Tài liệu tham khảo |
Loại |
Chi tiết |
[1] A.J. Fox, “Outliers in time series.” J. R. Stat. Soc. Ser. B (Methodological) 34(3), 350–363 (1972) |
Sách, tạp chí |
Tiêu đề: |
Outliers in time series |
|
[2] A.J. Smola, B. Schửlkopf, “A tutorial on support vector regression.” Stat. Comput. 14(3), 199–222 (2004) |
Sách, tạp chí |
Tiêu đề: |
A tutorial on support vector regression |
|
[3] B. Pincombe, “Anomaly detection in time series of graphs using arma processes.” Asor Bull. 24(4), p. 2 (2005) |
Sách, tạp chí |
Tiêu đề: |
Anomaly detection in time series of graphs using arma processes |
|
[5] C. Faloutsos, M. Ranganathan, Y. Manolopoulos., “Fast subsequence matching in timeseries databases,” in Proceedings of the 1994 ACM SIGMOD International Conference on Management of Data, New York, NY, USA, pp. 419–429, 1994 |
Sách, tạp chí |
Tiêu đề: |
Fast subsequence matching in timeseries databases |
|
[6] D. Cheboli, “Anomaly detection of time series,” Ph.D. dissertation, University of Minnesota, 2010 |
Sách, tạp chí |
Tiêu đề: |
Anomaly detection of time series |
|
[7] E. Keogh, J. Lin, A. Fu, “Hot sax: Efficiently finding the most unusual time series subsequence,” in Fifth IEEE International Conference on Data Mining (IEEE, Washington, DC, 2005), pp. 8–pp |
Sách, tạp chí |
Tiêu đề: |
Hot sax: Efficiently finding the most unusual time series subsequence |
|
[8] E. Keogh, J. Lin, S.-H. Lee, H.V. Herle, “Finding the most unusual time series subsequence: algorithms and applications.” Knowl. Inform. Syst. 11(1), 1–27 (2007) |
Sách, tạp chí |
Tiêu đề: |
Finding the most unusual time series subsequence: algorithms and applications |
|
[9] E. Keogh, K. Chakrabarti, M. Pazzani, S. Mehrotra, “Dimensionality reduction for fast similarity search in large time series databases.” J. Knowl. Inform.Syst., 263–283 (2000) |
Sách, tạp chí |
Tiêu đề: |
Dimensionality reduction for fast similarity search in large time series databases |
|
[10] G. Bonanno, F. Lillo, R.N. Mantegna, “High-frequency cross- correlation in a set of stocks.” Quant. Finan. 1, 96–104 (2001) |
Sách, tạp chí |
Tiêu đề: |
High-frequency cross-correlation in a set of stocks |
|
[12] H. Cao, G. Si, Y. Zhang, L. Jia, “Enhancing effectiveness of density- based outlier mining scheme with density-similarity-neighbor-based outlier factor.”Expert Syst. Appl. Intl. J.37(12), (2010) |
Sách, tạp chí |
Tiêu đề: |
Enhancing effectiveness of density-based outlier mining scheme with density-similarity-neighbor-based outlier factor |
|
[13] H.Z. Moayedi, M. Masnadi-Shirazi, , “Arima model for network traffic prediction and anomaly detection,” in International Symposium on Information Technology, 2008. ITSim 2008, vol. 4 (IEEE, Washington, DC, 2008), pp. 1–6 |
Sách, tạp chí |
Tiêu đề: |
Arima model for network traffic prediction and anomaly detection |
|
[15] H. Huang, K. Mehrotra, C. Mohan, “Detection of anomalous time series based on multiple distance measures,” in 28th International Conference on Computers and Their Applications (CATA-2013), Honolulu, Hawaii, USA, 2013 |
Sách, tạp chí |
Tiêu đề: |
Detection of anomalous time series based on multiple distance measures |
|
[16] J. Tang, Z. Chen, A.W. Fu, D.W. Cheung, “Capabilities of outlier detection schemes in large datasets, framework and methodologies.” Knowl.Inform. Syst. 11(1), 45–84 (2006) |
Sách, tạp chí |
Tiêu đề: |
Capabilities of outlier detection schemes in large datasets, framework and methodologies |
|
[17] J. Ma, J. Theiler, S. Perkins, “Accurate on-line support vector regression.” Neural Comput. 15(11), 2683–2703 (2003) |
Sách, tạp chí |
Tiêu đề: |
Accurate on-line support vector regression |
|
[18] J. Lin, E. Keogh, L. Wei, S. Lonardi, “Experiencing sax: a novel symbolic representation of time series.” Data Mining and Knowledge Discovery, pp. 107–144, 2007 |
Sách, tạp chí |
Tiêu đề: |
Experiencing sax: a novel symbolic representation of time series |
|
[19] J. Lin, E. Keogh, L. Wei, S. Lonardi, “Experiencing sax: a novel symbolic representation of time series.” Data Mining and Knowledge Discovery, pp. 107–144, 2007 |
Sách, tạp chí |
Tiêu đề: |
Experiencing sax: a novel symbolic representation of time series |
|
[20] J. Lin, R. Khade, Y. Li, “Rotation-invariant similarity in time series using bag-of-patterns representation.” J. Intell. Inform. Syst. (1 April 2012), 1–29 (2012) |
Sách, tạp chí |
Tiêu đề: |
Rotation-invariant similarity in time series using bag-of-patterns representation |
|
[21] Kishan G. Mehrotra • Chilukuri K. Mohan HuaMing Huang (2017), “Anomaly Detection Principles and Algorithms” Terrorism, Security, and Computation ISBN 978-3-319-67524-4 |
Sách, tạp chí |
Tiêu đề: |
Anomaly Detection Principles and Algorithms” T |
Tác giả: |
Kishan G. Mehrotra • Chilukuri K. Mohan HuaMing Huang |
Năm: |
2017 |
|
[22] L. Wei, N. Kumar, V. Lolla, E. Keogh, S. Lonardi, C.A. Ratanamahatana, “Assumption-free anomaly detection in time series,” Website, 2005. http://alumni.cs.ucr.edu/~wli/SSDBM05/ |
Sách, tạp chí |
Tiêu đề: |
Assumption-free anomaly detection in time series |
|
[23] M. Gupta, J. Gao, C.C. Aggarwal, J. Han, “Outlier detection for temporal data: A survey.” IEEE Trans. Knowledge Data Eng. 26(9), 2250–2267 (2014) |
Sách, tạp chí |
Tiêu đề: |
Outlier detection for temporal data: A survey |
|