 2. Tìm a để đồ thò của () x f cắt đồ thò hàm số: () ( ) 2 x g = a 3a - 3a x + a tại ba điểm phân biệt với hoành độ dương Câu II: 1. Giải và biện luận theo tham số m phương trình sau: 11 - m1 + m x + = + x 1 + m 1 - m 2. Giải phương trình: 33 3 2x - 1 + x - 1 = 3x - 2 Câu III: 1. GPT: 3 3 1 - cos2x 1 - co s x = 1 + cos2x 1 - sin x 2. Cho ABCΔ thỏa ABC 222 111 1 + 1 + 1 + = 27 sin sin sin ⎛⎞⎛⎞⎛⎞ ⎜⎟⎜⎟⎜⎟ ⎝⎠⎝⎠⎝⎠ . Chứng minh tam giác ABC đều . Câu IV: Cho mặt cầu có PT: ()( )( ) 222 x - 3 + y + 2 + z - 1 = 9 và mặt phẳng (P): x + 2y + 2z + 11 = 0 . Tìm điểm M trên mặt cầu sao cho khoảng cách từ M đ e án mặt phẳng (P) là ngắn nhất Câu Va: Cho 1 2 n 2n 0 x I = dx 1 - x ∫ với n = 2, 3, 4 …… 1. Tính 2 l 2. Chứng minh n I < với n =3, 4, . 12 π Câu Vb: 1. CMR với mọi x dương thì 2 x 1 - < cosx 2 Tìm m để 2 cos 2x - 8sinxcosx - 4m + 3 0 , x 0; 4 π ⎡ ⎤ ≥∀∈ ⎢ ⎥ ⎣ ⎦ Page 2 of 251 http://tuhoctoan.net 3 CAO ĐẲN G SƯ PHẠM TP.HỒ CHÍ MIN H - 1997 Câu I: Cho () m C : () 23 x - m m + 1 x + m + 1 y = x - m 1. Khảo sát và vẽ đồ thò khi m = 1 2. CMR: m ∀ , hàm số luôn có CĐ, CT. Tìm q tích các điểm CĐ, CT. Câu II: Cho hệ BPT 2 y - x - x - 1 0 y - 2 + x + 1 - 1 0 ⎧ ≥ ⎪ ⎨ ≤ ⎪ ⎩ 1. Giải hệ khi y = 2 2. Tìm tất cả nghiệm nguyên của hệ. Câu III: Tính 6 2 0