1. Trang chủ
  2. » Công Nghệ Thông Tin

Chuyên đề số phức - BÀI TẬP VỀ SỐ PHỨC VÀ CÁC THUỘC TÍNH

33 3K 23
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 33
Dung lượng 1,24 MB

Nội dung

Giáo viên: Nguyễn Thành Long Email: Loinguyen1310@gmail.com DĐ: 01694 013 498 2 CHUYÊN ĐỀ: SỐ PHỨC I. DẠNG ĐẠI SỐ CỦA SỐ PHỨC . 1. Một số phức là một biểu thức có dạng a bi , trong đó a, b là các số thực số i thoả mãn 2 1i   . Ký hiệu số phức đó là z viết z a bi  (dạng đại số) i được gọi là đơn vị ảo a được gọi là phần thực. Ký hiệu   Re z a b được gọi là phần ảo của số phức z a bi  , ký hiệu   Im z b Tập hợp các số phức ký hiệu là C. Chú ý: - Mỗi số thực a dương đều được xem như là số phức với phần ảo b = 0. - Số phức z a bi  có a = 0 được gọi là số thuần ảo hay là số ảo. - Số 0 vừa là số thực vừa là số ảo. 2. Hai số phức bằng nhau. Cho z a bi  ’ ’ ’z a b i  . ' ’ ' a a z z b b        3. Biểu diễn hình học của số phức. Mỗi số phức được biểu diễn bởi một điểm M(a;b) trên mặt phẳng toạ độ Oxy. Ngược lại, mỗi điểm M(a;b) biểu diễn một số phức là z a bi  . 4. Phép cộng phép trừ các số phức. Cho hai số phức z a bi  ’ ’ ’z a b i  . Ta định nghĩa: ' ( ') ( ') ' ( ') ( ') z z a a b b i z z a a b b i              5. Phép nhân số phức. Cho hai số phức z a bi  ’ ’ ’z a b i  . Ta định nghĩa: ' ' ' ( ' ' )zz aa bb ab a b i    6. Số phức liên hợp. Cho số phức z a bi  . Số phức – z a bi gọi là số phức liên hợp với số phức trên. Vậy z a bi a bi    Chú ý: 1) z z  z z gọi là hai số phức liên hợp với nhau. 2) z. z = a 2 + b 2 - Tính chất của số phức liên hợp: (1): z z (2): ' 'z z z z   (3): . ' . 'z z z z (4): z. z = 2 2 a b ( z a bi  ) 7. Môđun của số phức. www.VNMATH.com Giáo viên: Nguyễn Thành Long Email: Loinguyen1310@gmail.com DĐ: 01694 013 498 3 Cho số phức z a bi  . Ta ký hiệu z là môđun của số phư z, đó là số thực không âm được xác định như sau: - Nếu M(a;b) biểu diễn số phức z a bi  , thì 2 2 z OM a b    - Nếu z a bi  , thì 2 2 .z z z a b   8. Phép chia số phức khác 0. Cho số phức 0z a bi   (tức là 2 2 0a b  ) Ta định nghĩa số nghịch đảo 1 z  của số phức z ≠ 0 là số 1 2 2 2 1 1 z z z a b z     Thương 'z z của phép chia số phức z’ cho số phức z ≠ 0 được xác định như sau: 1 2 ' '. . z z z z z z z    Với các phép tính cộng, trừ, nhân chia số phức nói trên nó cũng có đầy đủ tính chất giao hoán, phân phối, kết hợp như các phép cộng, trừ, nhân, chia số thực thông thường. II. DẠNG LƯỢNG GIÁC CỦA SỐ PHỨC. 1. Cho số phức z  0. Gọi M là một điểm trong mặt phẳng phức biểu diễn số phức z. Số đo (radian) của mỗi góc lượng giác tia đầu là Ox, tia cuối OM được gọi là một acgumen của z. Như vậy nếu  là một acgumen của z, thì mọi acgumen đều có dạng:  + 2k, k  Z. 2. Dạng lượng giác của số phức. Xét số phức   , , 0z a bi a b R z    Gọi r là môđun của z  là một acgumen của z. Ta có: a = rcos , b = rsin   cos sinz r i     trong đó 0r  , được gọi là dạng lượng giác của số phức z  0. z = a + bi (a, b  R) gọi là dạng đại số của z. 2 2 r a b  là môđun của z.  là một acgumen của z thỏa cos sin a r b r            3. Nhân chia số phức dưới dạng lượng giác. Nếu   cos sinz r i     ,   ' ' cos ' sin 'z r i       0, ’ 0r r  thì:     . ' . ' cos ' sin 'z z r r i                 cos ' sin ' ' ' z r i z r             4. Công thức Moivre. Với *n N thì     cos sin cos sin n n r i r n i n            5. Căn bậc hai của số phức dưới dạng lượng giác. www.VNMATH.com Giáo viên: Nguyễn Thành Long Email: Loinguyen1310@gmail.com DĐ: 01694 013 498 4 Căn bậc hai của số phức   cos sinz r i     (r > 0) là cos sin 2 2 r i          cos sin os isin 2 2 2 2 r i r c                                    A. BÀI TẬP VỀ SỐ PHỨC CÁC THUỘC TÍNH Dạng 1: Các phép tính về Số phức Phương pháp: - Sử dụng các công thức cộng , trừ, nhân, chia luỹ thừa số phức. Chú ý: Trong khi tính toán về số phức ta cũng có thể sử dụng các hằng đẳng thức đáng nhớ như trong số thực. Chẳng hạn bình phương của tổng hoặc hiệu, lập phương của tổng hoặc hiệu 2 số phức… Bài 1: Cho số phức 3 1 2 2 z i  . Tính các số phức sau: z ; 2 z ;   3 z ; 2 1 z z  Giải: a. Vì 3 1 3 1 2 2 2 2 z i z i     b. Ta có 2 2 2 3 1 3 1 3 1 3 2 2 4 4 2 2 2 z i i i i                  2 2 2 3 1 3 1 3 1 3 2 2 4 4 2 2 2 z i i i i                     3 2 1 3 3 1 3 1 3 3 2 2 2 2 4 2 4 4 z z z i i i i i                      Ta có: 2 3 1 1 3 3 3 1 3 1 1 2 2 2 2 2 2 z z i i i            Nhận xét: Trong bài toán này, để tính   3 z ta có thể sử dụng hằng đẳng thức như trong số thực. Tương tự: Cho số phức 1 3 z 2 2 i   . Hãy tính : 2 1 z z  Ta có 2 1 3 3 4 4 2 z i   . Do đó: 2 1 3 1 3 1 1 0 2 2 2 2 z z i i                           Bài 2: a. Tính tổng sau: 2 3 2009 1 i i i i    b. Cho hai số phức 1 2 ,z z thoả mãn 1 2 1 2 1; 3z z z z    . Tính 1 2 z z . Giải: www.VNMATH.com Giáo viên: Nguyễn Thành Long Email: Loinguyen1310@gmail.com DĐ: 01694 013 498 5 Ta có     2010 2 3 2009 1– 1– 1i i i i i i     Mà 2010 1 2i  . Nên 2 3 2009 2 1 . 1 1i i i i i i         b. Đặt 1 1 1 2 2 2 ; z a b i z a b i    . Từ giả thiết ta có 2 2 2 2 1 1 2 2 2 2 1 2 1 2 1 ( ) ( ) 3 a b a b a a b b              Suy ra 2 2 1 1 2 2 1 2 1 2 1 2 2( ) 1 ( ) ( ) 1 1a b a b a a b b z z          Bài 3: Tính giá trị của biểu thức: a. 5 7 9 2009 2 4 6 7 2010 . ( 1) . i i i i P i i i i i           b. 2 4 10 1 (1 ) (1 ) . (1 )M i i i        c.   100 1N i  Giải: a. Ta có     1003 2 5 7 9 2009 5 2 4 2004 2 1 . 1 . . 1 i i i i i i i i i i i i                  4 5 6 2010 2 3 4 5 6 2010 2 3 2011 . 1 . 1 1 1 1 (1 1 ) 1 1 1 2 2 i i i i i i i i i i i i i i i i P i i i                            b. M là tổng của 10 số hạng đầu tiên của một cấp số nhân có số hạng đầu tiên 1 1u  , công bội 2 (1 ) 2q i i   Ta có : 10 10 10 1 1 1 (2 ) 1 2 1025(1 2 ) . 1. 205 410 1 1 2 1 2 5 q i i M u i q i i              c.     50 100 2 50 50 50 50 1 ( 2 ) ( 2) ( ) 21 i i iN i               Bài 4: a. Cho số phức 1 1 i z i    . Tính giá trị của 2010 z . b. Chứng minh       2010 2008 2006 3 1 4 1 4 1i i i i     Giải: a. Ta có : 2 1 (1 ) 1 2 i i z i i       nên 2010 2010 4 502 2 4 502 2 . 1.( 1) 1z i i i i           b. Tacó:             2010 2008 2006 4 2 4 3 1 4 1 4 1 3 1 4 1 4 1 4i i i i i i i i              2 4 4i    (đpcm). Bài 5: Tính số phức sau: a. 16 8 1 1 1 1 i i z i i                   b.   15 1z i  www.VNMATH.com Giáo viên: Nguyễn Thành Long Email: Loinguyen1310@gmail.com DĐ: 01694 013 498 6 Giải: a. Ta có: 1 (1 )(1 ) 2 1 1 2 2 1 i i i i i i i i i             Vậy   16 8 8 16 1 1 2 1 1 i i i i i i                      b. Ta có:       2 14 7 7 1 1 2 –1 2 1 2 128. 128.i i i i i i i                    15 14 1 1 1 128 1 128 1 128 –128 .z i i i i i i i             Bài 6: Tính: 105 23 20 34 –i i i i  Giải: Để tính toán bài này, ta chú ý đến định nghĩa đơn vị ảo để từ đó suy ra luỹ thừa của đơn vị ảo như sau: Ta có: 2 3 4 3 5 6 1; ; . 1; ; 1i i i i i i i i i          Bằng quy nạp dễ dàng chứng minh được: 4 4 1 4 2 4 3 * 1; ; 1; ; n n n n i i i i i i n N            Vậy   1;1; ; , . n i i i n N     Nếu n nguyên âm,     1 1 n n n n i i i i               . Như vậy theo kết quả trên, ta dễ dàng tính được: 105 23 20 34 4.26 1 4.5 3 4.5 4.8 2 – – – 1 1 2i i i i i i i i i i             Bài 7: a. Tính : 1 1 3 2 2 i b. (TN – 2008) Tìm giá trị của biểu thức: 2 2 (1 3 ) (1 3 )P i i    Giải: a. Ta có: 1 3 1 3 1 3 2 2 2 2 1 2 2 1 3 1 3 2 2 2 2 1 1 3 2 2 i i i i i i                   b. 4P   Dạng 2: Số phức thuộc tính của nó Loại 1: Tìm phần thực phần ảo Phương pháp: Biến đổi số phức về dạng z a bi  , suy ra phần thực là a, phần ảo là b Bài 1: Tìm phần thực, phần ảo của các số phức sau www.VNMATH.com Giáo viên: Nguyễn Thành Long Email: Loinguyen1310@gmail.com DĐ: 01694 013 498 7 a.     2 4 3 2z i i i     b. 3 3 ( 1 ) (2 )z i i    c. 2010 (1 ) 1 i z i    Giải: a.     0 2 3 1 4 2 1 .z i i         Vậy số phức đã cho có phần thực là − 1, phần ảo là − 1. b. Kết quả: 2 + 10i c. 2010 1005 1004 1004 1004 (1 ) (2 ) (1 ) 2 (1 ) 2 2 1 2 i i i z i i i i           Bài 2: a. Tìm phần thực, phần ảo của số phức     2 – 4 – 3 – 2i i i b. (TN – 2010) Cho hai số phức: 1 2 1 2 , 2 3z i z i    . Xác định phần thực phần ảo của số phức 1 2 2z z . c. (TN – 2010) Cho hai số phức: 1 2 2 5 , 3 4z i z i    . Xác định phần thực phần ảo của số phức 1 2 .z z . d. Cho số phức z thỏa mãn 1 2 z i z z         . Tìm số phức liên hợp của z Giải: a. Ta có:               2 – 4 – 3 – 2 0 2 1 4 3 2 2 – 3 3 2 1–i i i i i i i              Vậy số phức đã cho có phần thực là – 1, phần ảo là – 1. b. Phần thực – 3 ; Phần ảo 8 c. Phần thực 26 ; Phần ảo 7 d. Theo giả thiết     2 2 2 2 2 2 2 2 1 1 2 2 1 41 1 a b ab a b ab a b                     . 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 z i z i z i z i                         Bài 3: Tìm phần thực, phần ảo của số phức a.     3 3 1 2i i   b.         2 3 20 1 1 1 1 1z i i i i         c.   2009 1 i Giải: a. Ta có:           3 3 2 2 3 3 3 3 1 1 3 1 3 1 2 2 2 2 8 i i i i i i i i                www.VNMATH.com Giáo viên: Nguyễn Thành Long Email: Loinguyen1310@gmail.com DĐ: 01694 013 498 8     3 3 1 2 2 10i i i      Vậy số phức đã cho có phần thực là 2, phần ảo là 10. b. Ta có 21 20 (1 ) 1 1 (1 ) . (1 ) i P i i i          10 21 2 10 10 (1 ) (1 ) .(1 ) (2 ) (1 ) 2 (1 )i i i i i i                10 10 10 2 (1 ) 1 2 2 1 i P i i         Vậy: phần thực 10 2 , phần ảo: 10 2 1 c. Ta có       1004 2009 2 1004 1004 1004 1004 1 1 (1 ) ( 2 ) (1 ) 2 (1 ) 2 2i i i i i i i           Vậy phần thực của số phức trên là 1004 2 ảo là 1004 2 Bài 4: (ĐH – A 2010) Tìm phần ảo của số phức z, biết     2 2 1 2z i i   Giải: Ta có:        2 2 2 1 2 1 2 2 1 2 1 2 2 2 4 5 2z i i i i i i i i            5 2z i   Phần ảo của số phức z bằng 2. Bài 5: (CD – 2010) Cho số phức z thỏa mãn điều kiện       2 2 3 4 1 3i z i z i      . Tìm phần thực phần ảo của z. Giải: Gọi z a bi    ,a R b R  z a bi   Đẳng thức đã cho trở thành         2 2 3 4 1 1 3 6 4 2( ) 8 6i a bi a bi i a b a b i i              (coi đây là một phươn trình bậc nhất theo i) Đồng nhất theo i hệ số hai vế ta được 6 4 8 2 2 2 6 5 a b a a b b                Vậy số phức z đã cho có phần thực là 2 , phần ảo là 5 Bài 5: (CD – A 2009) Cho số phức z thỏa mãn       2 1 2 8 1 2i i z i i z      . Tìm phần thực phần ảo của z. Giải: Ta có:       2 1 2 8 1 2i i z i i z              2 1 2 1 2 8 2 2 1 2 8z i i i i z i i i i                         8 1 2 8 8 15 2 10 15 2 3 2 1 5 5 5 i i i i i z i i               Vậy số phức z đã cho có phần thực là 2, phần ảo là -3 Bài 8: Tìm phần thực của số phức   1 n z i  , biết rằng n  N thỏa mãn phương trình www.VNMATH.com Giáo viên: Nguyễn Thành Long Email: Loinguyen1310@gmail.com DĐ: 01694 013 498 9     4 4 log – 3 log 9 3n n   Giải: Điều kiện: 3 n N n      Phương trình        4 4 4 log – 3 log 9 3 log – 3 9 3n n n n       (n – 3)(n + 9) = 4 3  n 2 + 6n – 91 = 0 7 13 n n        Vậy n = 7. Khi đó           3 7 2 3 1 1 1 . 1 1 .(2 ) (1 ).( 8 ) 8 8 n z i i i i i i i i i                   Vậy phần thực của số phức z là 8. Loại 2: Biếu diễn hình học của số phức Phương pháp: - Sử dụng điểm   ;M a b biếu diễn số phức z trên mặt phẳng Oxy Chú ý: Với câu hỏi ngược lại “ Xác định số phức được biểu diễn bởi điểm   ;M a b ” khi đó ta có z a bi  … đang cập nhật Loại 3: Tính modun của số phức Phương pháp: Biến đổi số phức về dạng z a bi  , suy ra modun là 2 2 z a b  Bài 1: a. Tìm môđun của số phức 3 1 4 (1 )z i i    b. (ĐH – A 2010) Cho số phức z thỏa mãn 2 (1 3 ) 1 i z i    . Tìm môđun của số phức z iz c. Cho số phức z thỏa mãn 11 8 1 2 . 1 1 i i i z i i                  . Tìm môđun của số phúc w z iz  . d. Tính mô đun của số phức:   3 1 4 1–Z i i   Giải: a. Vì 3 3 2 3 (1 ) 1 3 3 1 3 3 2 2i i i i i i i            . Suy ra : 3 2 2 1 4 (1 ) 1 2 ( 1) 2 5z i i i z            b. 3 (1 3i) z 1 i    . Cách 1: (dành cho ban cơ bản) Ta có       3 2 3 2 3 1 3 1 3.1 3 3.1. 3 3 3 8i i i i         (thoả mãn) (không thoả mãn) www.VNMATH.com Giáo viên: Nguyễn Thành Long Email: Loinguyen1310@gmail.com DĐ: 01694 013 498 10 Do đó   8 1 8 4 4 4 4 1 2 i z i z i i               4 4 4 4 8 8z iz i i i i           Vậy 8 2.z iz  Cách 2: (Dành cho ban nâng cao) Biếu diễn dưới dạng lượng giác Ta có   3 (1 3 ) 2 cos sin (1 3 ) 8 cos( ) sin( ) 8 3 3 i i i i                                    8 8(1 ) 4 4 1 2 i z i i           z iz 4 4i i( 4 4i) 8(1 i) z iz 8 2              c. Ta có     11 8 2 11 8 1 2 1 1 2 . . 1 1 2 2 i i i i i i z i z i i                                        11 8 1 16 1 16 1 16iz i i i z i z i              Do đó   1 16 1 16 17 17w z iz i i i i           Vậy 2 2 17 17 17 2w    d.   3 2 3 1 4 1– 1 4 1 3 3 1 2Z i i i i i i i            2 2 1 2 5Z     Bài 2: Tìm mô đun của số phức (1 )(2 ) 1 2 i i z i     Giải: Ta có : 5 1 1 5 5 i z i     Vậy, mô đun của z bằng: 2 1 26 1 5 5 z          Loại 4: Tìm số đối của số phức z Phương pháp: Biến đổi số phức về dạng z a bi  , suy ra số đối z a bi   …đang cập nhật Loại 5: Tìm số phức liên hợp của số phức z Phương pháp: Biến đổi số phức về dạng z a bi  , suy ra số phức liên hợp là z a bi  Bài 1: Tìm nghiệm của phương trình 2 z z , trong đó z là số phức liên hợp của số phức z . www.VNMATH.com Giáo viên: Nguyễn Thành Long Email: Loinguyen1310@gmail.com DĐ: 01694 013 498 11 Giải: Gọi z a bi  , trong đó a,b là các số thực Ta có : z a bi  2 2 2 ( ) 2z a b abi   Khi đó : 2 z z  Tìm các số thực a,b sao cho : 2 2 2 a b a ab b        Giải hệ trên ta được các nghiệm (0;0) , (1;0) , 1 3 ; 2 2          , 1 3 ; 2 2           . Bài 2: Tìm số phức liên hợp của: 1 (1 )(3 2 ) 3 z i i i      Giải: Ta có: 3 3 5 5 (3 )(3 ) 10 i i z i i i i           Suy ra số phức liên hợp của z là: 53 9 10 10 z i  Loại 6: Tìm số phức nghịch đảo của số phức z Phương pháp: Sử dụng công thức 2 1 1 z z z  …đang cập nhật Loại 7: Ứng dụng sự bằng nhau của hai số phức để tìm các số thực Phương pháp: Cho z a bi  ’ ’ ’z a b i  . ' ’ ' a a z z b b        Bài 1: Tìm các số nguyên ,x y sao cho số phức z x yi  thoả mãn 3 18 26z i  . Giải: Ta có 3 2 3 2 3 3 2 2 3 3 18 ( ) 18 26 18(3 ) 26( 3 ) 3 26 x xy x yi i x y y x xy x y y                  . Giải phương trình bằng cách đặt ( 0)y tx x  ta được 1 3, 1. 3 t x y    Vậy 3z i  . Bài 2: Tìm các số nguyên ,x y sao cho số phức z x yi  thỏa mãn    1 3 2 1i x yi i    Giải: Ta có        1 3 2 1 2 3 6 1i x yi i x y y x i i           Coi    là phương trình bậc nhất theo i, đồng nhắt hệ số hai vế ta được kết quả www.VNMATH.com [...]... với các bài toán chứng minh Phương pháp: - Trong dạng này ta gặp các bài toán chứng minh một tính chất, hoặc một đẳng thức về số phức - Để giải các bài toán dạng trên, ta áp dụng các tính chất của các phép toán cộng, trừ, nhân, chia, số phức liên hợp, môđun của số phức đã được chứng minh Vậy: Tập hợp các điểm M là parabol y  Bài 1: Chứng minh rằng với mỗi số phức z, có ít nhất một trong hai bất đẳng... Dạng 2: Số phức các thuộc tính của nó Loại 1: Xác định phần thực phần ảo của số phức 3 Bài 1: Tìm phần thực, phần ảo của số phức z   2  i  Bài 2: Tìm phần thực phần ảo của số phức: 3 i 2 i a x   b (1  i )2  (1  i )2 1 i i 3 c  2  i    3  i  3 1 i 3  d z   1 i 3     2 Đs: a 3 3 2 2 1 3 2 2 c – 16 37 b 0 4 d  3 1 2 2 Bài 3: Tìm phần thực phần... Đáp số: Các số phức cần tìm là : z  (a  a 2  4 ) z  (a  a 2  4 ) 2 2 Bài 9: a Trong các số z thoả mãn : 2 z  2  2i  1 hãy tìm số z có moidule nhỏ nhất b Trong các số z thoả mãn : z  5i  3 hãy tìm số z có acgumen dương nhỏ nhất Bài 10: Tìm số phức z thỏa mãn : z  2 z  1  8i z  12 5 z4   1 z  8i 3 z 8 Đs: Có hai số phức thỏa mãn z  6  17i z  6  8i z z Bài 12: Tìm số phức. ..  bán kính R = 1 c Tập hợp là các điểm nằm trong đường tròn tâm I 1;1 bán kính R  1 d Tập hợp là các điểm là hình vành khăn tâm I  1;1 có bán kính lớn bằng 2 nhỏ bằng 1 Bài 2: Xác định tập hợp các điểm trên mặt phẳng biểu diễn số phức: 2 z  i  z  z  2i x2 Đs: Tập hợp là một Parabol y  4 Bài 3: Xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thỏa mãn điều... a x  x   b y  2 2 2 Bài 12: Xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thỏa mãn z  k , (k là số thực dương cho trước) zi Bài 13: a Tìm số phức z, biết z  2 5 phần ảo của z bằng hai lần phần thực của nó b Tìm hai số phức biết tổng của chúng bằng 2 tích của chúng bằng 3 c d) Tìm số phức z biết z  4 z là số thuần ảo d Trên mặt phẳng Oxy , hãy tìm tập hợp... thì các số phức z1  9 y 2  4  10 xi5 z2  8 y 2  20i11 là liên hợp của nhau ? n  1  3i  Bài 5: Tìm các số nguyên n để số phức z    1  3i  là một số thực    Bài 6: Tìm số phức z thỏa mãn  z  1 4 2 2  2  z  1   z  4   1  0  z  2  3i  2  Bài 7: Cho các số phức z,z' thỏa mãn điều kiện  Tìm z,z' sao cho z  z ' nhỏ nhất  z ' 1  1  1 Bài 8: Cho biết z   a Tìm số phức. .. trong mặt phẳng phức số phức   (1  i 3) z  2 biết rằng số phức z thoả mãn: z  1  2 Bài 7: Xác đỉnh tập hợp các điểm trong mặt phẳng phức biểu diễn các số z thỏa m điều kiện sau: b | 2 z  1|  | z  i  3 | a 2  z  i  z là số ảo tùy ý Đs: Bài 8: Tìm tập hợp những điểm M biểu diễn số phức z thỏa mãn: a z  2i là số thực b z  2  i là số thuần ảo z  3i c z.z  9 d  1 là số thực zi  ... ảo của số phức: x  2  i 1 i  1  2i 3i Bài 4: Tìm phần thực phần ảo của số phức sau 2 3 20 1  1  i   1  i   1  i    1  i  HD: Áp dụng công thức tính tổng của CSN Với u1  1; q  1  i  n  21 Đs: phần thực 210, phần ảo 210  1 Bài 5: Tìm phần thực phần ảo của số phức z biết: z 2  2  2 3 i Bài 6: Cho số phức z  x  yi Tìm phần thực phần ảo của các số phức: a... biểu diễn số phức z thỏa mãn đẳng thức z  3 e Trong mặt phẳng tọa độ Oxy, hãy tìm tập hợp điểm biểu diễn số phức z thỏa mãn đẳng thức z  i  2   Bài 14: Tìm tất cả các số phức z thỏa mãn đồng thời các điều kiện: z 2  z.z 2  4 1 1 , y x x Bài 15: Tìm số phức z sao cho A  ( z  2)( z  i ) là một số thực Đs: Tập hợp điểm là hypebol y  z  7i là số thực z 1 Bài 17: Tìm tập hợp các điểm biểu... diễn của số z  1  2i biết số phức z thay đổi thỏa mãn z  1  i  1 Bài 16: Tìm tất cả các số phức z thỏa mãn đồng thời các điều kiện: |z| = 5 Dạng 5: Chứng minh tính chất của số phức   Bài 1: Các vectơ u ,u ' trong mặt phẳng phức theo thứ tự biểu diễn các số phức z, z’    1 a Chứng minh rằng tích vô hướng u u '  z z ' z.z ' ; 2     b Chứng minh rằng u ,u ' vuông góc khi chỉ . Dạng 1: Các phép tính về Số phức Phương pháp: - Sử dụng các công thức cộng , trừ, nhân, chia và luỹ thừa số phức. Chú ý: Trong khi tính toán về số phức ta. 01694 013 498 2 CHUYÊN ĐỀ: SỐ PHỨC I. DẠNG ĐẠI SỐ CỦA SỐ PHỨC . 1. Một số phức là một biểu thức có dạng a bi , trong đó a, b là các số thực và số i thoả mãn

Ngày đăng: 19/10/2013, 18:20

HÌNH ẢNH LIÊN QUAN

Cách 2: (Phương pháp hình học) Nhận xét: - Chuyên đề số phức - BÀI TẬP VỀ SỐ PHỨC VÀ CÁC THUỘC TÍNH
ch 2: (Phương pháp hình học) Nhận xét: (Trang 12)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w