Ôn thi đại học cấp tốc Nguyễn Huy Hùng :THPT BC Hùng Vơng Bài 1: Hệ phơng trình đại số Một số loại hệ ph ơng trình th ờng gặp : I)Hệ đối xứng loại I 1) Dạng: Hệ phơng trình = = 0);( 0);( yxg yxf là hệ đối xứng loại I nếu = = );();( );();( xygyxg xyfyxf 2)Cách giải : - Đặt x y S xy P + = = . ĐK: 2 4S P . - Biểu thị hệ qua S và P . - Tìm S ; P thoả mãn điều kiện PS 4 2 . Khi đó x; y là 2 nghiệm của phơng trình : 0 2 =+ PStt . Từ đó có nghiệm của hệ đã cho. Chú ý 1 : +) Nếu hệ có nghiệm (a;b) thì do tính chất đối xứng của hệ nên hệ cũng có ghiệm (b; a). Vì vậy hệ có nghiệm duy nhất chỉ khi có duy nhất x = y. +) Hệ có nghiệm khi và chỉ khi hệ S, P có nghiệm S, P thỏa mãn PS 4 2 . +) Khi PS 4 2 = thì x = y = -S/2 Vậy hệ có nghiệm duy nhất khi chỉ khi có duy nhất S, P thỏa mãn PS 4 2 = . Chú ý 2 : Nhiều trờng hợp ta có thể sử dụng ĐK cần để tìm giá trị của tham số sau đó thay vào hệ kiểm tra xem có thoả mãn hay không - (Đ/K đủ). II) Hệ đối xứng loại II 1)Hệ : = = 0);( 0);( yxg yxf là hệ đối xứng loại II nếu : );();( yxgxyf = 2)Cách giải : +)Đối với hầu hết các hệ dạng này khi trừ 2 vế ta đều thu đợc phơng tình : (x-y).h(x;y) = 0 Khi đó hệ đã cho 0 ( ; ) 0 ( ; ) 0 ( ; ) 0 x y h x y f x y f x y = = = = ( Chú ý : Có những hệ đối xứng loại II sau khi trừ 2 vế cha xuất hiện ngay x - y = 0 mà phải suy luận tiếp mới có điều này). +) Phơng pháp điều kiện cần và đủ: Phơng pháp này đ ợc áp dụng tốt cho hệ đối xứng với yêu cầu: Tìm giá trị tham số để hệ có nghiệm duy nhất. Đ/k cần: Nhận xét rằng: do tính đối xứng của hệ nên nếu hệ có nghiệm (x 0 ;y 0 ) thì (y 0 ;x 0 ) cũng là nghiệm của hệ, do đó hệ có nghiệm duy nhất khi x 0 = y 0 (1) Thay (1) vào một phơng trình của hệ, tìm đ/k của tham số để pt` có nghiệm x 0 duy nhất ,ta đợc giá trị của tham số. Đó là đ/k cần. Đ/k đủ: thay giá trị của tham số vào hệ kiểm tra, rồi kết luận. III) Hệ nửa đối xứng của x và y 1)Dạng hệ: = = )2(;0);( )1();;();( yxg xyfyxf (Tức là có 1 phơng trình là đối xứng ) 2)Cách giải: Chuyển vế biến đổi từ (1) ta có dạng phơng trình tích: (x - y).h(x; y) = 0. Từ đó có: hệ đã cho t- ơng đơng với: = = )2(;0);( 0);().( yxg yxhyx = = = = 0);( 0);( 0);( 0 yxg yxh yxg yx Chú ý:Nhiều khi đặt ẩn phụ mới có hệ đối xứng Ví dụ : =+ =+ = = =+ 5 5 5 5 2 2 2 2 ty yt tx xy yx IV) Hệ đẳng cấp đối với x và y 1 ¤n thi ®¹i häc cÊp tèc Ngun Huy Hïng :THPT BC Hïng V¬ng 1) HƯ ph¬ng tr×nh = = 0);( 0);( yxg yxf ®ỵc gäi lµ hƯ ®¼ng cÊp bËc 2 cđa x; y nÕu mçi h¹ng tư (trõ sè h¹ng tù do) ®Ịu cã bËc lµ 2. 2) C¸ch gi¶i : * C¸ch 1) Khư sè h¹ng tù do. (C¸ch nµy thêng dïng khi hƯ kh«ng chøa tham sè, hc tham sè ë sè h¹ng tù do cho ®¬n gi¶n) * C¸ch 2) Khư x 2 ( víi y ≠ 0 ) hc y 2 (víi x ≠ 0): (C¸ch nµy thêng dïng khi hƯ cã chøa tham sè). VI. Mét sè hƯ ph ¬ng tr×nh kh¸c. *) C¸ch gi¶i: §Ĩ gi¶i hƯ ph¬ng tr×nh kh«ng mÉu mùc ta thêng ¸p dơng mét sè pp : + Ph©n tÝch thµnh tÝch cã vÕ ph¶i b»ng 0. + §ỉi biÕn (®Ỉt Èn phơ) + §¸nh gi¸ : B§T hc dïng hµm sè. Mét sè vÝ dơ: 1. HƯ ®èi xøng I: Giải các hệ pt sau đây : 2 2 11 1) 30 xy x y x y xy + + = + = 11 5; 6 5. 6 . 30 p s hpt s p p s p s + = ⇔ ⇔ = = ∪ = = = ĐS : x = 2; 3; 1; 5 2 - 2 2 3 3 30 35 5; 6 (2;3) ; (3;2) x y xy x y hpt s p + = + = ⇔ = = => 4 4 2 2 1 3) 1 11 1 0; 2 (0;1);(1;0) ( 2 ) 2 1 x y x y p s s hpt p p s p p + = + = + = = ⇔ ⇔ = = => − − = 3 3 30 4) : ; 0; ; . 35 . 30 125, 5 6 3 35 x y y x HD x y s x y p x y x x y y p s hpt s s p s sp + = > = + = + = = ⇔ ⇔ = <=> = => = − = Vậy Hpt có ngh ( 4;9) ; ( 9;4). 5- cho: 5( ) 4 4 1 x y xy x y xy m + − = + − = − a) Tìm m để hpt có nghiệm. HD: Giải hệ S ;P ta được S= 4m ;p = 5m-1 ĐK : S 2 -4p ≥ 0 ⇔ 1 ; 1 4 m m≤ ≥ . b) T×m m ®Ĩ hƯ cã nghiƯm duy nhÊt. §S: m = 1/4, m = 1. 6) a-Cmr: Hpt có ngh với mọi m : 2 2 2 2 1x y xy m x y xy m m + + = + + = + b) Tìm m hpt có nghiện duy nhất . HDĐS : a- 2 1 1 2 2 2 1 . ; 1 1. p s m hpt p s m m s m p m s m p m + = + ⇔ = + ⇔ = = + ∪ = + = ĐS:hệS 1 ,P 1 Vn ; 2 2 2 2 4 ( 1) 0S P m− = − ≥ . Vậy: HPt có nghiệm với mọi m. b-HPT cã ngh duy nhÊt ⇔ 2 2 2 4 0S P− = ⇔ 2 ( 1) 0m − = 1m ⇔ = . => x = y = 1 Vậy : (1;1). 2. HƯ ®èi xøng lo¹i II: Giải hệ pt : 3 3 3 8 1 : 3 8 x x y hpt y y x = + − = + 3 4 2 : 3 4 y x y x hpt x y x y − = − − = 2 2 2 2 2 3 2 3 2 3 2 x x y y y x − = − − − = − HDĐS : 1-Hpt 2 2 3 3 ( )( 5) 0 3 8 3 8 (0;0) ( 11; 11) ( 11; 11) x y x y x y xy x x y x x y = − + + + = ⇔ = + = + − 2- ĐK : x ≠ 0 ; y ≠ 0. Hpt : 2 2 ( )( 4) 0 6 4( ) 0 x y x y x y xy x y − + + = + − − + = (-2; -2) 3- 2 2 2 2 2 3 2 2 3 2 x x y y x x − = − − = − Lấy (1)-(2) : 3(x-y)(x+y-1 ) = 0 y=x hoặc y = 1-x. Kết hợp (1) Khi y = x : (1;1) ; (2;2) Khi y = 1 -x VN . 4- 1 3 2 1 1 2 x y x y x y + = + = Lấy (1) - (2) : (x - y)(2 + 4/xy ) = 0 y = x ; y = -2/x 2 Ôn thi đại học cấp tốc Nguyễn Huy Hùng :THPT BC Hùng Vơng + y = x : (1;1) ; (-1;-1) . + y = -2/x : ( 2; 2);( 2, 2) 3) . Hệ nửa đối xứng VD. Giải hệ : += = 12 11 3 xy y y x x Giải: += =+ += =+ += = 12 0)1)(( 0. 12 0 0. 12 11 33 22 3 xy xyyx yx xy yxxyyx yx xy y y x x 3 4 . 0 . 0 1 ( ) ( ) 2 1 0 2 0 x y x y x y I y II x x x x x = = + = + + = + Ta có I): == + == == =+ = 2 51 2 51 1 )( 012 ( 0. 3 yx yx yx I xx yx yx + Ta có II) : 2 2 2 . 0 1 ( ) 1 1 3 ( ) ( ) 0;( ) 2 2 2 x y II y x x x VN = + + + = 4. Hệ đẳng cấp : VD. Cho hệ phơng trình : 2 2 2 4 (1) 3 4 (2) x xy y m y xy + = = a) Giải hệ pt` với m = 1 b) Tìm a để hệ có nghiệm Giải: Cách 1: Dễ thấy y = 0 không phải là nghiệm của hpt. Đặt x = ty, ta có : Hệ 2 2 2 2 2 2 4 3 4 t y ty y m y ty + = = 2 2 2 ( 4 1) (1 3 ) 4 y t t m y t + = = 2 2 4 1 1 3 4 (1 3 ) 4 t t m t y t + = = (I) Do y 0 nên từ y 2 (1 - 3t) = 4 1 - 3t > 0 t < 1 3 a) Với m = 1 ta có hệ : 2 2 4 1 1 1 3 4 (1 3 ) 4 t t t y t + = = Giải hệ ta đợc kq : (1 ; 4), (-1 ; -4). b) Ta có : (I) 2 2 4( 4 1) (1 3 ) (1 3 ) 4 t t m t y t + = = 2 2 4 (16 3 ) 4 0 (*) (1 3 ) 4 t m t m y t + = = Đặt f(t) = 4t 2 - (16 - 3m)t + 4 - m = thì Hệ có nghiệm (*) có nghiệm thoả mãn t < 1 3 . Ta lại có 1 8 ( ) 0 3 9 af = < m nên hệ luôn có nghiệm thoả mãn t 1 < 1 3 < t 2 . Vậy hệ luôn có nghiệm với m. Cách 2 : Khử một ẩn. Hệ 2 2 4 3 4 x xy m y xy = = 2 4 2 2 4 2 (8 ) (4 ) 0 (*) x m y x x m x m + = + = (x = 0 thoả mãn hệ khi m = 4). Với m 4 đặt : f(t) = 2t 2 + (8 - m)t - (4 - m) 2 ta có f(0) = -(4 - m) 2 < 0 nên phơng trình f(t) = 0 luôn có nghiệm t > 0 hay phơng trình (*) luôn có nghiệm với m. Các bài tập luyện tập : Bài 1: Một số hệ dạng cơ bản 3 Ôn thi đại học cấp tốc Nguyễn Huy Hùng :THPT BC Hùng Vơng 1) Cho hệ phơng trình =+++ =++ 8 )1)(1( 22 yxyx myxxy a) Giải hệ khi m=12 b) Tìm m để hệ có nghiệm 2) Cho hệ phơng trình 2 2 2 1 1 2 a x y x y a + = + = + Tìm a để hệ phơng trình có đúng 2 nghiệm phân biệt 3) Cho hệ phơng trình 2 2 2 2 1 3 2 x xy y x xy y m + = + = Tìm m để hệ có nghiệm 4) =+ =+ 22 22 xy yx 5) =+++++++ =+++ myxxyyx yx 1111 311 a) Giải hệ khi m=6 b) Tìm m để hệ có nghiệm Bài 2: + = + = 2 2 2 2 2 3 2 3 y x x x y y (KB 2003) HD: Th1 x=y suy ra x=y=1 TH2 chú y: x>0 , y> 0 suy ra vô nghiệm Bài 3: =+ =+ 358 152 33 22 yx xyyx HD: Nhóm nhân tử chung sau đó đặt S=2x+y và P= 2x.y Đs : (1,3) và (3/2 , 2) Bài 4: =+ = )2(1 )1(33 66 33 yx yyxx HD: từ (2) : -1 x , y 1 hàm số : ( ) tttf 3 3 = trên [-1,1] áp dụng vào phơng trình (1) Bài 5: CMR hệ phơng trình sau có nghiệm duy nhất += += x a xy y a yx 2 2 2 2 2 2 HD: = = 223 2 axx yx xét 23 2)( xxxf = lập BBT suy ra KQ Bài 6: =+ =+ 22 22 xy yx HD Bình phơng 2 vế, đói xứng loại 2 Bài 7: =+ =+ )1( )1( 2 2 xayxy yaxxy xác định a để hệ có nghiệm duy nhất HD sử dụng ĐK cần và đủ a=8 Bài 8: += = )2(5 )1(2010 2 2 yxy xxy HD : Rút ra y yy y x += + = 55 2 Cô si 52 5 += y y x . 20 2 x theo (1) 20 2 x suy ra x,y Bài 9: ++=+ = 2 )1( 3 yxyx yxyx (KB 2002) HD: từ (1) đặt căn nhỏ làm nhân tử chung (1;1) (3/2;1/2) Bài 10: =+ =++ ayx ayx 3 21 Tìm a để hệ có nghiệm 4 Ôn thi đại học cấp tốc Nguyễn Huy Hùng :THPT BC Hùng Vơng HD: từ (1) đặt 2,1 +=+= yvxu đợc hệ dối xứng với u, - v Chỉ ra hệ có nghiệm thì phơng trình bậc hai t- ơng ứng có 2 nghiệm trái dấu. Bài tập áp dụng 1) = = 495 5626 22 22 yxyx yxyx 2) +=+ +=+ )(3 22 22 yxyx yyxx KD 2003 3) =++ =++ 095 18)3)(2( 2 2 yxx yxxx 4) ++=+ = 2 )(7 22 33 yxyx yxyx HD: tách thành nhân tử 4 nghiệm 5) += = mxyx yxy 26 12 2 2 Tìm m để hệ có nghiệm 6) = = 19 2.)( 33 2 yx yyx dặt t=x/y có 2 nghiệm 7) =++ =++ 64 9)2)(2( 2 yxx yxxx đặt X=x(x+2) và Y=2x+y 8) =++ =+ 4 )1(2 2222 yxyx yxyx đổi biến theo v,u từ phơng trình số (1) 9) =+ =+ 22 333 6 191 xxyy xyx Đặt x=1/z thay vào đợc hệ y,z DS (-1/2,3) (1/3,-2) 10) += = 12 11 3 xy y y x x (KA 2003) HD: x=y V xy=-1 CM 02 4 =++ xx vô nghiệm bằng cách tách hoặc hàm số kq: 3 nghiệm 11) +=+ +=+ axy ayx 2 2 )1( )1( xác định a để hệ có nghiệm duy nhất HD sử dụng ĐK cần và đủ 12) =+ =+ 3 3 22 xyyx x y y x HD bình phơng 2 vế . 5 ¤n thi ®¹i häc cÊp tèc Ngun Huy Hïng :THPT BC Hïng V¬ng Bµi 2: Ph¬ng tr×nh vµ bÊt ph¬ng tr×nh §¹i sè Mét sè d¹ng ph ¬ng tr×nh vµ bÊt ph ¬ng tr×nh th - êng gỈp 1) BÊt ph¬ng tr×nh bËc hai ; §Þnh lý vỊ dÊu cđa tam thøc bËc hai; Ph¬ng ph¸p hµm sè. 2) Ph¬ng tr×nh, bÊt ph¬ng tr×nh chøa gi¸ trÞ tut ®èi 2 2 2 2 0B A B A B A B A B A B A B A B A B B A B ≥ = ⇔ = < ⇔ < > > ⇔ < − < ⇔ − < < 3) Ph¬ng tr×nh, bÊt ph¬ng tr×nh chøa c¨n thøc *PT chøa c¨n thøc: 2 0 0( 0) 0 0 2 B A B A B A hayB A B A B A A B C B A B AB C ≥ = <=> = ≥ ≥ = <=> = ≥ + = <=> ≥ + + = * BÊt ph¬ng tr×nh chøa c¨n thøc: 2 2 2 2 0 0 * 0 * 0 0 0 0 0 * * 0 0 A A A B B A B B A B A B A A B B A B A B B B A B A B ≥ ≥ < ⇔ > ≤ ⇔ ≥ < ≤ ≥ ≥ < ≤ > ⇔ ≥ ⇔ ≥ > > ≥ Mét sè vÝ dơ BÀI TẬP : Bài 1: Bình phương hai vế : a) x 2 + 1 1x + = Hd: 4 2 0 1 1 1 2 0 1 5 2 x x x x x x x = − ≤ ≤ ⇔ =− − − = ± = b)pt: 5 1 3 2 1 0x x x− − − − − = §K x ≥ 1. Chuyển vế, bình phương hai vế : x = 2 ; x = 2/11( loại ). Vậy x=2 . c) : 9 5 2 4pt x x+ = − + §K 2x ≥ . Bình phương hai lầ ta có : ĐS x = 0 . d) : 16 9 7pt x x− + + = . §S: x = 0, x = -7. e) 2 2 : (4 1) 9 2 2 1 : 1/ 4 pt x x x x dk x − + = + + ≥ B×nh ph¬ng hai lÇn ta cã :ĐS x = 4/3. Bài 2 : §Ỉt Èn phơ: a) 2 2 3 3 3 6 3x x x x − + + − + = . §S: x = 1, x = 2. b) 2 2 1 1 0 : 0 1 3 x x x x dk x + − = + − = ≤ ≤ - Đặt : 2 2 1 1 ; 0 2 t t x x t x x − = + − ≥ => − = pt ⇔ t 2 -3t +2 =0 t =1 ; t =2 Vn. t =1 x = 0 ; x =1. c) 2 2 3 1 3 2 2 5 3 16x x x x x + + + = + + + − HDĐS: 2 2 : 1 2 3 1 0 3 4 2 2 5 3 5 3. DK x t x x t x x x pt t x ≥ − = + + + ≥ => = + + + + <=> = <=> = 2 2 2 2 ) 7 2 3 3 19 . 2 7 / 4 5 3 13 4 1; 2 d x x x x x x t x x pt t t t t x x + + + + + = + + = + + ≥ <=> + + = + <=> = => = =− Bµi 3: 1) 1 3 ( 1)(3 )x x x x m + + − − + − = a) Giải pt khi m=2 b) Tìm m pt có nghiệm. HDĐS: ĐK: . 1 3 ; 2 2 2 : 2( ) t x x t vi a b a b a b = + + − => ≤ ≤ + ≤ + ≤ + 2 0( ) 1) 2 : 2 0 1, 3 2 t l m t t x x t = = − = <=> => = − = = 2) f(t) = -t 2 /2 + t +2 = m (1) . Lập bảng biến thiên : Tacó : 2 2 2 2.m− ≤ ≤ Bµi 4. T×m m ®Ĩ ph¬ng tr×nh sau cã nghiƯm: 2 9 9x x x x m + − = − + + Bình phương : Đặt t= (9 ) 0 9 / 2x x t− => ≤ ≤ KSHS 2 ( ) 2 9 ; 9 / 2 9 / 4 10f t t t o t Ds m = − + + ≤ ≤ − ≤ ≤ d) 6 Ôn thi đại học cấp tốc Nguyễn Huy Hùng :THPT BC Hùng Vơng Bài 5. Tìm m để phơng trình có nghiệm: 4 44 4 4 6x x m x x m + + + + + = HDẹS: ẹaởt 4 2 4 4 0 : 6 0t x x m pt t t= + + + = 44 4 3 ( ) 2 4 2 4 16 loạit PT t x x m m x x = = => + + = <=> = + Laọp BBT : m>19VN; m=19: 1 ngh ;m<19pt2ngh. Baứi 6. Giải các phơng trình sau: 1) 2 2 3 3 3 (2 ) (7 ) (7 )(2 ) 3x x x x + + = -ẹaởt : 2 2 3 3 3 3 2 3 . 9 7 u x u v uv pt u v v x = + = <=> + = = + 3 1; 2 1; 6 2 u v u v x uv + = <=> <=> = = => = = 2) 3 2 1 1x x = .ẹK : x 1 3 3 2 2 1; 0 1 0;1; 2; 1;0;3 1 1;2;10 u x v x v u v u v u v x = = = => <=> = = + = = Một số bài tập luyện tập: Bài 1 : Tìm m để mxxxx ++++ )64)(3)(1( 2 Tìm m để bất phơng trình trên nghiệm đúng với mọi x. HD: sử dụng hàm số hoặc tam thức : m-2 Bài 2: Giải các phơng trình, bất phơng trình sau: 1) 014168 2 ++ xxx 2) xxx 2114 =+ : x = 0 3) 2 2 2( 2 ) 2 3 9 0. : 1 5x x x x DS x + = = 4) 211 22 =++ xxxx . Tích 2 nhân tử bằng 1 suy ra cách giải. 5) 023)3( 22 xxxx (KD 2002) Bài 3: Tìm m để hệ sau có nghiệm + ++ 012 0910 2 2 mxx xx ĐS m 4. Bài 4: Giải bất phơng trình: 2212 >+ xxx HD : nhân 2 vế với biểu thức liên hợp của VT Biến đổi về BPT tích chú y ĐK Bài 5: Giải bất phơng trình: 7 2 1 2 2 3 3 +<+ x x x x HD Đặt 2, 2 1 += t x xt AD BĐT cô si suy ra ĐK. Bài 6: Giải bất phơng trình 4 )11( 2 2 > ++ x x x HD Xét 2 trờng hợp chú ý DK x -1. Trong trờng hợp x 4 tiến hành nhân và chia cho biểu thức liên hợp ở mẫu ở VT. Bài 7: Cho phơng trình: mxxxx ++=+ 99 2 Tìm m để phơng trình có nghiệm. HD Bình phơng 2 vế chú y ĐK Đặt t= tích 2 căn thớc Tìm ĐK t Sử dụng BBT suy ra KQ Bài 9: Giải bất phơng trình (KA 2004) 3 7 3 3 )16(2 2 >+ x x x x x Bài tập áp dụng 1) Tìm m để bất phơng trình sau có nghiệm mxx + 41624 2) 16212244 2 +=++ xxxx 3) 12312 +++ xxx 4) 1212)1(2 22 =+ xxxxx HD: đặt 12 2 += xxt coi là phơng trình bậc hai ẩn t. 5) 2 2)2()1( xxxxx =++ 6) 2 3 1)2(12 + =++ x xxxx 7) 1 1 251 2 < x xx 8) 023243 2 =+++ xxx . 9) 2 2 4 3 18 29x x x x + = + 7 Ôn thi đại học cấp tốc Nguyễn Huy Hùng :THPT BC Hùng Vơng B i 3: Phơng trình và hệ phơng trình lợng giác Một số kiến thức cần nhớ 1. Các công thức biến đổi lợng giác a) Công thức cộng: cos(a - b) = cosacosb + sinasinb cos(a + b) = cosacosb - sinasinb sin(a + b) = sinaccosb + cosasinb sin(a - b) = sinacosb - cosasinb ( ) 1 tga tgb tg a b tgatgb = m b) Công thức nhân đôi, nhân ba cos2a = cos 2 a - sin 2 a = 2cos 2 a - 1 = 1- 2sin 2 a; sin2a = 2sinacosa; 2 2 2 , 2 4 2 1 tga tg a a k a k tg a = + + ữ 3 3 sin 3 3sin 4sin ; cos3 4cos 3cos ;a a a a a a= = c) Công thức hạ bậc 2 2 1 cos 2 1 cos 2 cos ; sin ; 2 2 a a a a + = = d) Công thức chia đôi Đặt ( ) 2 2 x t tg x k = + . Ta có: 2 2 2 2 2 2 1 2 sin ; cos ; 1 1 1 t t t x x tgx t t t = = = + + ; e) Công thức biến đổi * Đổi tích thành tổng: [ ] [ ] [ ] 1 cos cos cos( ) cos( ) 2 1 sin sin cos( ) cos( ) 2 1 sin cos sin( ) sin( ) 2 a b a b a b a b a b a b a b a b a b = + + = + = + + * Đổi tổng thành tích: cos cos 2cos cos ; 2 2 cos cos 2sin sin ; 2 2 sin sin 2sin cos ; 2 2 sin sin 2cos sin ; 2 2 a b a b a b a b a b a b a b a b a b a b a b a b + + = + = + + = + = f) Một số công thức hay dùng: sin cos 2 sin 2 cos 4 4 sin cos 2 sin 2 cos 4 4 x x x x x x x x + = + = ữ ữ = = + ữ ữ 1 1 ; ; 4 1 4 1 tgx tgx tg x tg x tgx tgx + + = = ữ ữ + 2. Một số phơng trình lợng giác thờng gặp a) phơng trình lợng giác cơ bản: + sinx = a 1 2 1 (sin ) 2 PTVN PT có ngh a x k a a x k > = + = = + + cosx = a 1 1 2 (cos ) PTVN PT có ngh a a x k a > = + = + tgx = a ĐK: 2 x k + , x = k + (tg = a). + cotgx = a, ĐK: x k , x = k + (cotg = a). b) Phơng trình bậc nhất, bậc hai đối với một hàm số lợng giác. * Phơng trình bậc nhất: [ ] ( ) ( ) 2 sin ( ) sin ( ) ; ( ) ( ) 2 cos ( ) cos ( ) ( ) ( ) 2 ; ( ) ( ) ( ) ( ) ; ( ) ( ) ( ) ( ) ; sin ( ) sin ( ) sin ( ) sin ( ) ; cos ( ) cos ( ) cos ( tg tg cotg cotg f x g x k f x g x f x g x k f x g x f x g x k f x g x f x g x k f x g x f x g x k f x g x f x g x f x g x f x = + + = = + + = = + + = = + + = = + + = = + = [ ] ) cos ( ) ; sin ( ) cos ( ) sin ( ) ; 2 g x f x g x g x = + = * Phơng trình bậc 2: 2 sin sin 0a x b x c+ + = đặt t = sinx ( 1t ). 2 cos cos 0a x b x c+ + = đặt t = cosx ( 1t ). 2 2 0; 0; atg x btgx c acotg x bcotgx c + + = + + = c) Phơng bậc nhất đối với sinx và cosx. asinx + bcosx = c. Cách giải: + Cách 1: chia cả hai vế cho 2 2 a b+ ; đặt: 2 2 2 2 cos , sin a b a b a b = = + + ta đợc PT: 2 2 sin( ) c x a b + = + ; *) Chú ý: Phơng trình có nghiệm 2 2 2 c a b + . + Cách 2: Đặt b tg a = ta đợc phơng trình: sin( ) cos c x a + = . 8 Ôn thi đại học cấp tốc Nguyễn Huy Hùng :THPT BC Hùng Vơng d) Phơng trình đẳng cấp đối với sinx và cosx 2 2 sin sin cos cosa x b x x c x d+ + = Cách giải: * Cách 1: Thử với cos 2 x = 0 sinx = 1 nếu nghiệm đúng phơng trình thì đặt cosx làm thừa số chung. Với cos 2 x 0 chia cả hai vế cho cos 2 x ta đợc: atg 2 x + btgx + c = d(1 + tg 2 x). * Cách 2: Hạ bậc đa về phơng trình bậc nhất đối với sin2x và cos2x. e) Phơng trình đối xứng đối với sinx và cosx *) Đối xứng: a(sinx + cosx) + bsinxcosx = c Đặt sinx + cosx = t, điều kiện 2t 2 2 1 2 2 0 2 t at b c bt at b c + = + = ữ * Giả đối xứng: a(sinx - cosx) + bsinxcosx = c Đặt sinx - cosx = t, điều kiện 2t 2 2 1 2 2 0 2 t at b c bt at b c + = + = ữ . 3. Một số phơng pháp thờng dùng khi giải các phơng trình lợng giác: + áp dụng các hằng đẳng thức; + áp dụng các công thức biến đổi; + Đổi biến số, đặt ẩn phụ; + Biến đổi về tích bằng 0; + Đánh giá: dùng BĐT, tập giá trị của hàm số y = sinx; y = cosx, dùng đạo hàm; + Biến đổi về tổng bình phơng bằng 0. 4. Các ví dụ: Giải các phơng trình sau: Bài 1: x x tgxgx 2sin 4cos.2 cot += . ĐS: 3 x k = + . Bài 2: )1(sin 2 1 3 2 cos 3 cos 22 += ++ + xxx ĐS: 5 ; 2 ; 2 6 6 x k x k x x k = = + = = + . Bài 3: 2 sin 2sin 2sin sin 2 2 2 2 =+ x x x x . ĐS: 2 2 ; 2 3 3 x k x x k = + = = + . Bài 4: 8 1 3 . 6 3cos.cos3sin.sin 33 = + + xtgxtg xxxx HD:- Đặt ĐK rút gọn MS=1 AD công thức nhân 3 ĐS: 6 x k = + . Bài 5: 0cos.6)sin.2(3 =++ xxtgxtgx HD: Biến đổi theo sin và cos. ĐS: 3 x k = + . Bài 6: 3. 6sin 2sin( ) (1) 2 2sin 6sin( ) (2) 2 y tg x y x y tg x y x + = = + HD: nhân (1) với (2) rút gọn y y tg 22 sin4 2 = . đặt 2 y t tg = ữ t = 0, t = 3 . Bài 7: xxxxxx cos13sin. 2 1 sin.4cos2sin.3cos ++= HD : BĐ tích thành tổng rút gọn. Bài 8: 2 1 5cos4cos3cos2coscos =++++ xxxxx HD: nhân 2 vế với 2.sin(x/2) chú ý xét trờng hợp bằng 0. Nhận xét: Trong bài toán chứa tổng nxxxT nxxxT sin 2sinsin cos 2coscos +++= +++= thực hiện rút gọn bằng cách trên. Bài 9: )cos.sin2(cos3sin.2sin. 22 xxxxxtgx += HD: BĐ về dạng: 2 2 (sin cos )(sin 3cos ) 0x x x x+ = Bài 10 2 9 sin cos 2 log 4.log 2 4 x x ữ = HD: ( ) sin sin 2 sin 1 2. log 2.log 2 4 2 log 2 4 x x x = = 5. Một số phơng trình có tham số: Bài 1. Tìm m để phơng trình: sin2x + m = sinx + 2mcosx có đúng 1 nghiệm 3 [0; ] 4 x . HD: PT (sinx - m)(2cosx - 1) = 0. Bài 2. Tìm m để phơng trình: (2sinx - 1)(2cos2x + 2sinx + m) = 3- 4cos 2 x có đúng 2 nghiệm x [0; ]. HD: PT (2sinx - 1)(2cos2x + m - 1) = 0. 9 Ôn thi đại học cấp tốc Nguyễn Huy Hùng :THPT BC Hùng Vơng Bài 3. Tìm m để phơng trình: mcos 2 2x - 4sinxcosx + m - 2 = 0 có nghiệm x [0 ; /3]. HD: Đặt t = sin2x. Bài 4: Cho phơng trình 02sin24cos)cos.(sin2 44 =++++ mxxxx Tìm m để phơng trình có ít nhất một nghiện thuộc đoạn 0; 2 . HD: [-10/3;-2] Bài 5: Cho phơng trình 3cos2sin 1cossin2 + ++ = xx xx a 1) Giải phơng trình khi a=1/3. 2) Tìm a để phơng trình có nghiệm. HD: Đa về dạng (2-a)sinx+(2a+1)cosx=3a+1 ĐS [-1/2,2] Bài 6: Tìm nghiệm trong khoảng (0, ) += 4 3 cos212cos.3 2 sin4 22 xx x 6. Các bài tập luyện tập: 1) 2 1 3sin.2sin.sin3cos.2cos.cos = xxxxxx . 2) 2cos.3sincos.3sin =+++ xxxx . 3) x x x x cos 1 3cos.2 sin 1 3sin.2 += . 4) x x xg 2sin 2cos1 2cot1 2 =+ . 5) 2)1.2(cos2cos 2 =+ xtgxx . 6) 03cos2cos84cos3 26 =++ xx . 7) 1 1cos2 3sin 42 sin2cos)32( 2 = + x x x x . 8) 02cos2sincossin1 =++++ xxxx . Một số đề thi từ năm 2002 1) Tìm nghiệm thuộc khoảng ( ) 0;2 của phơng trình 32cos 2sin21 3sin3cos sin5 += + + + x x xx x . KA 2002 2) Giải phơng trình x xx xtg 4 2 4 cos 3sin)2sin2( 1 =+ (DB 2002) 3) Tìm nghiệm thuộc khoảng ( ) 0;2 của phơng trình x xtgxxg 2sin 2 2sin42cot =+ KB 2003 4) Tìm x nghiệm đúng thuộc khoảng [ ] 0;14 của phơng trình cos3 4cos2 3cos 4 0x x x + = KB 2003 5) Giải phơng trình 4 4 sin cos 1 1 cot 2 5sin 2 2 8sin 2 x x g x x x + = DB 2002 6) Giải phơng trình 2 cos cos sin 1 . 2 x tgx x x x tgx tg + = + ữ (DB 2002) 7) Cho phơng trình 2sin cos 1 (1) sin 2cos 3 x x a x x + + = + a) Giải phơng trình (2) khi 1 3 a = b) Tìm a để phơng trình có nghiệm 8) Giải phơng trình 2 1 sin 8cos x x = (DB 2002) 9) Giải phơng trình 2 cos 2 1 cot 1 sin sin 2 1 2 x gx x x tgx = + + (KA 2003) 10) Giải phơng trình ( ) 3 2sin 6cos 0tgx tgx x x + + = (DBKA 2003) 11) Giải phơng trình ( ) 2 cos 2 cos 2 1 2x x tg x= = (DBKA 2003) 12) Giải phơng trình 6 2 3cos4 8cos 2cos 3 0x x x + + = (DBKB 2003) 13) Giải phơng trình ( ) 2 2 3 cos 2sin 2 4 1 2cos 1 x x x ữ = (DBKB 2003) 14) Giải phơng trình 2 2 2 sin . cos 0 2 4 2 x x tg x = ữ ữ (KD 2003) 15) Giải phơng trình ( ) ( ) 2 cos cos 1 2 1 sin cos sin x x x x x = + + (DBKD 2003) 16) Giải phơng trình 2sin 4 cot sin 2 x gx tgx x = + (DBKD 2003) 17) Giải phơng trình ( ) 2 5sin 2 3 1 sin tx x g x = (KB 2004) 18) Giải phơng trình : ( ) ( ) 2cos 1 2sin cos sin 2 sinx x x x x + = KB 2004. 10 [...]... HD: PHẦN 3: CONIC Bài 16: Trên mặt phẳng tọa độ Oxy cho Elíp (E) có phương trình: PHẦN 2: ĐƯỜNG TRÒN Bài 11: Trong mặt phẳng tọa độ Oxy cho đường tròn (T) có phương trình: x2 + y2 – 4x – 2y – 4 = 0 a) Tìm tọa độ tâm và tính bán kính của đường tròn (T) b) Với giá trò nào của b thì đường thẳng y = x + b có điểm chung với đường tròn (T) c) Viết phương trình tiếp tuyến với đường tròn song song với đường... th¼ng trªn b) T×m to¹ ®é c¸c ®iĨm M thc d1, N thc d2 sao cho MN song song víi mỈt ph¼ng (P) x-y+z=0 vµ MN = 2 §S: Bµi 3: Trong hƯ trơc Oxyz cho mỈt cÇu: (S) ( x − 1) 2 + ( y + 1) 2 + ( z − 1) 2 = 9 vµ mỈt ph¼ng: (P) 2x + 2y + z - m 2 - 3m = 0 T×m m ®Ĩ (P) tiÕp xóc víi mỈt cÇu (S) Víi m t×m ®ỵc h·y x¸c ®Þnh to¹ ®é tiÕp ®iĨm HD: Bµi 4: Trong hƯ trơc Oxyz cho A(0;1;1) B(1;0;0) C(1;2;-1) T×m to¹ ®é t©m... mỈt cÇu ngo¹i tiÕp h×nh chãp LËp ph¬ng tr×nh mỈt ph¼ng qua BI vµ song song víi AC c) Gäi H lµ trung ®iĨm BD, G lµ trc t©m tam gi¸c SCD TÝnh ®é dµi HG d1 : x − 8z + 23 = y − 4 z + = 10 x − 2z − 3 = 0 d2 : y + 2z + 2 = 0 a) CMR ®êng th¼ng d1 vµ d2 chÐo nhau b) ViÕt ph¬ng tr×nh ®êng th¼ng (d) c¾t c¶ 2 ®êng th¼ng trªn vµ song song víi Oz 6) Cho 2 ®iĨm A(2;-1;1) B(-2;3;7) vµ ®êng th¼ng d: x −... I(-9/2; -5/2) Bài 2: Trong mp Oxy cho điểm B trên đường thẳng x + 4 = 0 và điểm C trên đường thẳng x–3 =0 a) Xác đònh tọa độ B và C sao cho tam giác OBC vuông cân đỉnh O b) Xác đònh tọa độ B; C sao cho OBC là tam giác đều HD: a) B(-4; -3), C(3; -4) vµ B(-4; 3), C(3; 4) b) Bài 3: Trong mặt phẳng tọa độ Oxy cho các điểm A(5 ; 5), B(1 ; 0), C(0; 3) Viết phương trình đường thẳng d trong các trường hợp sau:... TÝnh f(a), f(x1), f(x2), , f(b) + T×m sè lín nhÊt M vµ sè nhá nhÊt m trong c¸c sè trªn råi kÕt ln M = max f ( x ) , m = min f ( x) [ a ;b ] (1 +2 x ).(3 − x ) ln 2 x x 18 Ngun Huy Hïng :THPT BC Hïng V¬ng • D¹ng 1: Hä ®êng cong ®i qua ®iĨm cè ®Þnh: Ta t×m ®iĨm cè ®Þnh M(x 0; y0), råi chøng minh f’(x0) = h»ng sè víi ∀m • D¹ng 2: Hä ®êng cong kh«ng ®i qua ®iĨm cè ®Þnh: ¸p dơng ®iỊu kiƯn tiÕp xóc cđa ®å thÞ... điểm đó tới hai tiêu điểm c) Tìm các giá trò của b để đường thẳng y = x + b có điểm chung với Elíp d) Viết phương trình các tiếp tuyến với (E) song song với đường thẳng 2x – y + 1 = 0 e) Viết phương trình các tiếp tuyến với (E) đi qua 5 M ( - 2 ; 4 ) HD: Bài 12: Trong mặt phẳng tọa độ Oxy cho ba điểm A(1 ; 2), B(5 ; 3), C(-1 ; 0) a) Viết phương trình đường tròn tâm B và tiếp xúc với đường thẳng AC b) Tìm... 1 3x − z + 1 = 0 (d 2 ) 2x + y − 1 = 0 1) CMR 2 ®êng th¼ng trªn chÐo nhau vµ vu«ng gãc víi nhau 2) ViÕt ph¬ng tr×nh ®êng th¼ng (d) c¾t c¶ 2 ®êng th¼ng trªn vµ song song víi ®êng th¼ng (∆) x −4 y −7 z −3 = = 1 4 −2 §S: 1) Bµi 2: Trong kh«ng gian víi hƯ to¹ ®é Oxyz cho 2 AB = (xB - x A )2 + (yB - y A )2 + (zB - z A )2 r r 1 uuu uuu + DiƯn tÝch ∆ABC: S ABC = | [ AB, AC ] | 2 uuu uuu r r | [ AB,... häc sinh giái cđa trêng gåm 18 em Trong ®ã cã 7 häc sinh khèi 12, 6 häc sinh khèi 11, 5 häc sinh khèi 10 Hái cã bao nhiªu c¸ch cư 8 häc sinh trong ®éi ®i dù tr¹i hÌ sao cho mçi khèi cã Ýt nhÊt 1 häc sinh ®ỵc chän 8 8 8 8 HD: C18 − (C11 + C12 + C13 ) = 41811 Bµi 3: Tõ c¸c ch÷ sè 1, 2, 3, 4, 5, 6 cã thĨ lËp ®ỵc bao nhiªu sè tù nhiªn mµ mçi sè cã 6 ch÷ sè kh¸c nhau vµ trong mçi sè ®ã tỉng cđa 3 ch÷ sè ®Çu... vµ vu«ng gãc víi SC TÝnh diƯn tÝch thiÕt diƯn cđa h×nh chãp S.ABCD víi mỈt ph¼ng (P) 4) Trong kh«ng gian víi hƯ to¹ ®é Oxyz cho 2 ®êng th¼ng : ¤n thi ®¹i häc cÊp tèc x 2 + y 2 + z 2 − 6 x − 4 y − 4 z + 13 = 0 a) ViÕt ph¬ng tr×nh mỈt ph¼ng chøa AB vµ tiÕp xóc víi (S) b) T×m mỈt ph¼ng (P) tiÕp xóc víi (S), song song víi AB vµ kho¶ng c¸ch gi÷a (P) vµ AB nhá nhÊt (lín nhÊt) HD: + sư dơng ph¬ng ph¸p chïm... = 0 a) CMR 2 ®êng th¼ng trªn song song víi nhau ViÕt ph¬ng tr×nh mỈt ph¼ng (P) chøa c¶ 2 ®êng th¼ng trªn b) MỈt ph¼ng (Oxz) c¾t d1, d2 t¹i A, B TÝnh diƯn tÝch tam gi¸c OAB 5) Cho 2 ®êng th¼ng: Bµi 8: Trªn hƯ trơc Oxyz cho A(2a;0;0) B(0;2b;0) C(0;0;2c) a,b,c>0 a) TÝnh kho¶ng c¸ch tõ O tíi mỈt ph¼ng (ABC) b) TÝnh thĨ tÝch khèi tø diƯn OABE víi E lµ ch©n ®êng cao tõ E trong tam gi¸c ABC HD: Bµi 9: Oxyz . thức lợng trong tam giác Một số kiến thức cần nhớ *Một số phép biến đổi thờng dùng + Cung liên kết + Các công thức biến đổi. *Một số hệ thức trong tam giác. họ đờng cong. Điểm cố định là điểm có toạ độ (x 0 ; y 0 ) nghiệm đúng phơng trình: y 0 = f(x 0 , m). Vì vậy: muốn tìm điểm cố định mà họ đờng cong (C m